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Tunable defect interactions and supersolidity in dipolar quantum gases on a lattice potential
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Point defects in self-assembled crystals, such as vacancies and interstitials, attract each other and form stable
clusters. This leads to a phase separation between perfect crystalline structures and defect conglomerates at low
temperatures. We propose a method that allows one to tune the effective interactions between point defects from
attractive to repulsive by means of external periodic fields. In the quantum regime, this allows one to engineer
strongly correlated many-body phases. We exemplify the microscopic mechanism by considering dipolar quantum
gases of ground-state polar molecules and weakly bound molecules of strongly magnetic atoms trapped in a weak
optical lattice in a two-dimensional configuration. By tuning the lattice depth, defect interactions turn repulsive,
which allows us to deterministically design a novel supersolid phase in the continuum limit.
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I. INTRODUCTION

Defects are crucial for the determination of macroscopic
mechanical, optical, and electronic properties of solids [1–3].
One key aspect is the mutual effective interactions between
point defects such as vacancies and interstitials, corresponding
to the lack and excess of crystal particles, respectively. In self-
assembled classical crystals the effective interactions between
point defects are attractive for all combinations of defects
(vacancy-vacancy, interstitial-interstitial, interstitial-vacancy)
in a wide range [4–7]. This interaction leads to the formation
of stringlike defect clusters [8]. The mechanism behind the
attraction of defects is a result of nonlinear effects in the
displacement fields of multiple defects and cannot be described
as a simple pair interaction within elasticity theory. In the quan-
tum regime, the interaction between vacancies is even less well
understood, and it is an open question whether the classical
results may be directly used to infer many-body properties in
the quantum regime. There, the interaction between vacancies
is a crucial part of the theory for the supersolid phase [9–14].
The supersolid is conjectured to be a result of delocalized
vacancies. However, the precise role of the defect dynamics
to establish both superfluid and crystalline orders has been the
object of intense investigations in recent decades [15–28].

Here, we show that effective interactions between point
defects in a self-assembled crystal can be systematically tuned
from attractive to repulsive by means of external periodic su-
perlattices. The lattice spacing of the optical lattice is chosen to
be identical or double the lattice spacing of the self-assembled
crystal. In this setup, the interaction between point defects
is the result of an interplay between displacement-induced
attraction and energy-induced repulsion. By properly choosing
the parameters of the superlattice, the relative strength of the
displacement-induced energy and entropy parts can be tuned,
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thus making the interaction an experimentally accessible
variable.

Based on this microscopic picture of tunable defects, we
investigate the many-body quantum regime. As an example,
using exact quantum Monte Carlo methods, we study the
phases of a dipolar bosonic gas in the presence of a weak
triangular optical lattice. Unlike previous works that focused
on the tight-binding limit valid for deep-lattice potentials
[14,17,29,30], here, we focus on the continuous-space limit
where the band structure of the lattice is not formed or is barely
formed. We investigate the phase diagram by varying the lattice
depth and the strength of the dipole-dipole interaction for both
a commensurate and an incommensurate filling of the lattice
potential, around a small density n = 1/4. In the commensu-
rate case, we observe a superfluid-to-insulating quantum phase
transition. Most notably, introducing defects in the presence of
the weak periodic potential allows for the realization of defect-
induced supersolidity as originally proposed by Andreev and
Lifshitz [10]. In our case, the triangular crystalline structure for
the dipoles is either due to direct strong dipolar interactions
or due to “pinning” of the weakly interacting superfluid by
the lattice potential, depending on the system parameters. We
present a zero-temperature phase diagram which furnishes a
complete description of the superfluid-supersolid and crystal-
supersolid phase transitions. We find that superfluidity and
quasicondensate fraction are comparatively robust against
finite temperature and estimate possible experimental parame-
ters for experiments with ground-state polar molecules [31–38]
and weakly bound molecules of strongly dipolar magnetic
atoms [39–42]. These results differ qualitatively from their
deep-lattice counterparts, where a superfluid state was found
for these low densities [29,30].

We note that investigations of the quantum-mechanical
phases of lattice Hamiltonians in the continuum limit have so
far focused on contact interactions [43–45]. This has led to the
prediction of generalized superfluid–Mott-insulator transitions
in continuous space [46], as well as of solid and superfluid
phases of, e.g., He, He2, and D2 adsorbed on solid-state
surfaces such as, e.g., graphite [47], graphane [48–51], and
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alkali substrates [52,53]. The present work takes a step in a
similar direction for the case of finite-range interactions.

The methodology presented in this paper introduces a
toolbox for the manipulation of complex matter, in analogy
to the techniques developed to tune and shape the direct
interactions between particles in systems as diverse as classical
colloids [54–61], as well as atomic and molecular systems
in the quantum regime [43,62–66], which is the basis for
the success in the realization of many-body phases in these
systems [67–69]. The proposal is based on self-assembled two-
dimensional (2D) crystals of polar molecules. For details on
the required parameters for trapping and interaction strengths
see Ref. [43].

This paper is organized as follow: in Sec. II we introduce
the model Hamiltonian. In Sec. III we show and discuss in
detail results concerning defect interactions in the classical
regime. The study of the quantum phases is proposed in
Sec. IV. Section V discusses the influence of temperature
on supersolidity as well as parameters for possible physical
realizations of self-assembled crystals in cold dipolar quantum
gases [43]. Finally, in Sec. VI we draw some conclusions and
give future outlooks.

II. MODEL

We consider ultracold polar molecules which are trapped
in two dimensions with an additional triangular optical lattice
[Fig. 1(a)] described by the Hamiltonian

H = 1

2m

∑
i

p2
i +

∑
i<j

Vij + λ
∑

i

Ui(x,y). (1)

Here, m is the mass, while pi represents the single-particle
momentum. In the presence of a perpendicular electric field,
the dipole-dipole interaction Vij = �0/r3 is purely repulsive
[43], with strength �0. The last term of Eq. (1) represents the
external potential of a triangular optical lattice with depth λ,

U (x,y) = − sin[π (x +
√

3y)/a0]2

− sin[π (−x+
√

3y)/a0]2− sin [2πx/a0]2, (2)

which can be implemented with two standing laser beams [71].
In the following, energies and distances are given in units
of � ≡ �0/a

3
0 , with a0 being the optical lattice’s constant.

The particle density ρ is given in units of N/(Aa2
0

√
3/2),

where A is the size of the system and N is the particle
number. As a consequence, the filling fraction is n = 1
for particles with average distance a = a0 and n = 1/4 for
a = 2a0, respectively. We consider a crystal commensurate
with respect to the lattice if the ratio between the density
and the filling fraction is an integer value and the crystal has
triangular symmetry. Therefore, both n = 1 and n = 1/4 are
commensurate configurations.

Hamiltonian (1) can be realized with cold polar molecules
(e.g., KRb [32], RbCs [72], NaK [37], or LiCs [36]), where par-
ticle densities are usually ρ � 1 [31]. Alternatively, Rydberg-
dressed atoms [62,66,73–77] or ground-state magnetic atoms
[39–42] may be used, with ρ � 1. In the latter case, recent
experiments with weakly bound Er2 molecules composed of
two highly magnetic ground-state atoms open the way to the

FIG. 1. (Color online) (a) Sketch of setup: Particles are prepared
in a two-dimensional self-assembled crystal with an additional
quasicommensurate optical lattice with varying strength λ. Particles
are colored by their numbers of nearest neighbors Nb. Interstitials:
(b1) Classical steady state of two interstitials for λ = 0. In the absence
of an optical lattice, defects collapse to dislocation pairs which are
attractive (arrows) and form a stable pair in a defect string [70]. Dots
indicate the position of the undistorted lattice. (b2) For a deep lattice
λ = 6 with spacing a0 the interaction between interstitials is purely
repulsive. (b3) Interstitials for lattice spacing a0/2 and λ = 6 can
form a bound pair with triangular order. Vacancies: (c1) Vacancies
in a self-assembled crystal and λ = 0 form defect strings, similar to
interstitials [70]. Vacancies in a deep lattice with λ = 6 and spacing
(c2) a0 and (c3) a0/2 are purely repulsive.

realization of cold quantum gases with comparatively large
dipole moments and high densities ρ � 1 [78,79].

III. DEFECT INTERACTIONS

Interstitials (vacancies) are point defects which result from
adding (removing) a single particle to (from) a self-assembled
crystal. Due to entropy, a finite number of defects exists even
in thermal equilibrium [3]. These point defects induce a long-
range displacement field [6,7] with a nonlinear short-range part
that is responsible for the complex dynamics of isolated defects
[80] and the interaction between them [5,70]. On a quantitative
level, effective interactions can be understood as the change
in free energy �F as a function of the defect distance |r| ≡ r

for various λ and fixed parameters (�, n, a0) with

Veff(r) = �F (r)/(kBT ) = − ln〈δ(r[x] − r)〉. (3)

Here, 〈·〉 denotes ensemble averages, and P (r) = 〈δ(r[x] − r)〉
is the probability to find two defects at distance r . The first
equality corresponds to the so-called reversible work theorem
[81].
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The parameter r in Eq. (3) describes the distance between
the two defects and is determined using the following protocol,
already introduced, e.g., in Refs. [8,70]. In each time step, a
virtual triangular lattice with lattice spacing equivalent to the
average particle distance is considered. Then, each particle
is associated with the closest virtual lattice site. This implies
that in the presence of an interstitial there will be exactly
one doubly occupied virtual lattice site. The position of this
lattice site is defined as the position of the interstitial. For
vacancies, the unoccupied lattice site is the position of the
vacancy. The free-energy profile of two defects as a function of
the distance r corresponds to the effective interaction between
the two defects. In the following, Eq. (3) is evaluated using
Monte Carlo sampling in combination with the self-consistent
histogram method (see Ref. [82]). The effective force between
the defects is then the negative slope of the free energy.

In free space (λ = 0) vacancies and interstitials attract
each other in all combinations (vacancy-vacancy, interstitial-
interstitial) and form stringlike defect clusters, as shown in
Ref. [8]. Examples of this behavior are given in Figs. 1(b1) and
1(c1) for two interstitials and two vacancies, respectively. The
resulting effective interaction potential Veff is purely attractive
and increases monotonically with r for all cases, as shown in
Figs. 2(a)–2(d) for λ = 0 (black solid line).

We find that the presence of an additional optical lattice
[Fig. 1(a)] changes dramatically the energetics, dynamics, and
interaction of defects. In particular, by increasing the lattice
depth Veff can become repulsive. Example results for Veff(r)
between interstitials and vacancies for various lattice depths
are shown in the top and bottom panels of Fig. 2, respectively,
for two choices of particle densities n = 1 [Figs. 2(a) and 2(c)]
and n = 1/4 [Figs. 2(b) and 2(d)]. In all cases, Fig. 2 shows
that for interstitials the turning point where Veff turns first from
attractive to repulsive is λ ≈ 1, while for vacancies a larger
depth of λ ≈ 4 is required. For comparatively large lattice
depths (e.g., λ > 6) the interaction starts to approach the black
dashed lines, which correspond to analytical results from a
discrete lattice model introduced below. The sign and strength
of the effective interactions are, however, density dependent
for intermediate lattice strengths. For example, in the case of
interstitials Veff displays a nonmonotonic dependence on λ for
densities close to n = 1/4 [Fig. 2(b)]. For the dynamics of
defects, this implies phase separation and cluster formation
for 2 � λ � 6. An example of this behavior is given in
Fig. 1(b3). Finally, we find that for λ → ∞ the dynamics
of defects is effectively frozen, as the energy necessary to hop
from one site to the next becomes increasingly prohibitive.

The limit of a large lattice depth in the commensurate
crystal (with any filling) can be understood from the fol-
lowing simple lattice model. In this model, particles are
fixed to lattice positions and can hop between sites with
given (temperature-dependent) rates. Each lattice site can be
unoccupied, occupied, or doubly occupied. As above, we
assume that the direct interaction between individual particles
is Vij = �/r3. We remove the divergence at r = 0 by fixing
the energy of a doubly occupied site to U .

Let us first consider the interaction between two interstitials
in this model. In this case, all sites will be occupied, and two
sites are doubly occupied for the case of unit filling n = 1
plus two additional particles. The energy of the system is then
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FIG. 2. (Color online) Effective interaction Veff between intersti-
tials and vacancies in a dipolar crystal as a function of the distance
r for various λ and � = 15 from a classical Monte Carlo simulation.
(a) For λ = 0, Veff for interstitials is purely attractive (black). With
increasing λ and lattice filling n = 1, the interaction can be tuned
from attractive to purely repulsive. The dashed line is the analytical
prediction �F/kBT = �/r3 for a lattice model. (b) Veff between
interstitials can also be tuned with λ in a lattice with filling n = 1/4
(which corresponds to a lattice spacing a0/2). For λ � 6 the shape of
the interaction is similar to the filling n = 1. For λ � 6, however,
a bound defect configuration becomes metastable [compare with
Fig. 1(b3)]. (c) Tunability of vacancy interactions for lattice filling
n = 1. Veff changes sign with increasing λ. (d) Tunability of vacancy
interactions for lattice filling close to n = 1/4. Note that for vacancies
and λ > 6, hopping is basically suppressed. For interstitials, due to
the pair interaction a sampling up to λ = 10 is possible. Note that
the roughness of the interaction is an artifact of the projection of a
two-dimensional interaction to 1D. The two-dimensional potential
surface for λ = 0 is shown in Ref. [70].

EII = 1/2
∑N+2

i

∑
j<i Vij + 2U . The first term corresponds

to the sum of all interactions in the system with N + 2
particles, and the second term is the 2U offset from the two
interstitials. The first term is a function of the distance between
the additional particles, say, N + 1 and N + 2. The effective
potential between the defects reads Veff(r) = EII(r → ∞) −
EII(r). The 2U term and all contributions in the first term up to
last term VN+1,N+2 cancel. This is identical to the interaction
between two particles, and therefore, the effective potential is
VN+1,N+2 = Veff = �/r3.

For vacancies, the situation is less obvious. In this
case, the system contains N − 2 occupied lattice sites and
two unoccupied lattice sites. Here, the distance between
the two vacancies is defined as the distance between the
two unoccupied lattice sites. Considering again Veff(r) =
EVV(r → ∞) − EVV(r), we find that when summing up all
energy contributions in the system the energy EVV(r) behaves
exactly as Veff(r) = Vij (r). Therefore, also two vacancies in
the lattice are repulsive with �/r3. These exact results are
depicted in Fig. 2 as dashed lines.

Based on this microscopic classical model of tunable
defect interactions, in the next section we present results on
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defect-induced quantum phases using exact quantum Monte
Carlo simulations for bosonic dipoles.

IV. QUANTUM PHASES

The present section examines the applicability of classical
predictions to the quantum regime, considering commensurate
and incommensurate filling values around n = 1/4. We chose
this value as the classical ground-state configuration at n =
1/4 is the commensurate triangular crystal that best minimizes
lattice-induced frustration: the free-space triangular lattice
is distorted very little by the external lattice potential. In
addition, previous studies using tight-binding models for
bosonic particles valid in the limit of very large lattice
depths have mainly focused on experimentally challenging (for
molecules) higher densities as n > 1/3 [17,30,83–85]. This
regime of lower densities is thus essentially unexplored from
the point of view of the investigation of quantum many-body
phases. In the following we will be specifically concerned with
the emergence of supersolid behavior for densities close to the
commensurate filling n = 1/4.

In our analysis, we use an exact numerical quantum Monte
Carlo algorithm in the continuous-space path integral (PIMC)
representation [43,86,87]. Our PIMC code is based on the so-
called worm algorithm, which is known to efficiently provide
numerically exact estimates of thermodynamic quantities such
as the superfluid density and the structure factor, which
can be used as order parameters to determine the nature of
the superfluid and solid phases, respectively. The superfluid
density reads

fs = mkBT

�2N
〈w2〉, (4)

with w = (wx,wy) being the winding number estimator along
the x and y directions [88]. The static structure factor is instead
defined as

S(k) = 1

N

〈∑
ij

e−ik(rj −ri )

〉
, (5)

with |k| ≡ k being a crystal vector, and characterizes diagonal
order. We use up to N = 188 particles and about 750 sites to
minimize finite-size effects and defect concentrations of up to
4%.

Quantum phases of Eq. (1) with λ = 0 have been in-
vestigated for the case of bosonic polar molecules in Refs.
[43–45,89]. The phase diagram is characterized by a melting
quantum phase transition from a triangular crystal phase (with
Smax �= 0 and fs = 0) to a homogeneous superfluid (with
Smax = 0 and fs �= 0) by decreasing the interaction strength,
defined as

rd = �0m

a�2
, (6)

below a critical value rc
d = (18 ± 3). Here, we are interested

in investigating the phase diagram as a function of rd and of
the depth λ of an additional optical lattice.

Figure 3 (top panel) displays the ground-state limit of fs vs
λ for an interaction strength rd = 7.5 < rc

d , corresponding to
a superfluid for λ = 0. In the figure, we consider both the case
of a lattice commensurate with the dipole density at filling
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FIG. 3. (Color online) (top) Superfluid fraction and (bottom)
structure factor as a function of the lattice depth λ with rd ≈ 7.5
for filling n = 1/4, i.e., without defects (Nd = 0, circle), and for
n � 1/4, i.e., with defects: Nd = 4 (solid squares, interstitial density
0.02) and Nd = 8 (open squares, interstitial density 0.04).

n = 1/4 (black circles) and the case of noncommensurate
filling with a small density of interstitial defects (equaling
0.02 and 0.04 for the red open and solid squares, respectively).

For n = 1/4 (black circles), Fig. 3 (top) displays a sudden
drop in fs , suggesting a quantum phase transition from
a homogeneous superfluid (fs = 1) to an insulating phase
(fs = 0) induced by the increase of the strength of the lattice
potential, occurring at the critical value λ ≈ 8. This picture
is corroborated by a sudden increase of the static structure
factor at the same value λ � 8 (Fig. 3, bottom panel), showing
that the insulating phase is, in fact, a crystal. This transition
is thus driven by the suppression of quantum kinetic energy
with increasing λ [67]. As we discuss below, for physical
realizations with, e.g., polar molecules KRb and Er2, the value
of λ � 8 corresponds to a very small value of the lattice depth,
where the two-dimensional band structure is not formed. Thus,
this quantum phase transition can be regarded to happen in the
continuum, as a two-dimensional analog of the so-called pin-
ning quantum phase transition that has been predicted in one
dimension [78,90,91]. For short-range interactions, the one-
dimensional analog has been observed experimentally in one
dimension [90,92], while the three-dimensional case has been
studied via quantum Monte Carlo simulations in Ref. [46].

The scenario of the superfluid-crystal quantum phase tran-
sition described above changes drastically when defects are
introduced: in this case fs remains finite but not unitary, as ex-
pected for a nonhomogeneous superfluid [93]. This is shown in
Fig. 3 (top panel) in the parameter regime 8 � λ � 12, where
the superfluid density increases with the concentration of
interstitial defects (see, in particular, the cases λ = 10 and 12).

Interestingly, we find that in the whole parameter range
λ � 8 the order parameter Smax is finite and maximal at
the crystal wave vector k = (4π/3a0,0) corresponding to the
commensurate dipolar crystal with n = 1/4 (as in the case
described above), implying a diagonal crystalline order with
a periodicity that is different from that of the underlying
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FIG. 4. (Color online) Phase diagram rd vs λ for Eq. (1). fs and
Smax for rd = 15 (dashed line) are reported in Fig. 5 (see text). The
phase diagram displays the emergence of superfluid (blue), crystal
(gray), and supersolid (red) phases for varying parameters rd and
λ. Indeed, the white area is not easy to understand entirely, as it is
probably located around a complex critical region. The study of this
region goes well beyond the scope of the present article. Error bars
on rd have been estimated using a finite-size scaling analysis.

lattice potential [94]. This is in contrast, e.g., to the case
with short-range interactions [46], where the periodicity of
the (Mott) insulating phase is trivial, in that it coincides with
that of the underlying lattice.

Here, the coexistence of a finite Smax and fs > 0 in the
parameter regime with λ > 8 demonstrates the realization of
a supersolid state of matter with coexisting diagonal order and
superfluidity.

Figure 4 shows the complete zero-temperature phase dia-
gram as a function of rd and λ, again keeping the defect density
fixed at 0.02. As described above, we find regions of superfluid,
crystal, and supersolid behaviors. In particular, for λ = 0 we
reobtain the phase diagram for a bosonic dipolar gas discussed
above [43], characterized by the quantum melting transition of
the triangular crystal into a homogeneous superfluid at rc

d �
18. We find that increasing λ from zero initially has the simple
effect of shifting the quantum melting transition to smaller
values of rd < rc

d , consistent with the example in Fig. 3 (black
open dots). However, the nature of the transition changes
dramatically above λ > 5: a defect-induced supersolid phase
intervenes between the superfluid and the crystal. For λ � 6
all phases can be observed by simply tuning rd .

An interesting example of this latter situation is shown in
Fig. 5, which presents results for rd = 15, corresponding to a
cut in the phase diagram of Fig. 4 along the indicated dashed
line. Figure 5 shows that, while Smax grows monotonically
with increasing λ � 2, the superfluid density fs displays an
interesting reentrant behavior: it is fs � 1 for λ < 2, then
drops to zero for λ � 4, and then becomes finite again with
fs � 0.2 − 0.4 for λ � 6; this latter behavior corresponds to a
supersolid. We notice that in this parameter region with rd < rc

d

the crystalline structure is purely imposed by the presence
of the lattice potential, which pins the strongly interacting
superfluid, however, crucially without opening a gap. This is

0
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FIG. 5. fs and Smax vs λ for N = 26 (circles) and N = 52
(squares) considering rd = 15 (see dashed line in Fig. 4).

similar to the lattice supersolid discussed in Refs. [17,30];
however, it occurs for shallow lattice depths, where the band
structure is not formed (see below).

For rd > rc
d the triangular crystalline structure is present

also for λ = 0. As the crystal is essentially classical (however,
see [38]), we expect that the results for the tunability of
defect interactions derived in Sec. III should provide direct
insights into defect dynamics in this parameter regime. Indeed,
in the PIMC quantum calculations we find that the effect
of a sufficiently deep lattice in this crystalline case (e.g.,
λ � 8) is to originate a finite superfluid density coexisting
with crystalline order when a finite density of defects is
present. This defect-induced supersolidity is possible only for
effective repulsive interactions between the defects, as would
be predicted by the classical results given above.

Finally, for sufficiently large λ � 11 the superfluid fraction
vanishes altogether, and the ground state evolves into an
insulating lattice-type crystal. This is similar to the observed
frozen dynamics in the classical regime.

In order to visualize the difference between the solid and
supersolid phases, Fig. 6 shows snapshots of the projection of
world lines onto the xy plane taken from the PICM simulations,
obtained by tracing over imaginary time, at n = 1/4 in
the absence of defects [Fig. 6(a)] and with two interstitials
[Fig. 6(b)] for rd = 15 and λ = 10. As explained in literature
[87], these projections (which are for illustration purposes
only) are the closest representation of the square of the wave
function for the many-body system that can be obtained in a
simulation, where overlapping paths imply exchanges among
the bosonic particles and superfluidity. Figure 6 shows that
in the absence of defects, paths remain localized around the
local minima of the lattice potential U (x,y). However, in
the supersolid phase localized paths coexist with paths that
are delocalized throughout the system, representing cyclic
exchanges (permutations) among bosons [see Fig. 6(b), thick
red line]. This residual exchange mechanism is consistent
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FIG. 6. (Color online) Quantum Monte Carlo snapshots with (a)
N = 80 and (b) N = 88 particles with rd ≈ 7.5 (320 sites, squares)
and λ = 10. In the presence of interstitials in (b) delocalized paths
emerge (thick red line) and result in a finite fs . (c) Spherical averaged
one-body density matrix [with the same set of parameters as in (a) and
(b)] for n = 1/4 (crystal, open squares) and for a supersolid phase on
lattice (solid squares). The error bars lie within point size.

with defect-induced supersolidity as originally proposed by
Andreev and Lifshitz [10] and only recently demonstrated via
exact theoretical techniques for bosons with cluster-forming
interactions [19]. Our analysis shows that defect-induced
supersolidity can also originate in the continuum for non-
cluster-forming liquids, using periodic external potentials.
Apart from the qualitative difference, as explained below, this
should provide quantitative advantages in the experimental
realization of the supersolid phase, as it could result in, e.g.,
temperatures higher than possible in the tight-binding regime.

Particle delocalization is also reflected in the
(quasi)condensate fraction, which is easily accessible in
experiments [67], defined as the asymptotic (i.e., r → ∞)
behavior of the angle-averaged one-body density matrix

n(r) = 1

2πV

∫
d�

∫
dr n(r,r′), (7)

with

n(r,r′) = 〈ψ̂(r )ψ̂†(r′)〉 (8)

and ψ̂(r) [ψ̂†(r)] being the particle annihilation (creation)
operators at position r [95]. In the presence of long-range
off-diagonal order associated with a finite condensate fraction,
n(r,r′) factorizes at large separation |r − r′| as

〈ψ̂(r )ψ̂†(r′)〉 → φ(r)φ(r′), (9)

with φ(r) being the condensate wave function. Employing the
same set of parameters as in Fig. 6(b), Fig. 6(c) shows that
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FIG. 7. (Color online) (top) Superfluid fraction and (bottom)
structure factor of the reduced temperature t = kBT /(�2n/m) with
λ = 10 and Nd = 4 (solid squares, interstitial density 0.02) and
Nd = 8 (open squares, interstitial density 0.04).

a constant value for the supersolid phase with finite defect
concentration is here realized (solid squares), corresponding
to a finite (quasi)condensate fraction at T � 0. The latter
disappears in the case of commensurate filling n = 1/4 [same
parameters as in Fig. 6(a)], where n(r,r′) decays exponentially
with distance [open squares in Fig. 6(c)], as expected for an
insulating crystalline phase.

V. FINITE TEMPERATURE AND POSSIBLE
PHYSICAL REALIZATIONS

The supersolid phase described here is considerably re-
silient towards finite-temperature effects. An example of this
is shown in Fig. 7, where we present results for both fs

and Smax as a function of the rescaled temperature t ≡
kBT /(�2n/m), expressed in units of the quantum kinetic
energy at the mean interparticle distance �

2n/m. Figure 7
shows that supersolid behavior survives up to temperatures of
the order of t ≡ kBT /(�2n/m) � 1. The latter is consistent
with a Berezinsky-Kosterlitz-Thouless (BKT) transition for
fs with a comparatively large transition temperature TBKT (see
below).

A. Polar molecules: KRb

As an example of experimental realization of the phase
above, here, we consider first a gas of bosonic 39K85 Rb
molecules with dipole moment d � 0.5 D trapped on a
lattice with spacing a0 = 400 nm. The lattice recoil energy
is ER/h = h/(8ma2

0) � 2.49 kHz (in frequency units), while
the unit of energy � = �0/a

3
0 reads �/h � 0.59 kHz. By

reexpressing the value λ = 10� in convenient ER units, the
numbers above suggest that the supersolid phase described
above would be realized for a weak lattice potential with a
depth of just �2.3ER . This corresponds to a situation where the
band structure of the two-dimensional lattice has not formed,
which is consistent with our claim that this quantum phase
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transition occurs in the continuum. The quantum kinetic energy
at the average particle density Ekin/h = �n/(2πmKRb) in the
absence of the optical lattice reads Ekin/h � 130 Hz. Thus,
from the results in Fig. 7 we find that the supersolid phase
would survive up to temperatures of the order of Tc � 6 nK.

B. Magnetic quantum gases: Er2

Magnetic quantum gases of Er have recently been trapped
in lattices with a small spacing a0 = 266 nm [96]. For Er2

molecules with a magnetic dipole moment of Er2 = 14μB

(with μB being the Bohr magneton) this implies �/h �
0.14 kHz, which is comparable to the case of polar molecules.
Extrapolation from our numerical results (see Fig. 4) implies
that a lattice depth of order of λ � 10� is necessary to induce
supersolidity.

Here, the recoil energy is ER � 2.1 kHz, and thus, the con-
dition on the lattice depth λ for inducing a supersolid behavior
reads λ � 10� � 0.7ER , which is well in the continuum limit.
The quantum kinetic energy reads Ekin/h = �n/(2πmEr2 ) �
105 Hz, for a low density n = 1/(4a2

0). This corresponds
to a critical temperature for observing supersolidity of the
order of Tc � 5 nK, which is within experimental reach. We
note that for the case of strongly dipolar magnetic gases,
reaching densities of order unity in the lattice is possible.
This, in principle, would allow for the observation of some of
the effects described above, such as the superfluid-insulator
quantum phase transition for commensurate lattice fillings, at
considerably higher temperatures.

VI. CONCLUSIONS AND OUTLOOK

The results presented here may help to settle the long-
standing question of the role of defect interactions for the
formation of the supersolid phase [13,16] and enable the exper-
imental realization of a supersolid with quantum dipolar gases
in combination with tunable optical lattices. We note that while
here we have focused on specific examples with fixed defect
densities, defect-induced supersolidity is expected to appear
for a large range of densities for a careful choice of interaction
parameters, e.g., similar to the case in Ref. [19]. This should
make the observation of defect-induced supersolidity possible
in experiments where particle density is tunable within only
a few percent. We note that supersolid behavior should be
most directly observable via, e.g., spectroscopic means, as
the Goldstone mode associated with the breaking of U(1)
symmetry should be present within a crystal-type phase, as
shown, e.g., in Ref. [20] in the case of cluster-type supersolids.
The tunability of defect interactions discussed here also opens
interesting prospects for the observation of other phases, such
as solitons and breathers in the classical and quantum regimes
[78,97].

ACKNOWLEDGMENTS

We thank M. Troyer, P. Zoller, T. Macrı̀, and F. Mezzacapo
for fruitful discussions. W.L. acknowledges support from the
Austrian Science Fund (FWF): P 25454-N27. G.P. is supported
by the ERC-St Grant ColdSIM (Grant No. 307688), EOARD,
RySQ, UdS via IdEX, and ANR via BLUESHIELD.

[1] G. I. Taylor, Proc. R. Soc. London, Ser. A 145, 362 (1934).
[2] D. Hull and D. J. Bacon, Introduction to Dislocations

(Butterworth-Heinemann, Oxford, 2001).
[3] J. P. Hirth and J. Lothe, Theory of Dislocations (Krieger,

Malabar, FL, 1992).
[4] A. Pertsinidis and X. S. Ling, Phys. Rev. Lett. 87, 098303 (2001).
[5] P. N. Ma, L. Pollet, M. Troyer, and F. C. Zhang, J. Low Temp.

Phys. 152, 156 (2008).
[6] W. Lechner and C. Dellago, J. Phys. Condens. Matter 20, 404202

(2008).
[7] W. Lechner and C. Dellago, Soft Matter 5, 646 (2009).
[8] U. Gasser, C. Eisenmann, G. Maret, and P. Keim,

ChemPhysChem 11, 963 (2010); W. Lechner, D. Polster, G.
Maret, P. Keim, and C. Dellago, Phys. Rev. E 88, 060402 (2013).

[9] G. V. Chester, Phys. Rev. A 2, 256 (1970).
[10] A. F. Andreev and I. M. Lifshitz, Sov. Phys. JETP 29, 1107

(1969).
[11] E. P. Gross, Phys. Rev. 106, 161 (1957).
[12] S. Balibar, Nature (London) 464, 176 (2010).
[13] P. W. Anderson, Science 324, 631 (2009).
[14] M. Boninsegni and N. Prokofév, Rev. Mod. Phys. 84, 759 (2012).
[15] A. S. C. Rittner and J. Reppy, Phys. Rev. Lett. 97, 165301 (2006).
[16] M. Boninsegni, A. B. Kuklov, L. Pollet, N. V. Prokof’ev, B. V.

Svistunov, and M. Troyer, Phys. Rev. Lett. 97, 080401 (2006).
[17] M. Boninsegni and N. Prokofév, Phys. Rev. Lett. 95, 237204

(2005).
[18] E. Kim and M. H. W. Chan, Nature (London) 427, 225 (2004);

Science 305, 1941 (2004).

[19] F. Cinti, T. Macrı́, W. Lechner, G. Pupillo, and T. Pohl, Nat.
Commun. 5, 3235 (2014).

[20] S. Saccani, S. Moroni, and M. Boninsegni, Phys. Rev. Lett. 108,
175301 (2012).

[21] S. Saccani, S. Moroni, and M. Boninsegni, Phys. Rev. B 83,
092506 (2011).

[22] M. H. W. Chan, R. B. Hallock, and L. Reatto, J. Low Temp.
Phys. 172, 317 (2013).

[23] Y. Pomeau and S. Rica, Phys. Rev. Lett. 72, 2426 (1994).
[24] P. Mason, C. Josserand, and S. Rica, Phys. Rev. Lett. 109, 045301

(2012).
[25] T. Macrı̀, F. Maucher, F. Cinti, and T. Pohl, Phys. Rev. A 87,

061602(R) (2013).
[26] T. Macrı̀, S. Saccani, and F. Cinti, J. Low Temp. Phys. 175, 631

(2014).
[27] M. Kunimi and Y. Kato, Phys. Rev. B 86, 060510 (2012).
[28] F. Ancilotto, M. Rossi, and F. Toigo, Phys. Rev. A 88, 033618

(2013).
[29] I. Danshita and D. Yamamoto, Phys. Rev. A 82, 013645 (2010).
[30] L. Pollet, J. D. Picon, H. P. Büchler, and M. Troyer, Phys. Rev.
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[38] W. Lechner, H.-P. Büchler, and P. Zoller, Phys. Rev. Lett. 112,
255301 (2014); W. Lechner and P. Zoller, ibid. 111, 185306
(2013).

[39] K. Aikawa, S. Baier, A. Frisch, M. Mark, C. Ravensbergen, and
F. Ferlaino, Science 345, 1484 (2014).

[40] A. de Paz, A. Sharma, A. Chotia, E. Maréchal, J. H. Huckans,
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Gustavsson, M. Dalmonte, G. Pupillo, and H.-C. Nägerl, Nature
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