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Abstract

Nineteen teams presented results for the Gene Mention Task at the BioCreative II Workshop. In this task

participants designed systems to identify substrings in sentences corresponding to gene name mentions. A

variety of different methods were used and the results varied with a highest achieved F1 score of 0.8721.

Here we present brief descriptions of all the methods used and a statistical analysis of the results. We also

demonstrate that, by combining the results from all submissions, an F score of 0.9066 is feasible, and

furthermore that the best result makes use of the lowest scoring submissions.
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Background
Finding gene names in scientific text is both important and

difficult. It is important because it is needed for tasks such as

document retrieval, information extraction, summarization,

and automated text mining, reasoning, and discovery. Tech-

nically, finding gene names in text is a kind of named entity

recognition (NER) similar to the tasks of finding person

names and company names in newspaper text [1]. However,

a combination of characteristics, some of which are common

to other domains, makes gene names particularly difficult to

recognize automatically.

� Millions of gene names are used.

� New names are created continuously.

� Authors usually do not use proposed standardized names,

which means that the name used depends on preference.

� Gene names naturally co-occur with other types, such as cell

names, that have similar morphology, and even similar con-

text.

� Expert readers may disagree on which parts of text corre-

spond to a gene name.

� Unlike companies and individuals, genes are not defined

unambiguously. A gene name may refer to a specified

sequence of DNA base pairs, but that sequence may vary in

nonspecific ways, as a result of polymorphism, multiple alle-

les, translocation, and cross-species analogs.

All of these things make gene name finding a unique and per-

sistent problem. An alternative approach to finding gene

names in text is to decide upon the actual gene database iden-

tifiers that are referenced in a sentence. This is the goal of the

gene normalization task [2]. While success in gene normaliza-

tion to some degree eliminates the need to find explicit gene

mentions, it will probably never be the case that gene normal-

ization is more easily achieved. Therefore, the need to find

gene mentions will probably continue into the future.

Task description

BioCreative is a 'challenge evaluation' (competition or con-

test), in which participants are given well defined text-mining

or information extraction tasks in the biological domain. Par-

ticipants are given a common training corpus, and a period of

time to develop systems to carry out the task. At a specified

time the participants are then given a test corpus, previously

unseen, and a short period of time in which to apply their sys-

tems and return the results to the organizers for evaluation.

All submissions are then evaluated according to numerical

criteria, specified in advance. The results are then returned to

the participants and subsequently made public in a workshop

and coordinated publication. The first BioCreative challenge

was carried out in 2003 (with a workshop in 2004) and con-

sisted of a gene mention task, a gene normalization task and

a functional annotation task. The current BioCreative chal-

lenge took place in 2006 and the workshop in April of 2007.

There were three tasks in 'BioCreative II', called the gene

mention (GM), gene normalization (GN) and protein-protein

interaction (PPI) tasks.

The BioCreative II GM task builds on the similar task from

BioCreative I [3]. The training corpus for the current task

consists mainly of the training and testing corpora (text col-

lections) from the previous task, and the testing corpus for the

current task consists of an additional 5,000 sentences that

were held 'in reserve' from the previous task. In the time since

the previous challenge, the corpus was reviewed for consist-

ency using a combined automated and manual process. In the

previous task, participants were asked to identify gene men-

tions by giving a range of tokens in the pretokenized sen-

tences of the corpus. In the current corpus, tokenization is not

provided; instead participants are asked to identify a gene

mention in a sentence by giving its start and end characters.

As before, the training set consists of a set of sentences, and

for each sentence a set of gene mentions (GENE annotations).

Each 'official' GENE annotation in a sentence may optionally

have alternate boundaries that are judged by human annota-

tors to be essentially equivalent references (ALTGENE anno-

tations).

Every string identified by a run is considered either a true

positive or a false positive. If the string matches a GENE or

ALTGENE in the humanly annotated corpus, it is counted as

a true positive with the exception that only one true positive

is permitted per gene given in the corpus. If none of the anno-

tations of a gene given in the corpus match a string nominated

by a run, then the gene is counted as a false negative. A run is

scored by counting the true positives (TP), false positives

(FP), and false negatives (FN). Let T = TP + FN denote the

total number of genes in the corpus, and let P = TP + FP

denote the total number of nominated gene mentions by a

run. The evaluation is based on the performance measures p

(precision), r (recall), and their harmonic average F:

Different applications may favor a different weighting

between precision and recall, but this is beyond the scope of

our analysis. We assume this simple form of F score in all of

our analysis.

Despite being called a 'challenge evaluation', competition, or

contest, there are several reasons to view the results differ-

ently. As is pointed out repeatedly in the TREC workshop [4],

the 'absolute value of effectiveness measure is not meaning-
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ful', that is, the scores provided are not meaningful outside of

the context of the challenge. The F score is a specific metric,

not without controversy, and the value achieved on the cor-

pora of the challenge is no guarantee of performance on other

corpora. We demonstrated in [5] how it may be possible to

estimate the performance on alternative corpora. All per-

formance measures have a natural statistical variation, even

within the narrow confines of the corpora defined for this

task. We have estimated the statistical significance of pair-

wise comparisons. Finally, runs that score below the median

may still give valuable insights into the task, and we have pro-

vided some evidence that this is the case. In short, this com-

petition is not a horse race, but a scientific forum in which the

state-of-the-art is advanced through comparison and sharing

of ideas.

Corpus preparation

In 2003, as part of a project to improve on the AbGene tagger

[6], a corpus of 20,000 sentences was selected and annotated

for training and testing purposes [7]. As described in [6], a

Bayesian classifier was developed to recognize documents

that are likely to contain gene names, and it was found that

the precision and recall of the tagger was much better for high

scoring documents. With this motivation, 10,000 sentences

from high scoring documents and 10,000 sentences from low

scoring documents were selected and combined to form the

20,000 sentence corpus. The corpus was further subdivided

into train, test, round1, and round2 sets of 5,000 sentences,

each of which contained equal numbers of high scoring and

low scoring sentences. The train and test sets were provided

as the training set in BioCreative I, and the round1 set was

used as the final evaluation. With some modifications, the

train, test, and round1 sets were provided as the training set

in BioCreative II, and the round2 set was used as the final

evaluation.

For BioCreative II, the entire corpus of 20,000 sentences and

approximately 44,500 GENE and ALTGENE annotations,

was converted to the MedTag database format [8]. To do this,

the original sentence in Medline® was located (although a few

had been removed from Medline and were replaced with sen-

tences existing at the time). The bibliographic information for

each sentence was also determined. The token specifications

of all previous annotations were changed to character specifi-

cations. Also, because annotations were no longer limited to

preset token boundaries, it was necessary to review manually

every annotation to confirm or relocate the annotation

boundaries. For example, it became possible to annotate a

gene that is hyphenated to another word, the combination of

which is not a gene mention.

To improve the consistency of annotation, approximately

1,500 strings (containing two or more characters) were found

that were annotated as GENE or ALTGENE in one sentence

and unannotated in another sentence. These strings occurred

in approximately 13,500 mentions, of which 4,300 were

GENE annotations, 2,200 were ALTGENE annotations, and

7,000 were unannotated. All of these cases were manually

reviewed for accuracy and corrections were made. Overall,

13.9% of the sentences had changes in GENE annotations and

13.0% of the sentences had changes in ALTGENE annotations

over the period of time between BioCreative I and BioCreative

II.

Results and discussion
The BioCreative I gene mention task had 15 participants and

each was allowed to submit up to four runs, categorized as

either closed (no additional lexical resources) or open (no

restriction). The BioCreative II gene mention task had 19

workshop participants and each team was allowed to submit

up to three runs. There were no restrictions placed on the sub-

missions. The highest achieved F score for the BioCreative I

gene mention task was 0.836, while in the current challenge

the highest achieved F score was 0.872. For the purpose of

presenting results, and all further analysis in this paper, only

the highest scoring submission (F score) from each of the 19

teams was considered.

The precision, recall, and F score for each team, in rank order

based on F score, is shown in Table 1. To compute signifi-

cance, bootstrap resampling was used on the test corpus. For

10,000 trials, a random sample of 5,000 sentences was

selected with replacement from the test corpus, and the pre-

cision, recall, and F score was computed using these sen-

tences for each of the 19 submissions. For each pair of

submissions, say A and B, the proportion of times in these

10,000 trials that the F score of A exceeded the F score of B

was noted, and we label that pair statistically significant if this

proportion is greater than 95%. Significant differences are

shown in Table 1. One can see that each of the three highest F

scores did not have statistically significant differences. Also,

each of the six highest F scores are all statistically significant

compared with the remaining scores, and so on. Every pair of

F scores that differed by approximately 0.0123 or more was

significant, and every pair of F scores that differed by approx-

imately 0.0035 or less was insignificant.

Table 1 also shows the alternates (ALTGENEs) matched in

each run as a percentage of the corresponding true positives,

which varies from about 15% to 30%. It is interesting to

observe that the number of alternates in a run is not predic-

tive of the score, as the top three runs represented both

extremes. Nevertheless, there was an overall negative correla-

tion of -0.40, and it could be hypothesized that methods

which were less effective at learning the boundaries of the pri-

mary gene mentions were still able to get close enough to

match alternatives, resulting in a higher representation of

alternates among their true positives.
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Basic concepts

Before proceeding to the individual system descriptions, we

give, for readers who are not familiar with natural language

processing (NLP), a few paragraphs summarizing the basic

terminology. For an introduction to NLP see [9] or [10]. Text

is commonly processed by segmenting it into sentences or

excerpts, and tokenized by breaking it up further into words,

numbers, and punctuation generally called tokens, which

each consist of a string of characters without white space. In

this process, hyphens and punctuation often receive special

treatment. A word may be further analyzed by a process called

lemmatization into its lemma, which is the uninflected base

form of the word that you would find as a dictionary entry.

Different derivations and inflections are said to have this base

form as their lemma. There is sometimes ambiguity in this

concept. Alternatively, words may be stemmed by an algo-

rithm that strips off suffixes to yield a reduced form, and this

often gives a good approximation to the lemma. Tokens of

text may be assigned tags which are categories from some

given domain, for instance parts of speech (POS; for example,

noun, verb, auxiliary). The process of identifying noun

phrases and verb phrases is called chunking, which usually

relies on POS tagging as its first step. As a further refinement,

a sentence may be analyzed into its full syntactic structure,

which is called parsing.

NER seeks to identify the words and phrases in text that ref-

erence entities in a given category, such as people, places, or

companies, or in this application genes and proteins. NER is

frequently accomplished with B-I-O tagging, which classifies

each token as being at the beginning of the named entity (B),

continuing the entity (I), or outside of any entity to be tagged

(O). There are several lexical resources (sources of informa-

tion about words) commonly used in solving the NER prob-

lem. A gazetteer is a list of names belonging to a particular

category, such as places, persons, companies, genes, and so

on. A lexicon is a source of information about different forms

or grammatical properties of words. A thesaurus is a source of

information indicating words with similar and/or related

meanings. Systems in the BioCreative I challenge were classi-

fied as open if they used lexical resources, particularly gazet-

teers, and otherwise closed. A commonly used lexical

resource is the Unified Medical Language System (UMLS), a

controlled vocabulary of biomedical terminology maintained

by the US National Library of Medicine.

Machine learning refers to computer algorithms that 'learn' to

recognize concepts given a training set, which is a collection

of pre-classified entities that serve as examples and counter-

examples of the concept of interest. When training set exam-

ples have been classified by a human expert, the training is

called supervised, otherwise it is unsupervised. Semisuper-

vised approaches use a combination of the two. An important

approach in machine learning describes each entity by a set of

features, or attributes that are either present or absent for

that entity. For example, the words appearing in text are fre-

quently used as features, as are sequences of n words appear-

ing consecutively, called n-grams. A new unseen entity can be

analyzed into its description by features and categorized by a

previously trained machine learning algorithm. Since most

machine learning algorithms are very successful in classifying

the examples of the training set, it is important to evaluate the

performance of the algorithm on a test set of entities that do

not appear in the training set. In this challenge, a test set was

provided to participants for evaluating their systems after

they were given a period of time with the training set. Often,

it is necessary to divide randomly a collection (or corpus) and

to use one portion as training and the remainder for testing.

When this is done repeatedly it is called cross-validation.

Decision trees, boosted decision trees, support vector

machines (SVM), and case based reasoning are general

machine learning methods. Some machine learning algo-

rithms can be conveniently applied to problems involving tag-

ging, including Hidden Markov models (HMM), SVMs and

conditional random fields (CRFs). There are public domain

libraries that are frequently used for machine learning,

among them WEKA [11] for general machine learning and

MALLET http://mallet.cs.umass.edu/index.php/Main_Page

for CRFs.

Table 1

Performance measures

Rank P r F signif % alt

1 0.8848 0.8597 0.8721 4-19 32.48

2 0.8930 0.8449 0.8683 6-19 14.02

3 0.8493 0.8828 0.8657 6-19 14.08

4 0.8727 0.8541 0.8633 7-19 31.77

5 0.8577 0.8680 0.8628 7-19 16.67

6 0.8271 0.8932 0.8589 7-19 16.02

7 0.8697 0.8255 0.8470 8-19 14.83

8 0.8435 0.8139 0.8285 10-19 14.57

9 0.8628 0.7966 0.8284 10-19 14.55

10 0.8554 0.7683 0.8095 11-19 19.76

11 0.7295 0.8849 0.7997 13-19 16.82

12 0.9267 0.6891 0.7905 14-19 19.73

13 0.8883 0.6970 0.7811 15-19 37.05

14 0.8046 0.7361 0.7688 16-19 20.43

15 0.8228 0.7108 0.7627 17-19 16.80

16 0.8432 0.6857 0.7563 17-19 34.02

17 0.7168 0.6233 0.6668 18-19 28.23

18 0.6056 0.6411 0.6229 19 31.71

19 0.5009 0.4612 0.4802 - 28.46

The precision, recall, and F score for the best submitted run from each 
of 19 workshop participants, sorted by F score. Each team has an F 
score that has a statistically significant comparison (P < 0.05) with the 
teams indicated in the signif column. The column labeled % alt is the 
percentage of true positives in the submission that matched an 
ALTGENE annotation.

http://mallet.cs.umass.edu/index.php/Main_Page
http://mallet.cs.umass.edu/index.php/Main_Page
http://mallet.cs.umass.edu/index.php/Main_Page
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Individual system descriptions

Each participating team was asked to provide a brief sum-

mary of their system for inclusion here. The contributed text

is given here in the rank order of the team's best submitted

run.

Rank 1 submission (Rie Johnson)

The focus of the IBM system was a semisupervised learning

method, alternating structure optimization (ASO) [12], by

which a large amount of unlabeled data (namely, unanno-

tated Medline texts) was exploited in addition to the provided

labeled training data. The experimental framework was a

general purpose named entity chunking system described in

[12], which uses a regularized linear classifier trained with the

modified Huber loss and refers to standard features such as

word strings and character types of the current and neighbor-

ing words. From these standard features, ASO creates new

(and better) additional features through learning automati-

cally created auxiliary prediction problems on the unlabeled

data. The final classifiers are trained with labeled data using

the standard features and the new features learned from unla-

beled data. Essentially, the exploitation of unlabeled data in

this manner has an effect of counteracting the unknown word

problem caused by the paucity of labeled training data.

In addition to semisupervised learning, the system is

equipped with optional components that perform classifier

combination (combining the results of a left-to-right chunker

and a right-to-left chunker similarly to the previous studies),

domain lexicon lookup, automatic induction of high-order

features, and simple postprocessing (parenthesis matching).

The details are described in [13]. Among all the optional

resources/components, unlabeled data exploited via ASO

turned out to be the most effective, improving both precision

and recall as well as F score by 0.0209 over the IBM base sys-

tem (the system using only the standard features). The best

performance 0.8721 (F score), obtained by using all the

optional components, is 0.0323 higher than the IBM base

system and 0.0589 higher than the participants' median.

Rank 2 submission (Cheng-Ju Kuo and I-Fang Chung)

Kuo and coworkers system [14], AIIAGMT, is the best per-

forming system based on CRFs in this challenge evaluation.

In fact, its performance is not statistically significantly worse

than any other systems, and its performance is the best

among all systems for a sample re-weighted to reflect the dis-

tribution of a random sentence extracted from Medline [5].

Its key features include a rich feature set, unification of bidi-

rectional parsing models, a dictionary-based filtering post-

process, and its attractive high performance (especially in

precision up to 0.8930 in final task evaluation). We carefully

selected several feature types, including character n-grams

(window size 2 to 4), morphological and orthographic fea-

tures, but excluded some widely used features, such as stop

words, prefix and suffix. Except those extensively used fea-

tures, we also picked up a set of domain specific features,

including abbreviations of biological chemical compounds

(for instance, DNA, RNA, amino acids), compounds that co-

occurred with relevant site information, and so on, for

decreasing false-positives among terms with a gene mention-

like morphology. Moreover, to include contextual informa-

tion, we utilized -2 to 2 as the offsets to generate contextual

features before any model operations.

For machine learning, we used MALLET to implement CRFs

and to perform training and testing. Then, by using those fea-

tures, the system under development already outperformed

previous work. However, after several inside tests, we realized

that the performance of a single CRF model had reached a

performance plateau. Therefore, we applied a reverse data

parsing (this idea became well known partly due to yet

another multipurpose chunk annotator [YamCha] [15]) called

'backward parsing' to parse sentences from right to left,

rather than the usual direction, to generate one more CRF

model. In this way we had two divergent models, which might

be expected to recognize a different set of entities from text.

By combining those results, we can obtain a set of higher

recall answers than the set derived from a single model. We

tried different methods, such as co-training, set operations

and dictionary filtering, to combine the results of bidirec-

tional models. We found that when unifying the outputs of

bidirectional models by using MALLET n-best option and

then using a dictionary filtering post-process to filter out

noise, the system obtained the highest F score. Finally, we

used this system to participate in the final official task evalu-

ation and got the second rank among 19 workshop partici-

pants (F score is 0.8683).

Rank 3 submission (Chun-Nan Hsu and Yu-Shi Lin)

The system of Hanshen and coworkers [16] combines two

SVM models and one CRF model to achieve one of the best F

scores (ranked 3rd) in BioCreative II. In fact, even the top

performing system is not statistically significantly better than

this system. The high performance of this combination sys-

tem reinforces a well known strategy, namely that combining

multiple complementary models always improves perform-

ance. Nevertheless, the component classifiers already per-

form very well, mostly due to the use of 'backward parsing'

and the use of a large feature set. We compared two parsing

directions, forward and backward, and found that backward

parsing always performed better than forward parsing for

both SVM and CRF models, but there is no evidential differ-

ence between the SVM models with different multiclass

extensions (one versus one and one versus all).

To apply SVM to this problem, we used a sliding window to

convert the problem into a supervised classifier learning

problem. During the parsing, the information from the two

preceding tokens and the two following tokens are used to

construct a feature vector for the classifier to assign a class

label to the current token. We chose YamCha to build the
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SVM models because it is tuned for named entity chunking

tasks.

Our feature set consists of ten feature types with a total of

123,503 predicates to characterize each word. Then we

applied sliding window with width 5 to extract a total of

617,515 binary features for each word. As a preprocessing

step, we used the GENIA tagger http://www-tsujii.is.s.u-

tokyo.ac.jp/GENIA/tagger/ to tokenize sentences and tag

POS for training and test data. We also trained a CRF model

to increase the divergence of our ensemble. The CRF model

was trained using MALLET with a similar set of features.

Our final step is to determine how to integrate results of the

three models mentioned above to enhance recall. We applied

union and intersection to combine these models. Usually,

union can enhance recall because it includes more tagging

results from different models, but it also degrades precision.

In contrast, intersection can filter out false positives and

therefore increase precision, but at the expense of recall. To

take advantage of both operations but avoid pitfalls, we

applied intersection to the tagging results of the two SVM

models and then union with the tagging results of the CRF

model as our ensemble model. The results show that this sim-

ple ensemble model remarkably enhanced recall, with preci-

sion results dropping slightly. All F score results were ranked

in the top quartile.

Rank 4 submission (Roman Klinger and Christoph M Friedrich)

Our approach described in [17] uses a multimodel approach

with two CRFs. In general, machine-learning solutions deal

with a single truth. In BioCreative II the training data contain

acceptable alternatives for gene and protein names next to the

gold standard. The system described in [17] focuses on the use

of this additional information which is ambiguous as in real

world applications where different annotators build a corpus.

An example from the training data is the sentence 'On the

other hand factor IX activity is decreased in coumarin treat-

ment with factor IX antigen remaining normal.' The gold

standard is 'factor IX' annotated twice. The alternative anno-

tation is 'factor IX antigen'. However, in the sentence 'The

arginyl peptide bonds that are cleaved in the conversion of

human factor IX to factor IXa by factor XIa were identified as

Arg145-Ala146 and Arg180-Val181', the gold standard is find-

ing 'human factor IX' and 'factor IXa' and 'factor XIa', but the

alternative gives us the possibility of 'factor IX' instead of

'human factor IX'.

The set of all annotations (gold and alternatives) is split into

a set of short annotations and a set of long annotations. Train-

ing the CRFs yields one system that tends to generate short

annotations and one with longer annotations. The latter more

often tags according to the intention of the author but has a

lower recall, the first sometimes misses parts of the entity due

to the characteristic of the different annotations.

To improve performance the results of the two systems are

combined. Three possibilities were tested: using the result of

the system with short results and adding the results of the sys-

tem trained on the longer entities without overlaps, the other

way round (first the long ones adding the short ones without

overlaps) and combining both results with overlaps.

Training only one CRF on the information in file GENE.eval

results in a lower F score than combining the results of the

two CRFs by adding the short annotations to the long ones

without overlaps. A remarkably high recall can be achieved by

merging the results with overlaps.

The configuration of the CRFs was tuned using a 50-fold

bootstrapping. It has been determined that a greedy search

for the optimal feature set fails; the impact of a combination

of prefixes and suffixes of length 2, 3, and 4 is much higher

than expected from the impacts of the prefixes and suffixes of

length 2, 3, or 4 alone. Another important feature is the use of

the output of a normalizing tagger, ProMiner [18], which

shows an high impact especially on the test set.

Additional postprocessing is applied, correcting frequent

errors on brackets and quotation marks, as well as acronym

disambiguation using latent semantic analysis.

Rank 5 submission (Kuzman Ganchev)

Our method [19] is similar in some respects to others that use

a linear sequence model (for example, a CRF); training and

test sentences are first tokenized with a rule-based tokenizer,

and the goal is to assign to each token one of the three B, I,

and O tags. We started with a CRF-based system similar to the

one submitted by the University of Pennsylvania team to the

first Biocreative competition. We made three major changes

to the previous system.

� We trained the model with the k-best MIRA algorithm [20]

using a loss function that considers alternative labelings and

balances precision and recall. This allows us to trade off pre-

cision versus recall and to make use of the alternative gene

mentions in addition to the gold labeling. We are in the proc-

ess of releasing source code of MIRA training for use with the

MALLET machine learning toolkit. The code will be publicly

available at http://www.seas.upenn.edu/~strctlrn/.

� We added word features based on distributional clustering

of the words. An 85 million word subset of Medline was used

to cluster words by bigram language model perplexity into a

binary tree. Different depth tree cuts were then applied to

produce five clustering features at different levels of granular-

ity for each word type in the tree. Thus, for each word type

that has been clustered there are five different non-independ-

ent cluster features generated by the clustering. On our devel-

opment data, adding these features produced a 0.007

improvement in the best system and as much as 0.013

improvement in inferior systems.

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
http://www.seas.upenn.edu/~strctlrn/
http://www.seas.upenn.edu/~strctlrn/
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� We performed feature selection by greedy search over fea-

ture templates. In the feature selection, features were

grouped by feature templates. For example, there are many

features for the identity of the current token (one for each

token type), but we group all of these into a single 'identity'

feature template. Starting with our initial list of feature tem-

plates, we repeatedly remove the one whose removal results

in the greatest increase in the score on the development data,

until no further improvement is possible. Removing just one

feature template in this way requires training one model for

each removal candidate. Once we cannot improve develop-

ment data performance, we start adding feature templates

from a list of candidates. This resulted in some unexpected

additions and non-additions. For example, we found that

adding a conjunction of four POS tags helps performance,

while adding our list of gene acronyms actually hurts per-

formance.

Even though there are hundreds of thousands of features,

there are only dozens of feature templates, so doing this opti-

mization on the development data does not lead to very severe

overfitting; the F score of the final system on the development

data was within 0.010 of that on unseen data. This improved

performance of all systems significantly. On our development

data, feature selection resulted in a 0.013 improvement in F

score both when CRF and when MIRA training was used.

Together, these changes yielded an overall improvement of

0.043 in absolute performance (24% relative error reduction)

over the baseline system using our development data.

Rank 6 submission (Manabu Torii and Hongfang Liu)

The recognition system [21] consists of three steps: name

phrases in text are looked up in BioThesaurus [22] and UMLS

Metathesurus [23]; a trained CRF model is applied to classify

tokens in the text into three categories (B, I, and O) using lex-

ical features and dictionary-lookup results; and postprocess-

ing procedures are applied to correct certain errors and to

make tagging results consistent. The following details the

three steps.

Dictionary-lookup

To enhance the coverage of name phrases in dictionaries

(BioThesaurus and Metathesaurus), while avoiding false pos-

itive detections during lookup, we filtered out certain types of

phrases. First, phrases in BioThesaurus whose occurrences

were found to be (mostly) false positives in the training cor-

pus (for example, IL) were removed. Second, we filtered out

phrases marked as nonsensical in BioThesaurus (for instance,

hypothetical protein). Finally, phrases in Metathesaurus with

semantic categories irrelevant for gene/protein name detec-

tion purposes were excluded. We used a flexible lookup

method which ignores case differences, lexical variations, and

certain punctuation symbols.

Machine learning

A sequence of tokens was transformed into a sequence of fea-

ture vectors for application of a machine learning method,

CRF implementation of MALLET. Occurrences of gene/pro-

tein names were marked using B/I/O notation. Features con-

sidered at each token position are as follows:

� Tokens - the token at the position as well as preceding one

and succeeding two tokens.

� Dictionary annotation - B/I/O annotation of the token with

respect to dictionary lookup results (for example, B-Metathe-

saurus:aapp indicates the token is the leftmost word [B] of a

phrase found in Metathesaurus, and that the phrase belongs

to the UMLS category aapp [amino acid, peptide or protein]).

� POS - a part of speech tag assigned to the token by the

GENIA tagger.

� Token shape - shape of the token obtained by converting

each lowercase character into a, each uppercase character

into A, and digit into 9 (for example, from Asp5 → Aaa9).

� Suffix - the right-most four letters of the word.

Postprocessing

The postprocessing procedure was implemented for the cor-

rection of apparent errors (for example, mismatching paren-

theses). Also, if a phrase is tagged as genes/proteins, then all

of its occurrences within the same sentence should be tagged

as genes/proteins consistently. Similarly, acronyms/abbrevi-

ations and their corresponding long expressions, if detected,

were tagged consistently.

While the system featuring dictionary annotation outper-

formed one without using it in the experiments, we observed

true gene/protein phrases correctly tagged during dictionary

- (BioThesaurus) lookup were sometimes falsely un-tagged by

the machine learning model in the final outputs. To reclaim

such un-tagged phrases, two solutions were tested. The first

solution was to tag different occurrences of a phrase consist-

ently within one document (here, the corresponding

abstract), not only within one sentence as already done by the

postprocessing procedure. The second solution is to intro-

duce another tagger to confirm the dictionary annotation

independently of the CRF tagger. We applied the LingPipe

tagger http://www.alias-i.com/ which exploits orthographic

features, and phrases tagged by both the LingPipe tagger and

the BioThesaurus lookup procedure were added to the output

from the CRF tagger.

Rank 7 submission (Barry Haddow)

To address the GM task, we employed two different machine

learning methods using the same feature sets [24]. Runs 1 and

3 used CRFs with different settings of the Gaussian prior,

whereas run 2 used a bidirectional maximum entropy Markov

http://www.alias-i.com/
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model (BMEMM) [25]. In all runs only the gold standard

annotations were used in training; the alternative annota-

tions were not used. It was found that CRF outperformed

BMEMM, both using cross-validation on the training set, and

on the official test set.

Before training or tagging the sentences, they were passed

through a series of linguistic preprocessing stages, including

tokenization, lemmatization, part of speech tagging, chunk-

ing and abbreviation detection (using the Schwartz and

Hearst abbreviation detector [26]). The feature set passed to

the machine learners consisted of a core set of features used

in newswire named entity recognition (as in the CoNLL-2003

challenge [27], for example) augmented with extra features

tailored to the biomedical domain. The core features con-

sisted of word and part of speech tags taken from the local

context, orthographic features and the head noun determined

by the chunker.

The extra features consisted of both orthographic features,

and features derived from the abbreviation matcher and from

an in-house protein gazetteer derived from RefSeq. For the

orthographic features, a set of regular expressions from the

biomedical NER literature were used, with a corresponding

feature recognized every time a word matched one of the reg-

ular expressions. The regular expression set represented pat-

terns commonly found in gene or protein names.

To add the gazetteer features to each word in a given sen-

tence, the gazetteer is first used to generate a set of matched

terms for the sentence, where each word is only allowed to be

in one matched term and earlier starting, longer terms take

precedence. The unigram gazetteer feature for each word has

value either B, I or O, depending on whether the word is at the

beginning, inside, or outside of a gazetteer matched term. The

bigram gazetteer feature is also added, and this is the concate-

nation of the previous and current word's gazetteer feature. In

addition, the abbreviation feature is added to all identified

abbreviations whose antecedent is found in the gazetteer.

Rank 8 submission (Craig A Struble and Richard J Povinelli)

Below is a brief description of a system for gene mention iden-

tification. A more complete description is contained in [28].

Our system tags a sequence of text tokens with labels indicat-

ing the location of gene/protein mentions. This is similar to

gene finding algorithms that tag portions of genomic

sequences with labels for gene structure, such as introns and

exons.

Sentences are tokenized into numbers with optional decimals

and leading signs, alphanumeric strings with single quotes

(for tokens like 5'), and punctuation marks. For training and

tagging, tokens are labeled with one of three labels B-GENE,

I-GENE, and O representing the beginning, inside, and out-

side of a gene mention.

Gene mention tagging employs CRFs, a conditional probabil-

ity model for tagging sequences. In most previous work with

CRFs, a single linear-chain model is employed for tagging. In

our system, two models were used: a first-order model in

which features depend on the observation sequence and the

current token label as represented by fj(si, o, i); and a second-

order model more commonly used in linear-chain CRFs in

which features depend on the observation sequence, the pre-

vious token label, and current token label, as represented by

fj(si-1, si, o, i).

When multiple models are used, a method for combining

results is necessary. A mention was tagged if either model

identified a token as being part of a gene. For overlapping

tags, the starting and ending boundaries were defined by the

second-order model.

Boolean features of the text were used. Orthographic features

included: the token, all capital letters, all lowercase letters,

punctuation, quote, alphanumeric, lower-case letters fol-

lowed by capital letters, initial capital letter, single capital let-

ter, single letter, all alphabetic, single digit, double digits,

integer, real number, contains a digit, three letter amino acid

code, contains globin or globulin, contains a Roman numeral,

or contains a Greek letter. Additional features included pre-

fixes and suffixes of lengths 2 to 4 and inclusion in a short

form or long form of an abbreviation definition. Contextual

features included features of the two preceding and following

tokens.

CRFs can inadvertently label tokens as gene mentions

because of orthographic similarity. It is possible to infer from

the rest of the sentence that no mention exists. A character n-

gram model was used to classify sentences into those with

gene mentions and those without. Character n-gram models

calculate the probability of class membership based on length

n subsequence probabilities.

A postprocessing step ignored gene mentions containing mis-

matched parentheses, which indicated a tagging mistake.

Combining models reduced precision (0.0181) but improved

recall (0.0175) and F score performance slightly (0.0008)

over second-order models alone. The n-gram model per-

formed surprisingly well, with a precision of 0.8724 on the

test set. Using the n-gram classifier improved precision by

0.0303 on average, but reduced recall by 0.0420 on average,

resulting in an F score reduction of 0.0078. Replacing with a

better performing classifier such as support vector machines

could further improve performance.

Rank 9 submission (Andreas Vlachos)

The main components of our system [29] are the CRF toolkit

MALLET and the RASP syntactic parsing toolkit http://

www.informatics.susx.ac.uk/research/nlp/rasp/, which are

both publicly available. It is worth pointing out that the sys-

http://www.informatics.susx.ac.uk/research/nlp/rasp/
http://www.informatics.susx.ac.uk/research/nlp/rasp/
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tem created is entirely domain independent and it could be

used as it is for any NER task. The CRF models created were

second order and they were trained until convergence. The

features used include the token itself, whether it contains dig-

its, letters or punctuation, information about capitalization,

prefixes, and suffixes. In addition to these standard features,

we extracted more features from the output of the syntactic

parser for each sentence. The part of speech tagger of the

RASP toolkit was parameterized to generate multiple POS

tags for each token in order to mitigate unseen token errors.

The syntactic parser used these sequences of POS tags to gen-

erate parses for each sentence. Its output is in the form of

grammatical relations (GRs), which specify the links between

the tokens in the sentence according to the syntactic parser

and they are encoded in XML. From this output, for each

token the following features are extracted (if possible):

� The lemma and the POS tag(s) associated with the token.

� The lemmas for the previous two and the following two

tokens.

� The lemmas of the verbs of which this token is subject.

� The lemmas of the verbs of which this token is object; the

lemmas of the nouns of which this token acts as modifier.

� The lemmas of the modifiers of this token.

Adding the features from the output of the syntactic parser

allows the incorporation of features from a wider context than

the two tokens before and after captured by the lemmas, since

GRs can link tokens within a sentence independently of their

proximity. Also, they result in more specific features, since

the relation between two tokens is determined.

It must be mentioned that syntactic parsing is a complicated

task and therefore feature extraction on its output is likely to

introduce some noise. The RASP syntactic parser is domain

independent but it has been developed using data from gen-

eral English corpora mainly, so it is likely not to perform as

well in the biomedical domain. Nevertheless, the results of

the system in the BioCreative II GM task suggest that the use

of syntactic parsing features improve performance from

0.7968 to 0.8284.

Rank 10 submission (William A Baumgartner Jr and Lawrence 

Hunter)

The Center for Computational Pharmacology's system for the

2006 GM task [30] focused on simple approaches for com-

bining the output of multiple gene mention identification sys-

tems (gene taggers). We used two publicly available gene

taggers, and a gene tagger developed in-house for the inaugu-

ral BioCreative GM task.

Two general strategies for combining gene tagger output were

used to test two distinct hypotheses. Our first hypothesis, the

'consensus hypothesis', posited that filtering the output of

multiple gene mention identification systems by requiring

agreement by two or more of the individual systems would

result in an overall precision measure greater than or equal to

the highest precision measure of the individual systems. Our

second hypothesis, the 'combining hypothesis', posited that

combining the output of multiple gene mention identification

systems would result in an overall recall measure greater than

or equal to the highest recall measure of the individual sys-

tems.

We implemented two methods for combining the output of

multiple gene taggers to test these hypotheses. To test the

consensus hypothesis, we built a consensus-based filter with

variable thresholds for consensus determination. This filter

implements a simple voting scheme in which each tagger is

given an equal vote. We then varied the consensus threshold

from three (all taggers agree) to two (two of the three taggers

agree). If a particular gene mention accumulates the required

threshold of votes, then it is kept. If the threshold is not met,

then the gene mention is not returned. By combining the

votes of three taggers that each have been shown individually

to have competitive performance, we expected that the con-

sensus approach would result in an elevation in overall preci-

sion for the aggregate system, without dramatically

decreasing recall.

To test the combining hypothesis, we implemented a filter

that keeps all gene mentions labeled by the individual taggers.

Unlike the consensus filter, this filter attempts to deal with

issues of differing boundaries in the outputs of the individual

taggers. When two gene mentions are found to overlap, the

filter keeps the longer gene mention and discards the other.

An alternative would be to keep the shorter mention; having

noted that BioCreative I task 1A [3] systems (for gene mention

recognition) that took steps to extend multi-word name

boundaries rightward and leftward benefited from doing so,

we chose to keep the longer span. By retaining all gene men-

tions, we expected to increase the recall of the system; how-

ever, we also expected the precision of the system to suffer,

since more false positives were likely to be returned.

When evaluated against the 2006 GM task held-out test data,

the results were consistent with both hypotheses. The consen-

sus filter approaches were observed to elevate precision over

any of the individual gene taggers. The overlapping filter also

behaved as expected, by increasing the aggregate system's

overall recall measure, with the consequence of a noticeable

loss in precision. The question of the optimal number of NER

systems to use for this approach remains uninvestigated.

However, our findings suggest that as few as three systems

are sufficient for gearing a gene mention identification sys-

tem either toward maximizing precision or maximizing recall,

http://www.informatics.susx.ac.uk/research/nlp/rasp/
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and therefore would enable a user to fine tune a system to the

task at hand.

Rank 11 submission (Bob Carpenter)

Alias-i submitted two systems based on our LingPipe natural

language processing software [31], a first-best system and a

confidence-based one. Both submissions used LingPipe out of

the box without any domain-specific parameter tuning or

external resources.

Both submissions are based on an underlying first-order

HMM with emissions modeled by boundary-padded charac-

ter language models. The chunking problem is encoded using

begin/middle/end/whole tags for tokens in gene mentions

and those not in gene mentions, producing an implicit sec-

ond-order context coding. For example:

[BOS] p53/W-Gn regulates/W-O human/B-Gn insulin/M-

Gn-/M-Gn like/M-Gn growth/M-Gn factor/M-gn II/E-Gn

gene/B-O expression/M-O through/M-O active/E-O P4/B-

Gn promoter/E-Gn in/B-O rhabdomyosarcoma/M-O cells/

M-O./E-O [EOS].

For instance, tagging 'gene' as B-O means it is generated from

a distribution of first words after a gene name. Inference in

the confidence-based system is based on a generalization of

the forward-backward algorithm for HMMs commonly used

in speech recognition phrase detection; it uses the forward

and backward estimates to the chunk's boundary along with

the emission and transition probabilities for the chunk inter-

nally.

Confidence-based gene extraction, including sentence detec-

tion and input/output runs at 330,000 characters/second on

a modest desktop, allowing all of MEDLINE's titles and

abstracts to be analyzed in 8 hours. Recall/precision operat-

ing points for high recall were 0.95 recall at 0.18 precision,

0.99 recall at 0.11 precision, and 0.9999 recall at 0.07 preci-

sion.

Our first-best submissions involved rescoring n-best

sequence output from the HMM decoder (Viterbi forward,

exact A* backward). The rescoring model was also generative,

producing entire spans with encoded boundary transitions as

character language models. Full details of LingPipe's HMM

rescoring model are provided in [32]. Rescoring n-best out-

put is considerably slower than confidence-based gene

extraction, requiring an additional 1/10,000 of a second per

character to rescore 100 best outputs.

Rank 12 submission (Richard Tzong-Han Tsai and Hong-jie Dai)

Our IASL system, NERBio, formulates the GM task as a char-

acter-based tagging problem and employs CRFs to solve it.

For this formulation, each annotated sentence was converted

to the IOB2 format. Seven feature types are used: word,

bracket, orthographical, part of speech, affix, character-n-

gram, and lexicon. NERBio tackles three challenges of the GM

task: excessive memory usage when using feature conjunc-

tions, excessive unknown words, and long-distance depend-

ency between tags.

First, NERBio can find the most effective set of feature con-

junctions, thereby making better use of system memory. The

selection process begins with two pools of features: the base

pool, which contains all single features; and the feature con-

junctions pool, containing all possible feature conjunctions.

The sequential forward selection algorithm then compares all

possible feature conjunctions, chooses the best, and moves it

from the feature conjunctions pool to the base pool. In each

subsequent iteration, it repeats this process, selecting and

moving the top-scoring feature conjunction to the base pool

until the F score stops increasing.

Second, to reduce the number of unknown words, NERBio

normalizes all numerals in the test and training data to one.

This simplifies gene names which only differ in their numeri-

cal parts. For example, interleukin-2 and interleukin-3 would

both be normalized to interleukin-1. Lastly, the CRF model

follows the Markov assumption that the current tag only

depends on the previous tag. However, in the GM task there

are many exceptions. A GM may depend on the previous or

next GM, or words between these GMs. CRFs cannot identify

this dependency because they only have access to the infor-

mation in a limited context window. CRFs may fail if there are

dependencies beyond this window. To work around this prob-

lem, we postprocess the text using global patterns composed

of GM tags and surrounding words.

Pattern generation proceeds as follows; for each pair of simi-

lar sentences in the training set, we apply the Smith-Water-

man local alignment algorithm to find the longest common

string. During the alignment process, for each position, either

of the two inputs that share the same word or GM can be

counted as a match. The similarity function used in the

Smith-Waterman algorithm is as follows:

Where x and y refer to any two compared tokens from the first

and second input sentences, respectively. On comparing the

following two tagged sentences

chemical/O interactions/O that/O inhibit/O butyrylcho-

linesterase/B and/O combinations/O of/O chemicals/O that/

O inhibit/O butyrylcholinesterase/B and/O

our system will extract the pattern, 'inhibit < GM > and'. Fur-

ther details on the pattern generation algorithm can be found

in [33] and [34].

Sim x y

x y

x s tag is B or I and y s tag is B or I

othe

( , ) ’ ’=
=1

1

0

            

rrwise











http://genomebiology.com/2008/9/S2/S2 Genome Biology 2008,     Volume 9, Suppl 2, Article S2       Smith et al. S2.11

Genome Biology 2008, 9(Suppl 2):S2

After employing the three methods above, F score increased

from 0.7864 to 0.8576 (postworkshop results) and the

number of features dropped from 9,316,599 to 8,775,384.

These results demonstrate that our strategies can both

improve performance and maximize on valuable system

memory.

Rank 13 submission (Feng Liu and Yifei Chen)

In the GM tagging task of BioCreative II, two SVMs and a set

of postprocessing modules are proposed to compose our two-

layer gene mention recognition system [35]. We chose the

toolbox LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm,

a java/C++ library for training and using SVMs. One SVM

was used for each recognition layer.

The first recognition layer is a text to gene mention layer,

which takes original texts as inputs and predicts gene men-

tion tags. The sentences in original texts are split into tokens

based on spaces and punctuation. After tokenization, we use

a BIO representation to chunk the gene mentions in training

and test data. Then token, orthography, POS, prefix, suffix,

and closed lexicon match are extracted to compose the feature

set in this layer. The MedPost tagger [36] is employed to get

domain specific POS tags of tokens. In the first layer, we build

a closed gene mention lexicon by collecting all the terms that

are annotated as gene mentions in training data. Uni-, bi-,

and tri-grams of tokens starting at the current token are pro-

vided to match the lexicon entries using strict and partial

matching strategies respectively. Also, the matching results

are used as features of the current token. After training and

prediction, the first layer offers the primary gene mention

tags of input texts.

The second recognition layer is a gene mention to gene men-

tion layer, which takes predicted gene mention tags from the

first layer as inputs and outputs the final tags. In this layer,

the only extracted feature of the current token is its predicted

class label from previous layer. The main contribution of the

second layer is to identify and correct automatically certain

boundary and continuity errors made by the first layer.

Both layers employ a sliding window strategy to introduce

neighboring knowledge of the current token. According to the

different effects that surrounding tokens give to the current

token, window sizes can be selected respectively for the differ-

ent layers.

In order to improve the performance further, we developed

an ensemble of postprocessing modules. The abbreviation

resolution module can recover the errors caused by incor-

rectly mapping abbreviations to their full forms. The bound-

ary check module can recover the boundary errors caused by

our tokenization strategy and BIO representation. The name

refinement module employs some rules to refine the recog-

nized gene mentions by removing the redundancy and incon-

sistency.

Our resulting system achieves fairly high precision of 0.8883,

which benefited from the second recognition layer and post-

processing modules. Nevertheless, our closed lexicon match

induces a low recall of 0.6970. The reason is that our closed

lexicon is merely constructed based on training data, which

makes our system lack good generalization ability. After the

competition, we improved our system by reforming the closed

lexicon to alleviate this limitation. With partial matching

strategy, the reformed lexicon can increase F score of the sys-

tem above 0.85 [37]. As a conclusion, it is important to our

recognition system to build an appropriate lexicon.

Rank 14 submission (Chengjie Sun)

The GM task can be cast as a sequence labeling problem [38].

In practice, we regard each word in a sentence as a token and

each token is associated with a label. Each label with a form of

B-C, I-C, or O indicates not only the category of a gene name

but also the location of the token within the name. In this

label denotation, C is the category label, and B and I are loca-

tion labels, standing for the beginning of a name and inside of

a name. O indicates that a token is not part of a name. For the

GM task there is only one category, so we have three labels

altogether: B-gene, I-gene, and O.

In our system, we utilize CRF model, which is a discriminative

model and very suitable to the sequence labeling problem, to

solve the GM task. Features are vital to system performance.

Our feature types include orthographical features, context

features, word shape features, prefix and suffix features, part

of speech features, and shallow syntactic features. POS tags

and shallow syntactic (chunking) tags are gotten by using the

GENIA tagger. We found that chunk features can greatly

improve system performance in the experiments in the

JNLPBA2004 dataset http://www-tsujii.is.s.u-tokyo.ac.jp/

GENIA/ERtask/report.html.

We use the CRF tool in the MALLET toolkit to train the model

on the given training data. No other resource or data are

involved. We submitted two runs for the GM task in BioCrea-

tive II. The difference between them is that run2 uses

stemmed tokens while run1 uses the raw tokens. To our sur-

prise, we found that stemming is not helpful in the GM task.

Our system's performance is comparable to what we got from

JNLPBA2004 test data, but the performance is relatively low

in BioCreative II. This is perhaps caused by the difference

between the two corpora. Also, our system does not involve

biomedical resources such as a dictionary or ontology, which

also could decrease the system's performance.

Rank 15 submission (Sophia Katrenko and Pieter Adriaans)

Our team focused on applying semi-supervised techniques to

extract gene mentions from the Medline abstracts [39]. Sem-

isupervised methods have received much attention lately and

have been used for different classification tasks. In some

cases such techniques have been applied successfully; in oth-

ers they did not improve the performance in comparison to

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/ERtask/report.html
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supervised methods. Since it is relatively easy to sample text

data from the Medline collection, we decided to study the

impact of semi-supervised methods on the GM task. By doing

so, we restricted ourselves to two methods, self-training, and

co-training.

To carry out the experiments, we chose CRF as a learning

method which has proven to provide the state-of-art results

for the named entity recognition tasks. The feature set we

used consisted of the orthographic features (digits, capital let-

ters, and so on) and the contextual features (size of the con-

text set to ± 2). We conducted experiments using different

data samples from the Medline collection and decided to use

the BioNLP dataset http://www-tsujii.is.s.u-tokyo.ac.jp/

GENIA as unlabeled data in our final experiments. We split

the initial training set into two parts, where 9,000 sentences

were used for training and 6,000 sentences for validating. All

sentences were tokenized but not POS tagged. We did not use

any other external resources, such as gazetteers or databases

containing genes and proteins.

To investigate self-training in more detail, we carried out pre-

liminary experiments on the subset of the Genia corpus used

for the BioNLP shared task (2,000 annotated MEDLINE

abstracts). Our results suggested that adding unlabeled data

either does not change performance significantly or mainly

contributes to recall. The best improvement we received was

for the category protein which served as a motivation to apply

self-training to the BioCreative II data set. The run we sub-

mitted had the following settings: number of iterations is

equal to 5, number of instances added in each iteration is 100,

and 1,000 MEDLINE sentences from GENIA corpus are used

as a source of the unlabeled data. Labeled examples have

always been sampled from the training dataset provided by

the organizers of BioCreative II. In each iteration, only the

most confident predictions are added. In this setting preci-

sion is much higher than recall (0.8228 versus 0.7108) and F

score equals 0.7627. Interestingly, reduction of the labeled

data does not significantly affect precision (in all experiments

it is around 0.80). In contrast, recall can be boosted either by

adding more labeled examples or by using a much larger pool

of unlabeled instances.

Another method we explored is co-training. The main

assumption behind this method is that two classifiers are

trained using two different (but compatible) views, which are

independent given the class labels. In the co-training setting,

the number of iterations was set to 6. Surprisingly, self-train-

ing outperformed co-training (F score dropped to 0.7174). It

has been demonstrated by Krogel and Scheffer [40] that co-

training is beneficial if the dependency measure Φ2 of the two

classifiers is less then 10%. In our case, Φ2 = 21%, which might

explain why using co-training results in only slightly higher

performance.

Rank 16 submission (Rafael Torres and Christian Blaschke)

TextDetective [41] distinguishes between functional annota-

tions (a full name that describes the function of the gene/pro-

tein, for example 'thyrotropin releasing hormone receptor')

and symbols (normally an abbreviation used as a name, such

as TRHR). In the case of annotations, the morphology and the

semantics of the words are highly indicative. For symbols, as

the lexical aspects are frequently irrelevant, the system uses

contextual information (the adjoining words that are related

to genes and proteins) to detect gene names.

The system uses rules that are mostly manually created, as

well as lexicons that are extracted from diverse sources

(chemical or genomic databases), or obtained statistically by

comparing the corpora of biological and non-biological docu-

ments (for example, extracting lists of words that frequently

appear in the same context as gene names).

First, sentence boundaries are detected, and then tokens are

assigned to specific classes using the rules and lexicons.

� Keyword: biologically relevant words that indicate essential

features of genes and proteins, for example 'channel' or

'receptor'.

� Stop word: words that are very frequent in the corpus.

� Location: for example, 'membrane' and 'liver'.

� Type: words that often distinguish between similar names.

These include numbers, combinations of letters and num-

bers, Greek letters, Roman numerals, and so on. This class

also includes gene symbols, for example 'TNFalpha'.

� Accessory: relatively uninformative words that are found

close to gene names, for example 'family' and 'subunit'.

� Bioword: other words with a biological meaning.

� Verb: a list of predefined verbs.

� Unknown: all others.

On the basis of this tokenization, candidates for gene names

are selected. For example, in the case of functional annota-

tions, the word sequence must contain at least one 'keyword'.

Potential symbols are only formed by 'types'.

For gene symbols, both the local context (the words around a

potential symbol) and the global context (taking into account

all the occurrences of a symbol in MEDLINE) are evaluated.

The local context uses a general model that distinguishes

genes from nongenes. In the global context, a specific model

for each potential symbol is generated which reflects how fre-

quently a symbol is used to refer to genes or to other types of

entities. This allows us to estimate the risk of tagging a symbol

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA
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as a gene. The assignment of symbols, such as SCT, to a gene

(secretin) has a high risk of being incorrect because of the

ambiguity of the term (it can also, among others, mean 'stem

cell transplant'), whereas others, such as CYP11B2, have a

much lower risk.

The most relevant parameters that control the trade-off

between precision and recall are as follows:

� The importance given to the risk factor. Increasing this value

will enhance precision because more ambiguous symbols are

rejected. If the value is decreased, then recall will take prior-

ity.

� The number of words that are analyzed in the context of a

gene symbol. When this 'window' is large, recall increases

because words farther away from the name will be taken into

account and good words are more likely to be found. Precision

will be higher when this window is small.

Rank 17 submission (Mariana Neves)

The system developed [42] uses the case-based reasoning

foundations in which in a first step the cases are stored in a

database to be further used in the classification of a new case.

The system must search the base for the case most similar to

the problem and the decision is given by the class of the case

selected as the most similar.

The known case base is composed of words (gene mentions or

not) that are present in the training documents and its func-

tion is to classify these known words when they appear in new

documents. The features of the known cases are as follows:

the word itself; whether it is a gene mention or not; whether

the preceding word is a gene mention or not; and the fre-

quency of the case, the number of times that the three other

attributes appeared with the same values in the whole train-

ing set (cases are unique).

The unknown case base is composed by the format of the

words (gene mentions or not), not of the words themselves as

its function is to classify words unknown to system that may

appear in a new document. The features of the unknown cases

are as follows: the format of the word; whether it is a gene

mention or not; whether the preceding word is a gene men-

tion or not; and the frequency of the case, number of times

that the three other attributes appeared with the same values

in the whole training set.

As for the first attribute of format, each word was converted

to a sequence of codes (letters) according to its characteris-

tics. Complete words or parts of words that are present in a

biological lexicon ('protein', 'gene', 'promoter') are substi-

tuted by the code W, Greek letters ('alpha', 'gamma') by G,

special suffixes ('ase', 'ine') by S, upper cases by M, numbers

by N, lower case letters by L, and the remaining symbols are

kept in original format.

As for the classification step, for each of the words in the test

set, the system first verifies its presence in the known case

base. The system initially looks for a case in which the word is

present but also the category of the preceding word is the

same, so as to select the most similar case to the situation. If

more than one case is found, then the one with higher fre-

quency is selected and its category is the final answer of the

system to the word. If an exact case is not found the system

looks for a case with the opposite category of the preceding

word. If a word cannot be found in the known case base, then

a search in the unknown case base is performed. The word is

then converted to the sequence of codes that represents its

format and the search procedure is similar to the one

described for the known cases.

Rank 18 submission (Preslav Nakov and Anna Divoli)

For BioCreative II [43], we used an extended version of our

in-house gene recognition and normalization tool, originally

developed for the TREC 2003 Genomics Track [44]. For our

participation in the GM task, we downloaded the latest ver-

sion of EntrezGene and extracted the IDs and corresponding

fields likely to contain variations of gene names, for example

name, official name, official symbol, alias, and description.

The tools gazetteer was limited to these names, which were

further filtered using WordNet in order to remove common

words like 'or', 'and' and so on, which can be also gene names.

A set of normalization and expansion rules were applied in

order to allow for some variations in form, including token

rearrangement as well as removal of whitespaces, commas,

parentheses and numerals. All possible normalizations and

expansions of all known EntrezGene gene/protein names and

their synonyms were generated off-line and then matched

against a normalized version of the input text, giving priority

to longer matches. The matches were then mapped back to

the original text, and the corresponding IDs were assigned.

We made a clear separation between normalization and

expansion rules, splitting the latter into two subgroups -

strong rules and weak rules - according to our confidence that

the resulting transformation reflects the original names/syn-

onyms. The strong rules allow for minor changes only, for

examples:

� Removal of white space (for example, 'BCL 2' → 'BCL2').

� Removal of non-alphanumeric characters (for example,

'BCL-2' → 'BCL2').

� Concatenation of numbers to the preceding token (for exam-

ple, 'BCL 2' → 'BCL2').

The weak rules remove at least one alphanumeric token from

the string. An example weak rule is the removal of trailing

numbers, such as 'BCL 2' → 'BCL'. As another example, treat-

ing a '/' as a disjunction produces two new strings; for exam-
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ple, 'aspartyl/asparaginyl beta-hydroxylase' → 'aspartyl beta-

hydroxylase' or 'asparaginyl beta-hydroxylase'. Another weak

rule handles parenthesized expressions, removing the text

before, within, and/or after the parentheses. For example,

'mitogen-activated protein (MAP) kinase' → 'mitogen-acti-

vated protein (MAP)', 'mitogen-activated protein kinase',

'MAP kinase', 'mitogen-activated protein', 'MAP', or 'kinase'.

These rules were given no priorities and were applied in par-

allel and recursively, trying all feasible sequences. For each

resulting expanded variant, we recorded the ID of the source

gene/protein/synonym and whether a weak rule was used at

least once during its derivation. For a given variant, there are

multiple possible IDs, some of which use strong rules only

and others that use at least one weak rule. The strong variants

are meant to be very accurate, while the weak ones are good

for recall enhancement.

We submitted three runs:

� Run 1: no weak rules; no synonyms from the description

field (F = 0.6015).

� Run 2: no weak rules; uses synonyms from the description

field (F = 0.6229).

� Run 3: uses weak rules; uses synonyms from the description

field (F = 0.6036).

The description field in EntrezGene often contains additional

gene/protein synonyms, but it can contain other things as

well, such as chemicals, organism names, and so on. There-

fore, it is a good source for recall enhancement at the expense

of precision.

Rank 19 submission (Manuel Maña and Jacinto Mata)

We can distinguish three different phases in the life cycle of a

text categorization system: document indexing, classifier

learning, and classifier evaluation [45]. There are a number of

software libraries that provide support to the latest phases.

However, document indexing is most often approached in an

ad hoc fashion. Moreover, we believe that a framework is

required to understand better the value of potential represen-

tation elements (attributes), not only in text categorization

but, in general, in all of the text classification tasks [46].

When computing an attribute given a training instance, some

criteria should be taken into account related to the set of

examples that must be processed to obtain a value for an

attribute of a single example. We propose the following types:

� Intrinsic. When computing an attribute for a given example,

only information from that example is used. For example, the

length of a text in text categorization.

� Contextual extrinsic. The information used is obtained from

the processed example, but also from other examples that

have a strong relation with it. For example, occurrence of a

word in a text cited by the current text.

� Global extrinsic. The information comes from all the exam-

ples in the set. For example, occurrence of a word in the rest

of the texts included in the set.

Our aim is to build a theoretical framework and a software

library, JTLib, which must run part of the document indexing

process, specifically the mapping of a document into a com-

pact representation.

In the GM task we applied a simple process to build the clas-

sifier, with the aim being to get a first working version with

low effort, and then concentrate on attribute analysis. During

the first part of this process (get the working version) we used

our JTLib library and the WEKA package [11] for the follow-

ing stages:

� Document indexing. We used JTLib to develop an applica-

tion that processes the training data to obtain a representa-

tion based on the selected attributes and configured into the

input WEKA format (ARFF).

� Dimensionality reduction. Once the former ARFF file is gen-

erated, we used WEKA to process it aiming to find the

attributes with best information gain. We used 28 attributes

to characterize each instance. The following list collects the

ranking of the most relevant attributes obtained from the

application of information gain: frequentWords; frequent-

WordsInEntity; frequentWords -1; frequentWords +1; end-

ingWords; frequentWordsInEntity -1; prev1Unigrams;

frequentWordsInEntity +1; lettersAndDigits; startingWords;

frequentWords -2; frequentWords +2; frequentWordsInEn-

tity -2; prev2Unigrams; and hyphen. As we can see in this list,

most of the attributes are contextual extrinsic or global

extrinsic and only two of them (lettersAndDigits and hyphen)

are intrinsic.

� Classifier learning. Using WEKA, we generated a set of mod-

els using different machine learning algorithms. From these

classifiers, the C4.5 decision tree achieved the best results.

The C4.5 algorithm allows one to make a pruned tree in a

reduced time but increasing the error rate. We built two clas-

sifiers, both pruned and unpruned.

� Evaluation of text classifiers. The C4.5 unpruned achieves a

slight improvement of the F score compared with the C4.5

pruned. However, the time needed to build the model of the

pruned version is a 22% of the time required by the unpruned

version. The classification time of the pruned algorithm is

also much lower, being 6% of the time employed by C4.5

unpruned.
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Combined performance

We wished to know whether it is possible to improve on the

best scores obtained in this workshop. To do this, we used

machine learning to predict gene mentions using all of the

submitted runs as feature data.

In order to simulate what might result if all of the methods

were combined into a single system, we extracted features

from the submitted runs. By holding out 25 sentences at a

time, and training on the remaining 4,975 sentences, we

could apply the resulting model to the held-out set and then

merge all of the results to obtain a single 'fusion' run for all

5,000 sentences.

For each candidate, which is defined by a particular start and

end offset within a sentence, the features described in Table 2

were generated. We used two different machine learning

techniques with this feature data, boosted decision trees, and

CRFs.

For boosted decision trees, the training set consisted of all

candidates whose starting and ending offsets coincided with

a nominated string from at least one team (but the starting

and ending offsets need not both be nominated by the same

team). Each character of a candidate was also required to

overlap a nominated string from at least one team. This

meant that every candidate had at least one 'nom' feature

from Table 2. Each candidate was further marked as a 'posi-

tive' depending on whether it appeared exactly as a gene or

alternate gene mention, and all other candidates were

marked as a 'negative'. A boosted decision tree algorithm

[47,48] was applied to this dataset (holding out 25 sentences

at a time, as mentioned above) to learn to classify candidates

as positive or negative. Each tree was allowed to have a depth

of 5 and boosting was repeated 1,000 times. The induced set

of decision trees was applied to the held-out set of 25 sen-

tences to obtain gene mentions for them. Where gene men-

tions overlap, only the gene mention with the highest score is

retained, so that the final result does not contain any overlap-

ping gene mentions. We repeated this training using only

'nom' features, only 'word' and 'context' features, as well as

using all features. The results are shown in Table 3, and the

nomination features combined with words performed best

with an F score of 0.9050. As this is 0.0329 greater than the

highest F score obtained by an individual team, the difference

is statistically significant.

We also used a CRF (with gaussian prior) to learn gene men-

tions [49]. Each sentence was tokenized and each token was

marked as being positive or negative depending on whether it

was part of an annotated gene (alternates were not used in

this approach). The features described in Table 2 were gener-

ated for each token, in which, for the purposes of generating

features, each token is treated as a candidate. By holding out

25 sentences at a time, the CRF was trained on the remaining

4,975 sentences (the gaussian prior defined in [49] was taken

to be 1/2σ2 = 300). The trained CRF was then applied to tag

the 25 sentences, and any sequence of consecutive positive

labels were combined into a single gene mention. The results

from each set of 25 sentences were combined to form a single

run. The result, shown in Table 3 was an F score of 0.9066.

This is slightly higher than the result obtained using boosted

decision trees (with nomination and word features), but the

difference is not statistically significant.

A question of interest to us is whether the alternate annota-

tions could be used in machine learning to improve perform-

ance in the gene mention task. There were some teams that

did train with alternates, but the data from individual runs is

not sufficient to settle the issue. Given that the boosted deci-

sion tree result, which uses alternates, is about the same as

the CRF result, we might conclude that training with alter-

nates does not make the task significantly easier. We there-

fore trained with boosted decision trees, marking candidates

Table 2

Features for combined performance

not(T) Team T did not nominate any gene mention that overlaps with this candidate.

nom(T) Team T nominated a gene mention that overlaps with this candidate.

Noms(T, S) Team T nominated a gene mention that overlaps with this candidate, and that starts before (S = -1), starts after (S = 1), or 
coincides with the start of this candidate (S = 0).

Nome(T, E) Team T nominated a gene mention that overlaps with this candidate, and that ends before (E = -1), ends after (E = 1), or 
coincides with the end of this candidate (E = 0).

nom(T, S, E) Team T nominated a gene mention with S and E as above.

Noms(S) Some team nominated a gene mention with S as above.

Nome(E) Some team nominated a gene mention with E as above.

word(W) Word W occurs in the candidate.

firstword(W) Word W is the first word of this candidate.

lastword(W) Word W is the last word of this candidate.

context(P, W) Word W at position P relative to this candidate. The possible values for P are -2,-1,1,2.

The features generated for each candidate gene mention, based on the submitted runs.
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as positive only if they appear as GENE annotations (ignoring

ALTGENE annotations). The result was an F score of 0.8670,

which is a statistically significant difference from the result

0.9050 obtained by training in the same way with alternates

positive. Training with alternates generated true positives

that contained 25.67% alternates, while training without

alternates generated true positives containing only 9.58%

alternates.

We believed that the results from the lowest scoring teams, if

used appropriately, could contribute useful information

towards identifying gene mentions. To test the hypothesis, we

trained with boosted decision trees using word features plus

all nomination features from teams ranked 1 through 10 only.

The result gave an F score of 0.8940, which is significantly

lower than the 0.9050 obtained when features from teams

with ranks 11 through 21 were included (this study included 2

submissions from teams that did not participate in the work-

shop). This confirms the importance of results from teams

with lower individual performance. We note, for example,

that the lowest ranking team obtained eight true positives

that were not obtained by any other run.

Conclusion
The submission data can be used as a source for exploring the

consistency and accuracy of corpus annotations. There were

no false positives common to all submissions, but there were

two that were common to 17 submissions, for the names GH

and FAK, both of which should have been annotated as true.

(Correcting an erroneous false positive would result in an

increase in the typical F score of about 0.0001.) There are

more of these false positives with less than 17 common sub-

missions that deserve further review.

Mentions with a high false negative rate may be clues to diffi-

cult or under-represented gene mentions. Studying these may

give some guidance to future systems developers. We found

34 gene mentions that were false negatives in all 19 submis-

sions, but all of these were correctly annotated in the corpus

according to the guidelines released to participants along

with the data. The 34 gene mentions fell into six different cat-

egories (mentions in bold):

� A total of ten common names appearing in generic contexts,

such as: 'DDX3 and core colocalized in distinct spots'.

� A total of eight references to gene-associated objects, like

antibodies, domains, enhancers, and binding sequences, such

as this named reference to a specific gene domain: 'a splice

invariant with an altered PD affecting its DNA specificity'.

� A total of six conjunctions or prepositions as part of gene

names, such as: '...conserved in many DNA and RNA

polymerases'.

� A total of five unusual gene names and/or unusual contexts,

such as this name appearing where one would expect the

name of a cell line: '10(5) G418R cfu/ml on NIH-3T3'.

� A total of four single-letter gene names, such as: 'B and C1

fusions with yeast GAL4 DNA-binding and transcriptional

activation domains'.

� One long gene name that did not admit any alternates:

'cDNA sequences encoding ribulose-1,5-bisphosphate

carboxylase/oxygenase (Rbu-P2 carboxylase) acti-

vase from barley'.

As much as we would like to increase the representation of

these and other 'difficult' gene mentions, it may be infeasible

because it is likely that they obey a Zipf-like distribution;

there are as many uniquely difficult gene mentions as there

are common and easy ones.

It can be argued that the difficulty experienced by human

annotators in reaching mutual agreement directly limits the

performance of automated systems, and this can be influ-

enced by the clarity of the annotation guidelines. It has been

pointed out that the guidelines for annotating genes are sur-

Table 3

Combined performance results

Exp Method P r F signif % alt

A CRF noalt, nom and word 0.9255 0.8885 0.9066 1-19, C-F 13.62

B BDT nom and word 0.9221 0.8885 0.9050 1-19, C-F 25.67

C BDT nom and word, top 10 teams 0.9118 0.8768 0.8940 1-19, E, F 23.37

D BDT nom only 0.9092 0.8773 0.8929 1-19, E, F 25.42

E BDT noalt, nom and word 0.9242 0.8165 0.8670 7-19, F 9.58

F BDT word only 0.7165 0.6187 0.6640 18-19 37.07

The precision, recall, and F score of machine learning experiments to learn gene mentions using the data extracted from all submitted runs as 
features. Method column: BDT, boosted decision trees; CRF, conditional random fields; nom, all nomination features; word, words of candidate; 
noalt, alternate gene data not used. The column signif indicates the ranks of runs for which there was a significant difference, and the letters indicate 
the machine learning experiments for which there was a significant difference. The column % alt gives the percentage of alternate gene mentions 
among the resulting true positives.
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prisingly short and simple given the complex guidelines for

annotating named entities in news wires [1]. However, a gene

is a scientific concept, and it is only reasonable to rely on

domain experts to recognize and annotate gene mentions.

Thus, the gene annotation guidelines can be conveyed by ref-

erence to a body of knowledge shared by individuals with

experience and training in molecular biology, and it is not fea-

sible to give a complete specification for gene annotation that

does not rely on this extensive background knowledge. Nev-

ertheless, we believe that some improvement could be

achieved by documenting current annotation decisions for

difficult and ambiguous gene mentions.

A question of some interest is whether the higher F scores by

the top performing systems in BioCreative II indicate

improvement over the best systems in BioCreative I. We

argue that the higher F scores do indeed indicate improve-

ments in performance. Our bootstrap testing of the BioCrea-

tive II results suggest that a difference in F scores of

approximately 0.0123 or greater is significant. However, the

BioCreative I test set is a 5,000 sentence random sample from

the same population of sentences from which the 5,000 sen-

tence BioCreative II test set was taken. Now bootstrapping

allows us to approximate the variation in performance by Bio-

Creative II systems on such random 5,000 sentence samples

from the parent population. Thus, we may conclude that a

BioCreative II system tested on any random sample of 5,000

sentences from the parent population would be expected to

produce an F score within about 0.0123 points of its score on

the BioCreative II test set. In particular this implies that if we

could fairly test a BioCreative II system on the BioCreative I

test set the result would be within about 0.0123 points of its

BioCreative II score. Note that this conclusion is valid even

though we cannot fairly test BioCreative II systems on the

BioCreative I test set because the latter was used in training

the BioCreative II systems. Based on this reasoning and the

difference between the best BioCreative II scores (0.872,

0.868) and the best BioCreative I scores (0.836, 0.826) of

over 0.03, one might conclude that systems have improved.

However, we do not know how BioCreative I systems would

have performed on the updated version of the BioCreative I

data.

Nevertheless, there are several possible reasons to believe

there has been an improvement in system performance as

measured in BioCreative II. First, the size of the training data

is 50% greater and this would be expected to confer some

improved performance, especially since there are many gene/

protein entities that occur only infrequently in the data (a

somewhat Zipfian behavior). Second, conditional random

fields have proved to be a very effective approach to named

entity recognition and were used by 11 of 19 teams in BioCre-

ative II, while they were only used by one of the fifteen teams

in BioCreative I. Third, labeling gene/protein names with a B

on the first token of a name, an I attached to any subsequent

token within a name, and an O attached to any token not part

of a name has been an important strategy and it has led to the

observation that this labeling can be done in both the forward

and the backward direction in a sentence and the combined

results give improved performance. This forwarded plus

backward parsing was only used by the top performer in Bio-

Creative I, but was used by the three best performers in Bio-

Creative II plus others. Finally, more effort was put into

defining effective feature sets for learning in BioCreative II

and in particular the top performing system introduced a new

method of using unlabelled data called alternating structural

optimization which proved very effective.

The highest F score obtained in the BioCreative II evaluation

was 0.8721, and we have shown that by combining the efforts

of all systems it is possible to achieve an F score of 0.9066, a

significant improvement. This proves that future systems

should be able to achieve improved performance. We are also

optimistic that, through a combination of refining the corpus

for annotation consistency and improving systems design

through collaboration, even greater improvements in per-

formance are achievable.
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