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H I G H L I G H T S

• A diagnostic support is presented to speed up and facilitate the interpretation of EEG signals.

• Pre-processing is based on the Stationary Wavelet Transform for artefacts reduction.

• Sonification techniques are developed significantly reducing false positive alarms.

• We investigated a specific seizure type: absence seizures.

• Results show high accuracy (about 96%) and low latency time (1.25 s on average).
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A B S T R A C T

Long-term video-EEG monitoring has improved diagnosis and treatment of epilepsy, especially in children.
However, the amount of data neurophysiologists must analyze has grown remarkably.

The main purpose of this paper is to provide a diagnostic support to speed up and ease EEG interpretation for
a specific application concerning absence seizures, a type of non-motor generalized epileptic seizures.

The proposed method consists of a pre-processing step where signals are filtered through the Stationary
Wavelet Transform for the reduction of possible artefacts. Subsequently, a supervised automatic classification
method is implemented for seizure detection, based on the Support Vector Machine Fine Gaussian method.
Finally, a post-processing step is implemented in which spatial and temporal thresholds are defined for both
online and offline application.

In addition, a method that applies sonification techniques is developed. Sonification techniques could speed
up the process of interpreting information, allowing rapid clinical intervention and a continuous monitoring of
the event.

The dataset consists of 30 EEG recordings performed in 24 children with absence seizures, clinically evaluated
at the Meyer Children's Hospital in Firenze, Italy.

The method shows encouraging results both in terms of balanced accuracy (about 96%) and latency times
(1.25 s on average), which might make it suitable for online clinical trials. In fact, it was implemented in the
perspective of a possible real-time application in clinical practice.

1. Introduction

Electroencephalography (EEG), it the most widely used technique
for the diagnosis and evaluation of epileptic seizures. EEG recordings,
lasting from 15 to 30min (short monitoring) to more than 24 h (long-
term monitoring), allow defining background activity while awake,

sleep EEG patterns, as well as identify epileptiform abnormalities and
possibly capture seizures. Routine scalp EEG recordings are commonly
performed using 19–21 electrodes placed according to the 10–20
system. Therefore, the clinician is required to simultaneously analyze a
considerable amount of data.

In clinical practice, offline automatic detection methods have
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already been proposed and implemented, such as systems assessing
quantitative EEG (qEEG) (Swisher, 2017).

The clinical usefulness of an online tool for automatic detection of
epileptic seizures and epileptiform abnormalities is still a matter of
debate (Vidyaratne and Iftekharuddin, 2017). If implemented, such a
tool could be valuable in clinical neurological practice, especially when
a real-time seizure detection is required to provide an early and effec-
tive treatment (Temko et al., 2017). On the other hand, the above-
mentioned tool might also be useful in the off-line analysis of video-EEG
recordings, which is a high-cost- and time-consuming procedure, in
order to help interpreters in the rapid and correct diagnosis and man-
agement of epilepsy and paroxysmal events.

In the last years, there has been a growing scientific interest in
methodological results concerning early seizure detection. New meth-
odologies must consider both the accuracy of the identification system
and the latency time required to process a decision by the system,
which is of basic relevance for the online or real-time application of the
method. Indeed, current limitations are represented by a poor balance
between high accuracy and low latency times.

As reported in a recent review on EEG scalp analysis Alotaiby et al.
(2014); Alam (2013) obtained 100% performance in terms of accuracy,
but the estimated latency time was of 23.6 s. To solve the same problem
in a complementary way, Yoo (2013) used EEG time windows of only
2 s of duration, but reached only 84.4% of accuracy. More recently,
Vidyaratne and Iftekharuddin (2017) obtained an accuracy of 99.8% for
short-monitoring and an average latency time of about 1.89 s.

In this paper, we have been concerned with achieving the best
performance in terms of both accuracy and latency for online applica-
tion but did not compare our method to those mentioned above, as they
investigate different types of seizures. Indeed, high latency time would
not allow a clinical evaluation of the seizures in real time and low ac-
curacy would produce an overload of information to be analyzed. We
did not consider seizure detection as a whole, but focused on absence
seizures, a specific type of non-motor generalized seizures Fisher et al.
(2017) with abrupt onset and offset of altered awareness with limited or
no motor manifestations. Absences can vary in frequency and duration
in relation to specific syndromes and consist of a sudden break of
awareness with blank staring and speech arrest or unresponsiveness.
Fine movements of the eyelids or upward eye deviation can at times be
observed. As a rule, the patient does not fall to the ground or experience
changes in posture and can also continue simple motor activities. After
two to a few tens of seconds the subject re-establishes full contact with
the environment and resumes previous activities. Memory of events
occurring during the seizures is usually impaired, although there may
be some retained awareness, particularly in adolescents. These seizures
can appear a few times up to hundreds of times a day, to the point that
the person’s attention is severely disrupted.

Absences are a typical childhood disorder, concerning 10–17% of all
epilepsy patients in this age range (Zeng, 2016) in the context of genetic
generalized epilepsies. In typical absences, EEG shows generalized
spike-wave discharges at a frequency higher than 2.5 Hz. Conversely,
atypical absences are characterized by a more gradual onset or termi-
nation or significant changes in tone supported by atypical, usually
slow, generalized spike and wave discharges, at less than 2.5 Hz, in the
EEG Fisher et al. (2017).

Scalp EEG signals are usually strongly masked by several artefacts
and one of the major challenges is finding a method to cut down the
contribution of spurious elements.

In recent years, several methods have been proposed to eliminate or
reduce artefacts of various kinds. Most methods are based on Blind
Source Separation (BSS) algorithms (Md Kafiul Islam et al., 2016), in-
cluding the Independent Component Analysis (ICA) (Zhu, 2008;
Hamaneh, 2014). These approaches have shown good results in pro-
cessing large amounts of data. The main limitations are represented by
the hypotheses made a priori: first, the linear independence between
noise and signal, which is not always verified; secondly, the presence of

artefacts that may be observed only in a limited number of channels, as
well as the presence of the epileptic event.

Another methodology for processing artefacts is represented by the
adaptive filters widely used in biomedical signals (Abd Rahman, 2015).
The main problem of such methods is that they require an artefact re-
ference signal (like EMG, EOG, ECG etc), which is not always available,
and therefore they are usually limited to the removal of a single type of
artefact (Boudet et al., 2012; Molla, 2012). There are also adaptive
filters that do not need an artefact reference signal, such as the Wiener
filter (Urigϋen, 2015), but they require a calibration step to define the
necessary number of iterations for a correct artefact removal, that
cannot be performed in real time.

Another category is represented by methods belonging to the Source
Decomposition class, i.e. systems that extract information by breaking
down the signal into a series of elementary waveforms. Methods using
tools such as Wavelets are a well-known example of this methodology
(Patel, 2014; Md Kafiul Islam et al., 2016; Chavez, 2018). Common
limitations are the choice of the mother wavelet and the number of
decomposition levels. Indeed, as the method is based on the evaluation
of a degree of similarity between the signal and the wavelet function,
the selection of the mother wavelet is a crucial point for the correct use
of the methodology. Therefore, the choice of the “best” wavelet func-
tion among all those proposed over the years (Hramov, 2015) is still a
challenge.

There are several reasons why it may be useful to turn graphical
and/or numerical information into sounds: overload of visual in-
formation; providing a support to visual information; speeding up the
interpretation of information processes for real-time or online appli-
cations (Loui, 2014; Temko et al., 2015). The commonly accepted de-
finition of sonification comes from G. Kramer et al. (Kramer et al.,
1999): “Sonification is the transformation of data relations into perceived
relations in an acoustic signal for the purposes of facilitating communication
or interpretation”.

For a correct sonification procedure, it is essential to develop a
method that allows discriminating between the relevant information
and artefacts in almost real time.

Another possible obstacle to the use of these techniques is inherent
in the sound information: unless properly coded, the interpretation of
perceived sounds is highly subjective. Thus, a further criterion applied
in this work is the production of easily recognizable and reproducible
sounds.

In this paper we propose a system optimized for automatic re-
cognition and online sonification of absence seizures during scalp EEG
recordings, which might allow a fast detection and interpretation of
useful information, significantly reducing false positive alarms.

2. Results

The performance of the proposed method, that will be described in
Section 4, was tested on 30 EEG recordings from a set of 24 children (8
males, 16 females, age range 4–18 years, mean 8.7 ± 3.8 years) with
absence seizures evaluated at the Paediatric Neurology Unit, Children’s
Hospital A. Meyer, Firenze, Italy. Full clinical and EEG information
concerning these patients is summarized in Table 1.

Specifically, only one recording per patient was considered in 21 out
of 24 patients, while three recordings were analysed for patients 8, 13
and 22. In Table 1 only the date of the first recording is reported.

Written informed consent for using video-EEG data for research
aims was obtained from all patients (or guardians of patients). All data
were retrospectively analyzed, with no impact on diagnostic and
treatment strategies.

Absence seizures were typical in 20 children, atypical in two of
them and with a myoclonic component in the remaining two.
Representative ictal EEG traces were retrospectively selected within the
whole Meyer Hospital Pediatric Neurology database by expert neuro-
physiologists, based on the recording of nonmotor generalized onset
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seizures (either typical or atypical), without taking in account addi-
tional clinical information.

The length of the signals was 53 ± 18 s for each channel. EEG was
recorded using 19 channels placed according to the international
standard 10–20 system (longitudinal bipolar montage). All the deriva-
tions are considered in this study. Signals were sampled at 256 Hz and
filtered in the frequency band 1.6 Hz–32 Hz for visual analysis.

In addition, the method was tested considering the whole duration
of the signals, that is 47 ± 10min for each EEG channel.

The occurrence of “absence seizures” was marked by expert neu-
rophysiologists. In all channels the beginning and the end of absence
seizures were annotated, and the other epochs were considered as
“interictal”.

For the training and validation phase, 6 randomly selected record-
ings were used corresponding to patients 4, 6, 7, 12 and the first re-
cording of patients 13 and 22, while the remaining 24 recordings were
considered for the test phase. This subdivision allowed evaluating
possible inter-physiological variations.

On the validation set a F1score equal to 93% was obtained. This re-
sult is in line with recent literature, where the Support Vector Machine
(SVM) classifiers showed the best performances for binary classification
of epileptic seizures (Upadhyay, 2016).

Table 2 shows the results obtained on the 24 test signals. F1score,
Balanced Accuracy (BACC) and Matthews Correlation Coefficient
(MCC) are compared. Methodological details are reported in Section
4.2.4. Results are obtained with Fine Gaussian Support Vector Machine
(FGSVM), filtering with Stationary Wavelet Transform (SWT with Bior
3.3) using the Haar wavelet Md Kafiul Islam et al. (2016) and without
filtering (No Filter).

Table 3 shows the results on the same test-set with the Bior 3.3

filtering method, comparing the following classifiers: FGSVM, k-Nearest
Neighbours (KNN, k= 1), Boosted Tree and Logistic Regression. They
were chosen both because they gave high values of F1score in the vali-
dation set and because they are among the most used ones in the lit-
erature (Alotaiby et al., 2014; Upadhyay, 2016).

Finally, Table 4 shows the comparisons between the average per-
formance with FGSVM obtained in online (with spatial threshold, ON-
LINE) and offline mode (with spatial and temporal thresholds, OFF-
LINE) with respect to that with automatic recognition only (FGSVM
Bior 3.3). The test set is made of the same group of 24 recordings as
before.

An additional parameter considered in this work for the online
implementation of the proposed method is the time required to perform
all the steps of the method, called latency time. Indeed, mobile win-
dows, as described in Section 4.1, were implemented as follows: the
system gets data each second with a sampling frequency of 256 Hz; it
performs data processing together with the data collected in the pre-
vious second; if a possible absence is detected, the sonification of the
signals is made.

In summary, the latency time is given by the sum of the time

Table 1
Clinical and EEG information on the 24 patients included in the study.

Clinical and EEG Information on the 24 patients include in the study

Patient code Epilepsy
classification

Absence
classification

Age at seizure
onset/age at last
seizure (ys)

Age at
EEG
(ys)

Ictal EEG AED tried Seizure free at
last FU (yes/
no)

AED withdrawal at
last FU (yes/no)

Number of
analyzed
recordings

1 CAE Typical 4.9/6 5 3 HZ SW ESM, VPA Yes No 1
2 GGE Typical 5/still present 13 3 HZ SW LTG, PB, VPA,

ESM, ZNS, LEV,
TPM, steroids

No No 1

3 GGE Atypical 11/still present 13 Polyspikes
followed by SW

ESM, VPA, PB,
CLZ, CNZ, STP,
RFN, LEV,
steroids

No No 1

4 GGE Typical 5/still present 18 3 HZ SW ESM No No 1
5 GGE Typical 4.8/7.5 6 3 HZ SW VPA, ESM Yes No 1
6 CAE Typical 6/7 6 3 HZ SW VPA, ESM Yes Yes 1
7 CAE Typical 2/5 4 3 HZ SW VPA, ESM, LTG Yes Yes 1
8 GGE Typical 9.8/10.2 10 3 HZ SW ESM Yes No 3
9 CAE Typical 5/6 6 3 HZ SW VPA Yes Yes 1
10 GGE Atypical 6/still present 9 2.5 HZ SW VPA, ESM No No 1
11 CAE Typical 5.6/7.2 7 3 HZ SW ESM, VPA Yes Yes 1
12 CAE Typical 5.5/6 6 3 HZ SW ESM Yes No 1
13 GGE Typical 6.6/7.4 7 3 HZ SW VPA Yes No 3
14 CAE Typical 10/12 11 3 HZ SW ESM Yes No 1
15 CAE Typical 6.5/ 7.1 6.9 3 HZ SW VPA Yes No 1
16 CAE Typical 7.6/8.1 8 3 HZ SW VPA Yes Yes 1
17 CAE Typical 9/10 9 3 HZ SW ESM Yes No 1
18 JAE Typical 13/17 17 3 HZ SW VPA Yes Yes 1
19 CAE Typical 7.3/8 7.8 3 HZ SW VPA, ESM Yes Yes 1
20 CAE Typical 5/6 5 3 HZ SW VPA, ESM Yes Yes 1
21 CAE Typical 6.5/still present 7 3 HZ SW VPA, ESM No No 1
22 GGE Typical 5.5/7 7 3 HZ SW VPA, ESM Yes No 3
23 CAE Typical 4/4.2 4 3 HZ SW ESM Yes No 1
24 CAE Typical 4.5/5.1 5 3 HZ SW ESM, VPA Yes No 1

CAE: childhood absence epilepsy; CLZ: clobazam; CNZ: clonazepam; ESM: ethosuximide; FU: follow-up; GGE: genetic generalized epilepsy; Hz: hertz; JAE: juvenile
absence epilepsy; LTG: lamotrigine; PB: phenobarbital; RFN: rufinamide; STP: stiripentol; SW: spikes and waves; TPM: Topiramate; TT: treatment, VPA: valproate;
YS: years; ZNS: zonisamide.

Table 2
Performance of FGSVM filtering with Bior 3.3, Haar wavelet and without fil-
tering. Results are obtained using a test set of 24 recordings.

Time duration
[s]

BACC F1score MCC

Bior 3.3 53 ± 18 93.0% ± 4.6% 89.4% ± 5.8% 0.86 ± 0.07
Haar 53 ± 18 88.0% ± 4.6% 82.3% ± 8.7% 0.78 ± 0.08
No-filter 53 ± 18 64.9% ± 10.8% 43.0% ± 16.5% 0.40 ± 0.11
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required to get new data (1 s) plus the processing time of the method,
according to Eq. (1):

= +t t tlatency acquisition processing (1)

The average processing time on the 24 test cases was found equal to
0.25 s for each iteration using a Hp Pavillion 15 notebook, i7-5500U
processor, CPU 2.40 GHz, RAM 16 Gb. Therefore, the average latency
time was found to be 1.25 s, that is compatible with a possible online
application. This result is in line with the literature of the last few years
(Vidyaratne and Iftekharuddin, 2017).

Given the promising results obtained with short-term data, we ap-
plied the method to the whole duration (47 ± 10min) of the same test-
set. The same settings as for the short-term dataset are used (namely,
the same filter parameters, temporal and spatial thresholds).

Table 5 shows the results obtained with the FGSVM classifier. The
false positive rate parameter (FPR) is added to the evaluation metrics.
FPR (Eq. (2)) evaluates the occurrence of mis- classifications in the
intercritical phase for long-term recordings:

+
FPR = FP

FP TN (2)

3. Discussion

In this study, we show that the techniques of sonification of EEG
signals may have a role in neurological clinical practice, speeding up
and facilitating the automatic extraction and interpretation of relevant
information, provided that the EEG signal is repeatable and easily
identifiable. However, the sonification techniques must be upstream
supported by suitable pre-processing steps.

In the literature, EEG signal sonification techniques were proposed
as stand-alone techniques (i.e. applied on the whole signal) for the
discrimination of critical activities (Väljamäe, et al., 2013). However,
for online monitoring activities, this might imply listening to hours of
recordings with no useful information content, and thus an overload of
information for the clinician not easy to interpret. On the contrary so-
nification should be aimed at simplifying and reducing the information
contained in the EEG signal.

To this aim, the sonification approach proposed in our work could
be a valid support for the clinician and potentially also for auxiliary
personnel, as the provided sound information can be quickly inter-
preted as compared to the EEG path. However, this cannot be achieved
without an effective pre-processing of the signal to significantly reduce
the potentially relevant elements to be acoustically analyzed.

Therefore, a specific filtering technique was set up for the present
application. The proposed method, based on the SWT, proved to be a
good solution. Critical steps concern the choice of the appropriate
wavelet, the number of decomposition levels and of the information

reference signal (and relative thresholds). The best wavelet turned out
to be a member of the biorthogonal family (Bior 3.3, Table 2).

Spatial threshold was based on physiological considerations of
generalized seizures: an absence must concurrently occur on a
minimum number of channels that in our case was set as at least half
plus one of the EEG channels considered. This choice is a compromise
since even if absences are generalized epileptic seizures, they might not
start simultaneously in all the channels.

The proposed filtering method does not require an artefact reference
channel (like EOG, EMG, ECG), allows the extraction of information of
interest only and has a high computational speed (1.25 s average la-
tency time). Table 2 shows that the use of a filtering system based on
the source decomposition increases the performance of the subsequent
classification phase (increase of about 30% on BACC). The validation of
the proposed filtering method is among the future developments of the
method.

Concerning the automatic classification step, the combination of
entropy and coherence indices has proved to be suitable for the dis-
crimination of generalized seizures from possible artefacts.

In this study, the average performance was defined on all the EEG
channels of each patient under examination. This allowed defining the
post-processing phase, which refined and improved the results obtained
with the automatic recognition through spatial and temporal thresh-
olds.

In this work, a FGSVM was used as classifier, but the choice of the
Boosted Tree can also be suitable. As shown in Table 3 the results ob-
tained are comparable (average F1score on test set 89%). Therefore, both
the SVM family and the Gradient Boosting algorithms could be com-
patible solutions for the case under consideration.

Results presented in Table 4 show that, after the application of the
online and offline method thresholds (as described in Section 4.3),
better performances are obtained with respect to those without any
post-processing (FGSVM), with an average increase in the performance
parameters of 3.5% for the BACC, about 5.5% for the F1score and about
0.08 points for the MCC. The main difference between the offline and
online method concerns the variability of the results that could be re-
lated to the definition of time threshold for the offline application of the
method (see Section 4.3.2): an error propagation might occur if the first
few seconds of the seizure are not correctly classified. If not, the OFF-
LINE performance is slightly better than the ONLINE one, as shown by
the F1score value in Table 4.

Our results confirm the possible online use of the method in video-
EEG procedures, given that 96% of balanced accuracy was achieved
(Table 4 – ONLINE performance) with an average latency time of only
1.25 s. The performance increased thanks to the proposed filtering
procedure and to the choice of the appropriate wavelet.

Regarding long-term data, Table 5 highlights the promising per-
formances of the method even without a specific optimization

Table 3
Comparison of different classifiers on the same test-set (24 recordings).

F1score validation set BACC F1score MCC

FGSVM 93.0% 93.0% ± 4.6% 89.4% ± 5.8% 0.86 ± 0.07
KNN (k= 1) 89.0% 90.0% ± 5.0% 85.0% ± 7.0% 0.81 ± 0.08
Boosted tree 92.0% 92.0% ± 5.0% 89.0% ± 6.0% 0.86 ± 0.06
Logistic regression 90.0% 91.0% ± 5% 87.0% ± 6.4% 0.83 ± 0.08

Table 4
Comparison of SVM classification with on-line and off-line classification. The test set is made of 24 recordings.

Time duration [s] BACC F1score MCC

FGSVM (Bior 3.3) 53 ± 18 93.0% ± 4.6% 89.4% ± 5.8% 0.86 ± 0.07
ONLINE 53 ± 18 96.7% ± 3.9% 94.9% ± 4.9% 0.94 ± 0.06
OFFLINE 53 ± 18 96.4% ± 5.8% 95.2% ± 7.7% 0.94 ± 0.10
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procedure. Thanks to the high specificity of the method (about 98% on
average for the three methods), a low FPR is obtained. As shown in
Table 5, the BACC parameter (Eq. (13)) does not vary much between
short-term and long-term analysis, while the F1score decreases. The
PRECISION parameter in the F1score formula (Eq. (12)) drastically drops
due to the heavy imbalance in the number of test samples between
seizures and interictal activity, which inevitably raises the number of
false positives (also in case of high values of specificity, 98% average in
our study). On the contrary, with the BACC parameter the unbalance
has less influence on the test result because false positives are related
only to true negatives. Possible improvements could be obtained adding
more reference signals and finding other features for discrimination.
These features and problems will be taken into account in future de-
velopments.

We observed the sonification of the seizures to be slightly delayed
since we considered that absences lasting less than two seconds do not
allow the clinician focusing on the patient and related clinical signs. At
the same time, we have chosen to sonify the first two seconds with two
pre-alarms in order not to miss the first meaningful time instants of
possible events of interest setting up a pre-alert.

In other words, if a perfect machine learning algorithm (i.e. 100%
accuracy) were implemented, the sonification would highlight only the
true critical events and therefore would only function (however already
useful) of automatic alert for the clinician. As an algorithm with such
performance for online EEG monitoring on children is not readily
achievable, the sonification would also provide support for non-critical
events detected as critical. For example, any false positives with a
duration of less than three seconds would be discriminated against a
real critical activity (since in the first case only the two pre-alarm beeps
would sound).

To better explain the usefulness of the sonification techniques ap-
plied to EEG signals, Fig. 1 shows an example of application of the

proposed method to a long-term recording (time duration of about
2500 s). The epileptic seizure is marked with a dashed rectangle. Above:
one EEG channel is shown; below: the corresponding filtered and so-
nified signal. Some false positives appear, most< 2 s of duration. The
cases marked with continuous rectangle have longer duration. How-
ever, these cases can be perceptually discriminated because the am-
plitude of the sound signal is lower than that perceived during the
seizure.

Thus, though at a qualitative level, the method allows a consider-
able reduction of the information to be analyzed by the clinician.
Moreover, the sound information can be used for the evaluation of the
beginning of the seizure in online activities, giving to the clinician an
immediate feedback on the patient's state of health, without requiring
to watch video-EEG on the monitor and thus focusing on the patient to
evaluate the main clinical signs, such as the degree of consciousness in
the case of epileptic absences. In addition, when the audio alarm stops,
the clinician could have an almost instantaneous feedback about the
end of the seizure.

The presented method has some limitations: the impossibility of
discriminating false negatives, detecting only false positives; the sound
information, if used as the only discriminating factor, can be highly
subjective but, according to Bonebright et al. (2011) it will be a possible
future development.

Furthermore, combining a specific sound to a given event would
allow possible future applications using other sounds to recognize dif-
ferent characteristic events in the EEG channels (such as IED).

No statistical evaluation was carried out about the possibility of
discriminating both at a perceptive level and through objective indices
(by the sonification of the d6 level coefficients) possible artefacts and
epileptic seizures, as to date in the authors’ knowledge there is not a
method generally recognized as reliable and repeatable (Väljamäe,
et al., 2013). Indeed, the only methodology currently recognized for

Table 5
Comparison of SVM classification with on-line and off-line classification. The test set is made of 24 recordings whose duration is 47 ± 10min.

Time duration [minutes] BACC F1score MCC FPR

FGSVM (Bior 3.3) 47 ± 10 87.0% ± 6.0% 53.0% ± 16.0% 0.55 ± 0.14 2.4% ± 2.0%
ONLINE 47 ± 10 89.0% ± 6.0% 69.0% ± 15.0% 0.70 ± 0.14 1.1% ± 1.0%
OFFLINE 47 ± 10 91.0% ± 5.0% 78.0% ± 15.0% 0.78 ± 0.14 0.8% ± 1.0%

Fig. 1. Example of sonification. Above: an EEG channel; below: the sonified signal.
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auditory display evaluation is the one described by Bonebright et al.
(2011). At present, the method used to evaluate accuracy consists in
defining a group of subjects for listening and selecting the audio tracks
to be discriminated (double blind test). This approach was not an aim of
this paper, but certainly represents a potential future development.

3.1. Conclusions

We explored the possibility of finding a compromise between
computational speed and accuracy for a fast and reliable identification
of nonmotor generalized onset seizures. To this aim, we propose a
specific filtering technique for the clinical problem under examination,
compatible with its online implementation. In addition, we developed
an appropriate alert technique that requires low latency time to inform
the clinician about seizure onset. Our results, though preliminary,
suggest a possible optimization of existing methods applied to specific
clinical settings.

From the encouraging results obtained on the available dataset we
believe that, after the validation and optimization steps, the method
could also be successfully applied to long-term data.

In this framework, we chose absences as an ‘optimal model’ to test
our methodology, being aware that owing to their electroclinical
characteristics, they are easily recognised and processed for sonifica-
tion. However, the good results obtained, both in terms of balanced
accuracy (about 96%) and latency times (1.25 s on average), offer the
perspective for a real-time application of our methodology in the clin-
ical setting of other types of seizures, which are more challenging for
automatic recognition and online sonification. For instance, atypical
absences, which typically occur in the context of severe epilepsies like
the Lennox-Gastaut syndrome, and are often associated with traumatic
falls, make it worth implementing a methodology of automatic re-
cognition. In this study, the accuracy of our method does not seem to be
affected by the electroclinical characteristics of atypical absences i.e.
less abrupt onset or termination and generalized slow spike and wave
discharges on the EEG. However, the small sample prevents us to draw
definite conclusions on this point.

Our methodology might also be helpful during video-EEG mon-
itoring of candidates to epilepsy surgery, which requires a rapid inter-
vention of the clinical staff at seizure onset and the real time evaluation
of the related clinical signs, in order to better identify the seizure onset
zone. In addition, our method might support clinicians in the inter-
pretation of ictal video-EEG recordings through automatic event re-
cognition techniques and the reduction from 19 simultaneous paths to a
single sound information, i.e. a predefined range of sounds combined
with each characteristic event found in EEG data (e.g., seizure or in-
terictal epileptiform discharges).

A fast-online sound feedback of the characteristic events (ictal or
interictal activities) of the EEG signals could also be applied to get an
immediate feedback of seizures in at risk neonates in neonatal intensive
care units (NICU) and thus provide their best management (Temko
et al., 2017). This approach could also help less experienced users with
multi-channel EEG data, especially with 24/7 monitoring in NICU.
However, neonatal seizures are much more variable in their clinical
presentation and ictal onset pattern on EEG compared to absences.
Another limit can be represented by the definition of only one possible
information reference signal. Most likely, it will be necessary to first
investigate the spectrum of neonatal seizures in search of a series of
signals at least representative of a large part of the population under
observation. Further longitudinal studies are needed in order to im-
plement the methodology and reduce, for instance, muscle artefacts and
seizure onset variability.

A further aspect to be taken into consideration is the number of
wavelet decomposition levels, that was defined on a physiological basis
for the absence seizures. Its effectiveness should be verified for other
types of seizures. Moreover, the features described in this study may not
be sufficient to discriminate some types of seizures, such as those with

predominant slow wave activity.
Finally, we point out that we are presenting here a method for au-

tomatic detection and sonification of a specific type of seizures and its
potential practical applications. Cinical trials and related operational
performances will be addressed in future works.

4. Methods and material

Considering the aims and problems mentioned in Section 1, we
propose a method made up of three steps: filtering, automatic re-
cognition and post-processing.

The proposed methods are implemented under MATLAB software
(version 2017b) installed on Hp Pavillion 15 notebook (OS Windows
10, 64 bit) Intel Core i7-5500U processor, CPU 2.40 GHz, RAM 16 Gb.

To reduce artefacts, the first step consists in pre-processing of the
EEG signal with the Stationary Wavelet Transform (SWT) filtering. As
compared to the classical Discrete Wavelet Transform (DWT), the SWT
has the advantage of being shift-invariant, thanks to the up-sampling
operation of the filter coefficients (Guo et al., 1996).

The second step consists in the automatic detection of the epileptic
seizures using Fine Gaussian Support Vector Machine (FGSVM).

Finally, the third step performs a post-processing of the results of
the classification that allows data processing in real-time through a
sonification technique.

The overall procedure is depicted in Fig. 2.

4.1. Denoising with SWT

In this section the filtering method is presented. Firstly, the filter
design criteria for a correct online application will be defined. In each
iteration of the method an information reference signal of epileptic
absences will be compared to the portions of the signal under ex-
amination. Then, the wavelet used for the SWT operation will be de-
scribed, along with the selection of the decomposition levels. Finally,
the filtering technique will be described: for each level of decomposi-
tion we applied a garrote shrinkage function with modified threshold,

Fig. 2. Workflow of the proposed method.
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based on the degree of correlation between the signal under examina-
tion and the information reference signal.

The filtering method proposed here was implemented according to
the following requirements (Zhu, 2008; Patel, 2014):

• possible online implementation, that requires a low computational
time;

• only EEG signals are considered for artefacts detection;

• method optimized for a specific clinical case: epileptic absences
(given the presence of only one type of information reference
signal).

Therefore, according to Md Kafiul Islam et al. (2016), the filtering
method consists of a number of steps.

The first step is the selection of an EEG signal consisting in an ab-
sence seizure which will represent our information reference signal. To
this aim, a signal of length equal to 2 s out of the database was selected,
indicated by an expert. An example is shown in Fig. 3. It will be com-
pared to the EEG signal under examination.

At each iteration and for each EEG channels moving windows of 2 s
of duration are extracted from the original signals. An example
(channel C4-P4) is reported in Fig. 4. Time windows consist of 512
samples at 256 Hz sampling frequency, with one epoch overlap (i.e.
50%).

In addition to the reference signal (Fig. 3), the SWT decomposition
step is applied to each window under examination. This is indeed a
crucial step in the filtering method. The choice of the mother wavelet, if
not appropriate, can significantly alter the result of the decomposition.

Taking this into account and according to Upadhyay (2016), in the
present work the biorthogonal wavelet family was selected that gave an
increased performance as compared to the Haar one proposed in Md
Kafiul Islam et al. (2016) (Table 2). Specifically, we choose the bior-
thogonal 3.3 wavelet with a different level of decomposition (6 instead
of 8).

The level 6 of decomposition (d6) was chosen, both according to
physiological considerations and because a further level of decom-
position would have included unreliable coefficients. Indeed, the level
d6 approximately concerns the frequency range between 2 Hz and 4 Hz
where the frequencies typical of an epileptic absence seizure are in-
cluded (epilepsydiagnosis, 2017). An example is shown in Fig. 5.

A first consideration concerns levels d1 and d2: as they do not carry
useful information to the present application, their coefficients are set

to 0. Similarly, for the a6 coefficients of approximation: although
containing useful information, they concern the level of decomposition
with the worst signal-to-noise ratio.

In fact, these levels might include a part of the information of the
delta wave and of the low frequency artefacts, such as slow movement
artefacts, that, given their high contribution in terms of energy, sig-
nificantly alter the signal trend (Md Kafiul Islam et al., 2016).

Since the main contribution of absences is above 2 Hz, the in-
formation between 0 Hz and 2 Hz is considered unnecessary for this
application. Moreover, the signals were already pre-filtered in the range
1.6 Hz−32 Hz (further details in Section 2). Therefore, the coefficients
of this level were set to 0. Taking these aspects into account, only the
contribution represented by the frequency range between 1.6 Hz and
2 Hz is disregarded.

The remaining decomposition levels from d3 to d6 are compared to
the corresponding ones of the information reference signal through the
correlation index:

∑ ⎜ ⎟⎜ ⎟=
−
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⎝
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i 1
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The index = ρC | (A, B)|s that varies in the range (Swisher, 2017) is
a measure of similarity between the signal (A) and the reference (B) for
a given level (Aarabi et al., 2008).

Thus, for coefficients d3 to d6, the garrote shrinkage function (Gao,
1998) was chosen as filtering method according to Eq. (4). The coeffi-
cients di,j of the j-th decomposition level are filtered if they are greater
than a given threshold ti,j that varies at each level of decomposition.

=
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ti,j is the modified universal threshold (Md Kafiul Islam et al., 2016)
defined as:

=t Kα N2 lni j i j, , (5)

where αi,j is defined as:

=α
median w(| |)

0.6745i j
i j

,
,

(6)

And wi,j is the value of the coefficients at the considered level.
The value of K in Eq. (5) varies according to the correlation index Cs,

Fig. 3. Example of Information Reference Signal.
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according to the following decision process:

1. ≥ →C T nodenoisingIf s high
2. ≤ < → =T C T KIf 1.5low s high
3. Otherwise K= 1

The thresholds Thigh= 0.7 and Tlow=0.5 were chosen empirically:
they determine when the signal has a high or a low level of similarity
with the information reference signal and thus apply a tunable filtering
by varying the index K.

When each level of decomposition has been analyzed, the signal can
be reconstructed applying the Inverse Stationary Wavelet Transform
(ISWT). As an example, Fig. 6 shows how the contribution of the ar-
tefact localized at the end of the seizure (35s–40 s, marked with a da-
shed circle) is considerably attenuated by the proposed method.

For this filtering method the validation step (for example the choice
of the best setting for the thresholds Tlow and Thigh or the best in-
formation reference signal) was not performed, as it was not the aim of

the paper. However, given the good results obtained (see Section 2
devoted to results and Fig. 7), future developments of the method will
certainly concern its validation.

To highlight the good performance of the proposed filtering method,
in Fig. 7 other results are reported, each signal belonging to a different
patient. On the left the original signals are shown, and on the right the
corresponding filtered signals.

4.2. Automatic recognition by SVM

The next step of the method concerns the search of features capable
to detect an epileptic absence in the whole EEG signal, that is, dis-
criminating an ictal phase from an interictal phase.

In the literature, the field of useful features for seizure detection is
almost boundless and has been widely discussed in recent years
(Upadhyay, 2016; Boubchir, 2017). In this work we focus both on the
detection of features from the time series and on those related to the
source decomposition. The aim is that of evaluating only the features

Fig. 4. Example – Raw EEG channel C4-P4.

Fig. 5. Decomposition with SWT (6-levels).
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allowing the online application of the proposed method, which there-
fore must not require burdensome processing time.

Therefore, in the following sections only the features considered for
the classification step will be described.

4.2.1. Permutation Entropy
Following the definition given by Bandt (2002), the calculation of

the Permutation Entropy for a given time series× (of length N), can be
described as follows:

• From the time series build (N-m-1) delay vectors:
= …+ + −X x x x[ , , , ]t t t τ t m τ( 1) with = − −t N m0 : ( 1), where m is the

embedding dimension and τ the time delay.

• Each vector is rearranged in ascending order
= ≤ ≤ …≤+ − + − + −[ ]X x x xt t j τ t j τ t j τ( 1) ( 1) ( 1)reord d1 2 , where j is the

positional shift of the original element.

• For each delay vector there will be m! reorder patterns, πi, i = 1…
m!, also called “motifs”. As an example, for m=3 there are 6
possible motifs.

The new positional order of the elements in the vector Xtreord as
compared to the elements of Xt , defines which pattern has been ob-
tained for a given delay vector. Thus, for each delay vector which re-
ordering pattern has been applied to its elements can be evaluated,
comparing it with the reordered vector.

The possible occurrences of the π j-th motif in the time series are
indicated with f π( )j . The relative frequency p π( )j is given by Eq. (7).

=
− −

p π
f π

N m τ
( )

( )
( 1)j

j

(7)

Fig. 6. Example of successful filtering: the artefact occurring around 35s–40 s is filtered out.

Fig. 7. Other Example of filtering. Left original signals; right: filtered signals.
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According to Bandt (2002), in this work m=3, τ=1, and N=512.
It is thus possible to analytically define the Permutation Entropy

through the following Eq. (8):

∑= −PermEntropy p π p π: ( ) log ( )
π

m

j j

!

2
j (8)

Fig. 8 shows the box-plot of the Permutation Entropy's features of
the two classes used in the training set of this work: absence (ABS) and
interictal (INC).

However, in some cases we found that the entropic index alone was
not enough meaningful for a correct identification of the seizure.
Therefore, other features were added for classification that will be de-
scribed in the following sections. This allowed obtaining a balanced
accuracy of about 96% in the online modality. The performance was
found comparable to the offline mode.

4.2.2. Kurtosis
Kurtosis quantifies whether the tails of the data distribution matches

the Gaussian distribution. Specifically, the Kurtosis of the decomposi-
tion levels d3 and d4 were considered.

As described in (Upadhyay, 2016; Lofhede, 2010) the kurtosis index
of such frequency ranges is often used as a statistical feature in the
classification methods concerning EEG signals. It is defined as follows:

∑ − −

−
=Kurtosis =

x x
n σ

:
( )

( 1)
i
n

i

x

1
4

4 (9)

In Figs. 9 and 10 the box-plots of the Kurtosis's features for the
decomposition level d3 and d4 used in the training set of this work are
presented. For these decomposition levels a noticeably difference is
shown between the interictal phase and those related to the absences.
This difference was not so evident in the other levels of decomposition,
considering also the values obtained through the calculation of the
Fisher Score (FS) (Upadhyay, 2016) on the features of the training set,
where the following values were obtained: FSKurtosis-d3= 1.40;
FSKurtosis-d4= 0.86; FSKurtosis-d5= 0.05; FSKurtosis-d6= 0.41. Therefore,
the corresponding values of Kurtosis (levels d5 and d6) were not con-
sidered.

4.2.3. Index of coherence
The index of coherence gives a measure of phase synchronization

between EEG signals. In Mormann (2000) it was shown that it can
detect interictal periods among ictal periods, according to their degree
of synchronization.

The Mean Magnitude-squared coherence (Mormann, 2000) was
used here as a possible index of coherence:

=C f
P f

P f P f
( )

| ( )|
( ) ( )xy
xy

xx yy

2

(10)

where P f( )xy represents the cross power spectral density between two
derivations (x and y) calculated for each frequency, while P f( )xx and
P f( )yy are the power spectral densities of signal x and y, respectively.

In this work, only the coherence values included in the frequency
range typical of absences (i.e. 2 Hz−4 Hz) were considered.

Fig. 11 shows the box-plot of the Coherence features used in the
training set of this work.

The figure shows the values (range [01]) of coherence for the ele-
ments of the training set labelled as interictal and those defined as

Fig. 8. Permutation Entropy box-plot for the two classes considered: absence
(ABS) and interictal (INC).

Fig. 9. Decomposition level d3: Kurtosis box-plot for the two classes con-
sidered: absence (ABS) and interictal (INC).

Fig. 10. Decomposition level d4: Kurtosis box-plot for the two classes con-
sidered: absence (ABS) and interictal (INC).
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absences.

4.2.4. Choice of the classifier
After the filtering process with SWT, the features described above

are calculated for each time window and each EEG channel.
The analysis now focuses on the features that will set up the training

set. Before the classification step preliminary operations are carried out
on these features.

First, possible outliers are detected. The method chosen for eva-
luation and subsequent removal of outliers is the following: if the data
under examination ∈x Xi (with = …X [x x ]1 n elements of the training
set) is three times larger than the absolute deviation of the median MAD
( = −MAD : K*median(|x median(X)|)i with K=1.4826 (Sachs, 1984),
it is recognized as an outlier and eliminated.

Subsequently, the remaining features are normalized. To this aim,
the data are normalized in the interval (Swisher, 2017) according to Eq.
(11):

= −
−

x x min X
max X min X

( )
( ) ( )i
i

norm (11)

For the choice of the possible classifier, the MATLAB tool (version
2017b) “Classification Learner” (MATLAB and Statistics and Machine
Learning Toolbox Release, 2017b) was used.

As a first criterion for the choice of the optimal classifier for the test
phase, only the classifiers with the highest F1score obtained during the
validation phase of the training set via k-fold-cross-validation (k= 10)
were considered. F1score is defined as:

= ×
+

F PRECISION RECALL
PRECISION RECALL

1 2score (12)

Following the operations described above, the best classifier iden-
tified by the Classification Learner was found to be of the Support
Vector Machine family (SVM) (Burges, 1998), specifically a Fine
Gaussian SVM.

For the test phase of the possible classifiers the following perfor-
mance indices (in addition of F1score), optimal for unbalanced datasets,
were used:

• Balanced Accuracy (BACC)

=
++ +BACC :
2

TP
TP FN

TN
TN FP

(13)

• Matthews Correlation Coefficient (MCC)

= × − ×
+ + + +

TP TN FP FN
TP FP TP FN TN FP TN FN

MCC :
( )( )( )( ) (14)

Since the method was tested on a data set made of recordings of
quite short time duration, no evaluation of the false positive rate
parameter was performed. It will be taken into account in future de-
velopments of the method, specifically in the clinical validation of the
method on long-term data.

4.3. Post-processing and sonification

The last part of the methodology consists in applying spatial and
temporal thresholds to the results obtained from the automatic re-
cognition.

Spatial threshold was defined through an empirical criterion, based
on physiological considerations of generalized seizures: an absence
must concurrently occur on a minimum number of traces that in our
case it was set as at least half plus one of the EEG channels considered.

As for the temporal threshold, a part of the signal is defined an
absence if and only if it is classified as absence for at least two seconds,
and separated each other by at most one second (to avoid possible false
negatives). This value was chosen based on two considerations: ab-
sences with a duration less than two seconds are unlikely to occur; and
in those lasting between 2 and 4 s it is difficult to identify any clinical
sign (da Silva, 1987; Keilson, 1987).

4.3.1. Online method
For the implementation of the online method only the spatial

threshold was used, as the temporal threshold implies time delays not
compatible with an almost real-time response during the exam.

Specifically, a minimum number of channels was chosen given by
half of them (10 channels in our case).

The sonification procedure works as follows: if the automatic re-
cognition and related post-processing steps detect three (or more)
consecutive absences (ABS), the first 2 consecutive seconds will pro-
duce 2 beeps (beep1 and beep )2 , which allow a first discrimination be-
tween a possible absence and a false positive, since absences of less than
two seconds cannot be considered as possible seizures but just as par-
ticular interictal activities. They are anyway kept in memory by the
method for the offline phase. Then the third one (and following ones)
will produce a sound pointing out the epileptic absence, named
soundabs.

The online processing for sonification described above is thus given
by the following relationship:

− − ⇒ beep beep sound[ABS ABS ABS] [ ]abs1 2 

This sound is obtained considering only the coefficients attributable
to the main frequency range of absences (i.e. d6 for all the N channels)
and sonified according to Eq. (15):

∑=
=

sound E sound πf t_ sin (2 )abs
i

N

i osc
1 (15)

where E_sound are the coefficients (over sampled to be reproducible at
48 kHz, the playback audio frequency) and the sound oscillation fre-
quency fosc is set to the note C at 256 Hz. This value was chosen em-
pirically for the sonification phase following the perceptual evaluation
during the test phase: lower frequencies did not allow appreciating
rapid signal variations, while higher frequencies brought the effect of
enhancing small variations of the signal attributable to possible effects
of noise on the signal. Similar approaches are reported in
(Colostate.edu, 2018).

Fig. 11. Coherence box-plot for the two classes considered: absence (ABS) and
interictal (INC).
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4.3.2. Offline method
As in usual automatic seizure detection systems, an offline method

(i.e. at the end of the EEG exam) was also implemented. The temporal
threshold (2 s) has been added to eliminate further false positive cases.
Indeed, in our method the temporal threshold can be set by the clin-
ician, thus allowing discarding all those absences with a duration
shorter than the chosen time threshold.

The offline method follows the classic clinical indications of what an
EEG report should provide. At the end of the EEG examination a sum-
mary report is produced in which the following information is reported:

• Number of absences detected, their duration and time location;

• Typical average frequency, to assess any atypical absences;

• Derivation involved and duration of the involvement.
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