
International Journal of Information Systems and Project International Journal of Information Systems and Project

Management Management

Volume 5 Number 3 Article 3

2017

Lifecycle management in government-driven open source projects Lifecycle management in government-driven open source projects

– practical framework – practical framework

Katja Henttonen
VTT Technical Research Centre of Finland

Jukka Kääriäinen
VTT Technical Research Centre of Finland

Jani Kylmäaho
National Land Survey of Finland

Follow this and additional works at: https://aisel.aisnet.org/ijispm

Recommended Citation Recommended Citation
Henttonen, Katja; Kääriäinen, Jukka; and Kylmäaho, Jani (2017) "Lifecycle management in government-
driven open source projects – practical framework," International Journal of Information Systems and
Project Management: Vol. 5 : No. 3 , Article 3.
Available at: https://aisel.aisnet.org/ijispm/vol5/iss3/3

This material is brought to you by AIS Electronic Library (AISeL). It has been accepted for inclusion in International
Journal of Information Systems and Project Management by an authorized administrator of AIS Electronic Library
(AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/ijispm
https://aisel.aisnet.org/ijispm
https://aisel.aisnet.org/ijispm/vol5
https://aisel.aisnet.org/ijispm/vol5/iss3
https://aisel.aisnet.org/ijispm/vol5/iss3/3
https://aisel.aisnet.org/ijispm?utm_source=aisel.aisnet.org%2Fijispm%2Fvol5%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/ijispm/vol5/iss3/3?utm_source=aisel.aisnet.org%2Fijispm%2Fvol5%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

ISSN (print):2182-7796, ISSN (online):2182-7788, ISSN (cd-rom):2182-780X

Available online at www.sciencesphere.org/ijispm

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 23 ►

Lifecycle management in government-driven open source

projects – practical framework

Katja Henttonen

VTT Technical Research Centre of Finland

Tietotie 3, 02150 Espoo

Finland

www.shortbio.org/katja.henttonen@vtt.fi

Jukka Kääriäinen

VTT Technical Research Centre of Finland

Kaitoväylä 1, 90530 Oulu

Finland

www.shortbio.org/jukka.kaariainen@vtt.fi

Jani Kylmäaho

National Land Survey of Finland (NLS)

Opastinsilta 12C, 00521 Helsinki

Finland

www.shortbio.org/jani.kylmaaho@nls.fi

Abstract:

In many parts of the world, public sector organizations are increasingly interested in collaborating across

organizational (and even national) boundaries to develop software solutions under an open licence. However,

without sound lifecycle management practices, the full benefits of open collaboration are not achieved and

projects fail to achieve sustained success. This paper introduces a lifecycle management model and framework

for government-driven open-source projects and reports about its use in a real-life case study. Our focus is on

lifecycle management activities which take place between deployment and end-of-life. The framework was

developed iteratively through a series of focus group discussions with representatives of public sector

organizations. After the framework had been taken into use in our real-life case project, individual qualitative

interviews were conducted to collect experiences on its benefits and weaknesses. According to the initial

evidence, the deployment of the framework seems to have brought concrete benefits to the project, e.g. by

contributing positively to community growth, software quality and inter-organizational learning.

Keywords:
public information systems; open source; open-source software; free software; e-government; public sector; software

lifecycle management; software evolution; information systems; public sector.

DOI: 10.12821/ijispm050302

Manuscript received: 1 May 2017

Manuscript accepted: 10 September 2017

Copyr ight © 2017, SciKA. General permission to republish in pr int or electronic forms, but not for profit , a ll or part of this mater ial is gran ted, provided that the

Internat ional Journal o f Informat ion Systems and Pro ject Management copyr ight notice is given and that reference made to the publicat ion, to its date of issue, and to

the fact that reprint ing pr ivileges were granted by permiss ion o f SciKA - Associat ion for Promotion and Disseminat ion o f Scient ific Knowledge.

http://www.sciencesphere.org/ijispm
mailto:jukka.kaariainen@vtt.fi
http://www.shortbio.org/jani.kylmaaho@nls.fi

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 24 ►

1. Introduction

In many countries, governments agencies have started to open up bespoke software developed with public funding,

often by releasing it under an open source license [1]–[3]. This may stem from governments’ desire to spur innovation

(by letting all citizens to gain from software at no additional costs) and/or to improve transparency (e.g. by making

source code of an electronic voting system subject to public scrutiny) [2]. Another key rational behind open sourcing is

a belief that other government agencies, who have similar software development needs, can reuse the software [1]–[3].

For example, in Finland, it was noticed that public sector organizations did not sufficiently co-operate on the field of

bespoke software development [1]. In the absence of inter-agency collaboration, software vendors could charge each

administrative unit a full price for the same or similar customizations and, thus, in the worst case, the same piece of

code was purchased multiple times with tax-payer money [1]. For these reasons, the Finnish Ministry of Finance [4] and

Public Administration Recommendations [5] have started to encourage public sector organizations to co-purchase

bespoke software and publish it under an open-source license.

However, avoiding duplicate effort by open sourcing is not straightforward. It may be difficult for other organizations to

exploit the source code purchased by one organization, e.g. due to lack of support and maintenance, multiple parallel

development paths and uncertainty on the future development direction [1], [3], [6]. Therefore, there is a need to build

public sector communities around these software initiatives to collaboratively manage the lifecycle [1], [2], [6], [7].

To address these issues, Kääriäinen et al. [1] developed a model where public sector agencies co-produce and co-

maintain open-source software products together. However, at the time, the model had not been tested in any

organization and its presentation remained abstract. This article concretizes the model introduced by Kääriäinen et al.

[1] and demonstrates its practical value. The aims of the study are two-fold: firstly, to develop a practical framework

that facilitates adoption of the model and, secondly, to use the framework for organizing collaborative lifecycle

management in a real-life case study. The case study is an open source spatial data visualization software called Oskari,

which is currently being co-produced by more than ten public sector organizations and companies in Finland.

The authors have studied the concept of the lifecycle management previously focusing on the development phase of the

software (SW) product [8]. The emphasis of this article is on the lifecycle management actions taken after the

implementation of the first software version i.e. how the developed SW product under the operation and maintenance

could be collaboratively maintained and further developed by the group of public sector organizations.

The article is structured as follows. The next section covers theoretical background and related work, reviewing

different approaches to change/lifecycle management in software production and summarizing studies on open-source

lifecycle management and government-driven open-source software development. The third section introduces the

model on which the framework has been built. The fourth section introduces the research approach and methodology.

The fifth section introduces the practical framework which supports the deployment of the model. The sixth section

demonstrates the deployment of the model and the framework of the Oskari project and reports on the experience

gained. Finally, discussion and conclusions are drawn.

2. Theoretical background and related work

2.1 Lifecycle management and software evolution

Software lifecycle management (SLM) is herein understood as a process of coordinating activities and managing

resources (e.g. people, money, documentation, technical artefacts) during the entire lifecycle of a software product,

from initial ideation to retirement [9]. This definition comes from the application lifecycle management (ALM)

literature, but similar issues have also been addressed by studies on software configuration management (SCM) and

software evolution. However, SLM is different from software product management (SPM), which focuses solely on

managerial actions taken before customer delivery of a software product [10].

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 25 ►

Application lifecycle management (ALM) is a relatively new concept [11]. Chappell [12] presents ALM as a

combination of three functions: governance, development and operations – and three milestones: (start of) ideation,

deployment and end-of life. Development takes place at the beginning of the lifecycle, between ideation and

deployment, and then periodically (after deployment) when the application is updated. Operations, which involve

monitoring and deployment of updates, always happen after deployment of the first software version. Governance,

which means supervising the software's evolution towards predefined goals, is needed during entire lifecycle. The

emphasis of this article is on lifecycle management actions which take place between deployment and end-of life. Out

of the three functions, most attention is given to governance but development and operations issues are also touched.

Software Configuration Management (SCM) is a much older discipline and can be seen as the basis upon which ALM is

founded [13]. SCM is essentially about controlling and tracking changes to the software, and it has been discussed in

the literature for more than three decades [14]–[17]. SCM research has significantly impacted software engineering

practices [18]. The (sub)areas of SCM provide techniques for change control boards, defect tracking, build and release

management, versioning and team/workflow management, for example [15], [17].

The term software evolution was originally used to differentiate from software maintenance which, at the time, was

seen as a post-deployment activity consisting only of bug fixes and minor adjustments [19]. Early software evolution

literature [20] noted that requirements continue to change and software needs to be adapted during its entire lifetime.

Because the idea of iterative software development has become widely accepted, some authors use the terms software

maintenance and software evolution synonymously [19]. However, there are two prevalent perspectives to software

evolution, dubbed ‘what/why’ and ‘how’ by [19]. The former (what/why) refers to academic research on the nature of

the software evolution phenomenon, its driving forces and impact [19], [21]. The latter (how) refers to engineering

studies on practical means (e.g. technology, methods, tools) to direct, implement and control software evolution [22].

The focus of this article resembles the ‘how perspective’ on software evolution. However, the authors felt that when

talking about the purposeful actions taken to ensure that a software product develops in the desired direction, lifecycle

management is a more suitable term.

2.2 Open-source software production in the public sector

The term open source can be used to refer either to a licensing model or a software-development model [23]. Open-

source licensing allows anyone to access the source code of the software, modify the software as desired and share it

with others by redistributing a modified or unmodified version [24]. As a development model, open source refers to

projects where relatively loosely coupled individuals and organizations collaborate to co-develop a piece of software

together, typically working over the Internet in a distributed environment [25], [26]. Practices typically associated with

open-source development include agile development, meritocratic governance and volunteer participation [26] for

example.

During the last decade, government agencies all over the world have also become interested in open-source software

development. Several communities or repositories for public sector open-source software development have sprung up,

e.g. European-level Joinup, Finnish Yhteentoimivuus and Government GitHub. Joinup is meant for sharing and reusing

open-source software, semantic assets and other inter-operability solutions for public administrations. Yhteentoimivuus

is a delivery channel for public sector interoperability assets administrated by the Finnish Ministry of Finance.

Government GitHub allows government agencies to share code and data on the social coding platform GitHub. While

some government-driven open-source development projects have been abandoned, many others are active and continue

to grow: CONNECT Health, OskarEMR, WorldWind and CAMAC, for example. Surprisingly, while there is a large

body of research on open-source adoption by government organizations, e.g. [27]–[30], very few studies have looked at

open-source production by government organizations. The latter are reviewed below.

Mergel [3] studied a context where government agencies share code through a common repository but do not form an

open-source project or otherwise co-ordinate collaboration. The most common activity was found to be forking:

participants copied the code release of another organization and then possibly modified it for their own needs internally

[3]. Contribution back to the original project was not usual [3]. In other words, participants seemed to favor the

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 26 ►

relatively passive process of ‘copy and reuse’ over active collaboration. These findings on government code-sharing

mechanisms are in line with [1]: the absence of lifecycle management practices leads to multiple forks and therefore the

potential benefits of collaborative development are not fully achieved.

Bryant and Ramsamy [31] analyzed ten open-source projects where public sector agents are key contributors. There are

also few academic case studies on specific open-source collaborations in the public sector [32]–[34]. Studies

demonstrate that organizational and political factors play a large role in government open-source projects [31], just like

many other IS projects in public sector [35]. Success factors include trust between key stakeholders, skilled in-house

ICT personnel and steady financial support [31], [34]. Projects were found to be particularly vulnerable to sudden

changes in political leadership and loss of key personnel [31], [34] . Some studies underline the importance of retaining

the agility/flexibility inherent in the open-source model [31] while others emphasize managerial control [32]. Interest

conflicts are also a common challenge. Feldman and Horan [32] note that public and private sector participants had

varying perceptions of value propositions. Bryant and Ramsamy [31] report that end users experienced difficulties in

making their ‘voices heard’ over bureaucrats whose budgets paid for the development.

2.3 The community-based software lifecycle management model

Kääriäinen et al. [1] introduced the community-based software lifecycle management model (CO-SLM) aimed

particularly at public sector organizations that finance and develop software collaboratively. In this model the term

lifecycle management refers to actions taken after the implementation of the first software version. The model is

applicable to free/open-source software development but also to other collaborative development models, as long as the

licensing is sufficiently permissive to prevent vendor-locking and allows sharing of source code with other

organizations. The model is depicted in Figure 1. The community has a common repository where the baseline version

of the software product is stored. Each organization can use their own software supplier to take care of deployment,

maintenance and customization of the software. However, they are encouraged to inform the rest of the community on

changes made and contribute them back to the baseline version for integration. The integration work is coordinated by a

‘product manager’ and financed as agreed by the community (e.g. costs are equally shared by the community members).

Parallel baseline versions are not maintained. The inclusiveness and openness of the development process are safe-

guarded via a ‘community manager’ role.

According to Kääriäinen et al. [1], the core community consists of public sector organizations which have primary

authority over lifecycle management decisions. Thus, the community becomes a key decision-making arena: individual

government organizations can influence the development goals and evolution of the baseline software product by

participating in the community. Very much like in ‘traditional’ open-source projects, the community can also become

an arena for collaborative learning and knowledge sharing (e.g. sharing solutions to common deployment problems) and

even collective innovation (e.g. ideating new functionality). Outside of the core community but still functioning as key

partners are software companies that are tendered to develop the software [1]. However, in some cases companies may

also participate in the community as full community members if the intention is to support the application of the

software for the private sector as well (note that the model itself does not limit this). The community manages the

software according to the lifecycle management plan initiated by the financier of the first version [1]. The plan defines

who will do what and when in relation to the lifecycle management activities (e.g. documentation requirements,

versioning model, change and release management practices and financing). Basically, this is a similar job that

companies make for software products they own. Similarly, companies have product managers who are responsible for

coordinating the lifecycle management actions to software products. However, when the group of public sector

organizations start to jointly manage SW products the case is just more complex since there has to be found a consensus

between the organizations what are the responsibilities, financing model, rights, etc.

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 27 ►

Fig. 1. Community-based Application Lifecycle Management Model

3. Research approach and methodology

The Ministry of Finance, our organization and a number of public sector organizations have collaborated in defining,

piloting and deploying lifecycle management as depicted in Figure 2. The model creation process and the introduction

to the models were published in [1]. This effort has since continued by piloting the planning of software lifecycle

management in practice in the public sector. After successful piloting, the deployment of this model started in public

sector organizations (the Finnish Ministry of Finance has accepted the model for production).

Prior and during the pilot phase, we developed the CO-SLM framework that is introduced in this article. The CO-SLM

framework is a check list and documentation template to facilitate the definition of project-specific lifecycle

management plans for software products. It helps software product communities to define a lifecycle management plan

that describes who will do what and when related to the lifecycle management activities in the public sector software

community environment. The framework has been tested and refined through deployment in real organizations.

The research presented in this article has an interpretive and an interventionary stance and, therefore, the approach

could be described as an ‘action case’. The term ‘action case’ was originally coined by Vidgen and Braa [36] to

describe in-context information systems (IS) research which both aims to accumulate rich understanding on an

organizational dilemma (interpretation) and to change the status quo in that organization (intervention). The

interventionist phase typically takes place later in the research and involves the testing of the previously developed

methods [36].

The CO-SLM framework was developed through iterative rounds of data collection and analysis. The primary data

collection method was a series of six focus group discussions with information systems experts working in public sector

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 28 ►

organizations. There were participants from both municipal (e.g. City of Espoo, the Association of Finnish Local and

Regional Authorities) and national (e.g. State Treasury, Finnish Ministry of the Environment) levels of government. In

addition, the representative from the Finnish Centre for Open Systems and Solutions (COSS) and a lawyer appointed by

the Finnish Ministry of Finance participated some of the sessions. In the discussion sessions, participants were

prompted to assess draft versions of the framework and their feedback was used to improve the framework iteratively.

The point of saturation was reached after six consequent meetings. In addition to the focus group discussions, six

Finnish, SME-sized software companies were asked to reply interview questions by email and clarifications were asked

on the phone where necessary. These companies were selected for email interview due to prior collaborations with the

public sector and consequent good knowledge of the domain. Complementary data collection methods also included

few workshops with the Finnish Ministry of Finance and informal discussions with different stakeholders.

Fig. 2. Timeline for the development of the CO-SLM model

The testing and modification of the CO-SLM framework took place ‘in situ’ at multiple organizations during the years

2014 and 2015. For example, the National Land Survey of Finland (NLS) and the Ministry of Finance’s JulkICT Lab

project have adopted the model for their operation. This article explains and analyses its deployment within “Oskari”,

an NLS-led project which develops an open source geospatial toolkit. The reported experiences are based on two

sources: 1) analytical observations from two of the authors who have been engaged in the Oskari project for a long time

and (b) lengthy, semi-structured interviews of representatives from organizations who are key contributors to Oskari:

National Land Survey of Finland (NLS), Finnish Transport Agency and The Finnish National Board of Antiquities.

The interviewees were senior professionals who have co-ordinator responsibilities in the Oskari project, either in

technical development or communications. Four out of five interviews were recorded and all were selectively

transcribed. The thematic coding of the interview data followed a method called Template Analysis [37].

4. Framework for community-based lifecycle planning (CO-SLM framework)

In this chapter, we introduce a practical framework which helps with the application of the CO-SLM model into real-

life situations where public sector organizations wish to develop software collaboratively. The framework focuses on

the governance aspect of lifecycle management. The origins of the framework come from the SCM research area. One

part of the SCM is a planning activity that forms an SCM plan [38]. The basic idea of the SCM plan is to define who is

going to do what, when, where and how in relation to the configuration management [39]. When applied to the context

of CO-SLM the goal is to help a consortium of public sector organizations to define what to manage, who will do the

management, how the management will be done and how to finance the management and further development of a

software product. Financing practices were included in the framework because collective purchasing and cost sharing is

a significant and obvious concern for public sector organizations. Figure 3 depicts the four main elements of the

product-management plan and Tables 1-4 present each of them in detail. The framework can be used as a check list and

Development and testing of the

CO-SLM framework

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 29 ►

template to form a lifecycle plan for a software product that needs governance during its lifecycle. The following four

tables then describe each element in detail. Each element contains issues that need to be considered and documented for

any software under management. Therefore, when applying the CO-SLM model and CO-SLM framework it should be

borne in mind that each software product – and its associated community – is unique. Thus the model and framework

must be applied to suit the context. This means making adjustments to terminology and content when applicable.

Fig. 3. Elements of the product-management plan

Table 1. What to manage?

Issues Description

Name of the software What is the name of the software program?

Licensing scheme What are licensing terms for the source code and documentation?

User organizations Which organizations will use the software?

Schedule for the first version When is the baseline version of the software schedule to be ready?

Distribution channel Where are the source code and documentation distributed?

Social media Which social media channels are used by the project?

Table 2. Who will manage?

Issues Description

Owner of the software product Who ‘takes care of’ the software product? Who owns the copyright to the software?

Community structure and

membership

How is the consortium of organizations structured? Are there community and steering groups? Who has

the highest decision-making authority concerning the software product and its evolution?

Product manager (Development

Co-ordinator)

Who supervises the software's evolution towards the commonly agreed goals? How is the role mandated?

Coordinates the software product-related lifecycle management activities so that the software product

evolves in the direction that serves the needs of the community and business.

Community manager (Openness

Co-ordinator)

Who consolidates conflicts and protects the inclusiveness and openness of the development process? How

is this role mandated? Coordinates the operation in the community. Checks that the licence is used as

agreed by the community.

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 30 ►

Table 2. Who will manage? (cont.)

Issues Description

Repository maintainer(s) Who maintains the shared repository containing the source code and documentation?

Technical integrator

(Baseline Developer)

Who develops and maintains the baseline version of the software? Who is responsible for integrating the
desired customisations to the baseline as agreed by the community? If the integrator function is

outsourced, who does the tendering?

Providers of customisation and
deployment services

Who can provide customisation and deployment services on the software product to individual member
organizations?

Table 3. How to manage?

Issues Description

Decision-making bodies Responsibilities for making managerial and technical decisions regarding software development. How are

the decision-making bodies (e.g. managerial board, change control board, steering group) organised,

elected and assembled for a meeting?

Collaborative development

approach

What are the key principles guiding collaborative development? How are the development efforts co-

ordinated?

Road mapping Who is responsible for creating and updating the roadmap documents? Who is responsible for accepting a
new roadmap? Where are the documents located?

Change management Who can initiate change requests, and how? Who analyses the change requests? How are requests

prioritised? Who makes the final decision on what is included in the next software version?

Release management and

versioning

How often are releases made? Who accepts a new baseline version for deployment? How are versions

named/numbered?

Urgent bug fixes Who/how to handle urgent bug fixes required to the baseline version already in deployment?

Communications Who defines and supervises the community’s communication strategy? What are the primary channels for

internal and external communication?

Documentation What documents are required and where are they located?

Table 4. How to finance?

Issues Description

Co-ordination work How are the efforts of the product and community manager financed?

Repository maintenance How is repository maintenance financed?

Baseline development

(Technical integrator)

How is the further development of the software product financed, including integration of external

contributions? How to finance the bug fixes?

Deployment and
customisation

Who pays for deployment and customisation work within an individual organization?

Community and steering

group meetings

Who pays for organising and participating in the community meetings and steering group meetings?

New entrants Who can join the community and how? Are there any joining fees?

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 31 ►

5. Case study: Oskari software

This chapter presents a real-life case study where the CO-SLM framework has been applied. This chapter is structured

as follows. The first sub-section introduces the Oskari case study. The second sub-section presents the lifecycle

management plan for Oskari, which is based on the CO-SLM framework and briefly explains how the plan was made.

The third sub-section reports on the benefits and challenges of lifecycle management as well as the experiences of using

the framework in practice.

5.1 Introduction to the OSKARI case

Oskari is an open source software originally developed by the National Land Survey of Finland. Initially, Oskari was

developed to offer easy-to-use browser-based tools to access and re-use information from various data sources,

including the INSPIRE Spatial Data Infrastructure (SDI) and the Finnish National SDI. Oskari software has been

adopted by about a dozen public sector organizations in Finland, including the City of Tampere, Finnish e-Government

portal, Finnish Transport Agency and the Helsinki Regional Environmental Authority. Two major international co-

operation projects utilising Oskari are currently running: European Location Services (ELS) and the Arctic Spatial Data

Infrastructure (ASDI). The first independent Oskari installations are also emerging outside Finland: the National Land

Survey of Iceland has set up Oskari, followed by Agency for Land Relations and Cadastre of the Republic of Moldovia.

Oskari makes it possible to view, visualize, analyze and even edit spatial data using just a web browser and standards-

compliant APIs, such as OGC WMS (Web Map Service), OGC WFS (Web Feature Services) and OGC WPS (Web

Processing Service). One of the most used features of Oskari implementations is the embedded maps functionality. It

enables the user to choose applicable map layers and to create a map client using a WYSIWYG user interface without

programming skills. The embedded map client can then be placed on any website in a similar manner as in Google

Maps, just by placing a piece of HTML code into the website. The difference is that Oskari leverages standards-

compliant APIs, which means that there are thousands of spatial data resources to choose from.

The Oskari network is a consortium of organizations that have entered into a formal agreement to co-develop the Oskari

software. Oskari is published under open source licenses (MIT and EUPL) and therefore anyone can download the

source code and utilise the software without joining the Oskari network. This means that anyone can try the software

without committing to it or even without letting the network know about it, or use and extend it as they see fit.

However, it is the appointed representatives of the steering committee member organizations who oversee which

developed features or changes are integrated to the Oskari repository. The most important benefit of the steering

committee membership is the ability to get support from other organizations and agree on the development goals

together.

5.2 Lifecycle management plan for Oskari

The CO-SLM framework was used as a template and instructive guide when writing the lifecycle management plan for

the Oskari software. The first draft of the plan was created by collecting existing practices found from websites and

documents. Then the plan was discussed and refined to fill in any missing information. The plan template was also

modified to be in the line with the terminology of software products and the software community. Finally, the plan was

reviewed by the key members of the Oskari software team (the coordinator and the chairperson of the steering

committee) and the plan was discussed and agreed (Version 1.0) in a steering committee meeting. The resulting plan is

presented in the following tables 5-8 below.

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 32 ►

Table 5. Basic information about the Oskari software

Issues Details

Name of the software Oskari

Licensing scheme Open Source. Source code can be utilised using an MIT licence or EUPL licence.

User organizations Public sector organizations, companies, non-profit organizations.

Schedule for the first

baseline version

First public version was released 2011 (first version was financed by the National Land Survey Development

Centre).

Distribution channel,

repositories

Documentation, examples, etc.: http://www.oskari.org

Source code: https://github.com/oskariorg

General introduction to the software and the Oskari network (in Finnish): http://verkosto.oskari.org

Social media Twitter: the @oskari_org Twitter channel reports new releases, bug and security fixes as well as events related to

Oskari. The release plan and roadmap are presented on a Trello board (in Finnish): http://oskari.org/trello Slack:

Slack is a team communication platform: https://oskari.slack.com

Table 6. Roles and organizations

Issues Details

Owner of the software

product

The Oskari network

Community structure and

membership

The Oskari network is the development network for Oskari software that is open for anyone that signs the

Memorandum of Understanding. Members (listed in Finnish): http://verkosto.oskari.org/oskari-verkosto/jasenet/

Organization of the Oskari Steering committee: representatives of projects that exploit Oskari and sign the
Integration agreement, coordinator (chosen by steering committee) and 1-2 representatives from the Oskari

network member organizations (nominated annually by the Oskari network).

Members (listed in Finnish):

http://verkosto.oskari.org/oskari-verkosto/ohjausryhma/

Technical Coordinator
(Product manager)

National Land Survey Development Centre (Jani Kylmäaho, Inkeri Lantta)
http://verkosto.oskari.org/oskari-verkosto/koordinaattori

The coordinator was selected by the Oskari steering committee. The coordinator coordinates (using the available

resources) the software product-related lifecycle management activities so that the software product evolves
optimally in the direction that serves the needs of the network and businesses. Furthermore, the coordinator

facilitates the network and its activities, provides support to the projects utilising the software and works as a

secretary for the steering committee. An architecture board meets 2 to 3 times per year to discuss and agree upon
changes proposed to the technical architecture.

Community manager

(Openness co-ordinator)

The National Land Survey Development Centre has the responsibility for this task as well.

Repository maintainer(s) Technical coordinator

Integrator (Baseline

developer)

The coordinator takes care of the integration work. The selected integrator is responsible for technical

coordination, e.g. regarding the architecture of the software core. The integrator takes care of the integration
work: coding, testing, version updates, documentation and any necessary IT support. The integrator reviews pull

requests proposed by contributors, maintains repositories and core documentation and manages software

versions, working in close cooperation with the coordinator.

Providers of customisation

and deployment services

Each customer organization that applies Oskari software may select an IT provider for Oskari customisations

without limitation. Customer organizations are encouraged to follow the architecture principles defined by the

Oskari network if they wish to include modifications or extensions into the Oskari software.

http://www.oskari.org/
http://verkosto.oskari.org/
http://oskari.org/trello
https://oskari.slack.com/
http://verkosto.oskari.org/oskari-verkosto/jasenet/
http://verkosto.oskari.org/oskari-verkosto/ohjausryhma/
http://verkosto.oskari.org/oskari-verkosto/koordinaattori

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 33 ►

Table 7. Practices for lifecycle management

Issues Details

Tasks of the decision-

making bodies

The Oskari network is open for anyone who signs the Memorandum of Understanding. The agreement

describes the goals, tasks and decision-making practices for the Oskari network.

The network communicates information about the Oskari software and its development, as well as discussing

the future needs of the software. It has a mailing list and communicates actively in social media. Network

members are invited to networking days (the steering committee schedules networking days at least once a
year). Agenda for networking days:

 Status reporting and future activities

 Presentations of projects and activities around the software
 Selection of representatives of the steering committee

Furthermore, developer meetings take place and the architecture group assembles 3 to 4 times each year. The

goal of the developer meetings is to collect input that supports the development of the Oskari software core.

The tasks of the Oskari steering committee are:

 Overseeing the network and planning activities

 Choosing the coordinator and setting the annual fees
 Prioritising the roadmap

 Communicating with the coordinator

The steering committee also checks the status of the Oskari network (new members, etc.), communications
activities, ongoing development projects, planned development projects, the roadmap and updated documents.

The coordinator works as a secretary of the steering committee. The steering committee can invite the

representatives of development projects to introduce and discuss their projects.

Collaborative development

approach

The Oskari software is reused in development projects that need to create a web map application, a geoportal or

to embed map clients into other web applications. The development project downloads the Oskari software and

applies it; and further develops it, if needed. The development needs will be discussed with the coordinator and
other development projects to avoid overlapping development work. The project is requested to follow the

Oskari architectural principles and to provide modifications (Oskari open source licence) back to the Oskari

network for integration. The Oskari steering committee decides what will be integrated into the next public
Oskari release (or road mapped into future releases) based on the coordinator’s proposal. Development projects

are requested to document new source code to facilitate reuse (a documentation guide can be found on the

Oskari website). The coordinator is responsible for checking the documentation during integration.

Road mapping The coordinator maintains the Oskari roadmap (short-term roadmap and longer-term (1 year) roadmap) and is

responsible for introducing new releases in steering committee meetings. The steering committee has the

responsibility of checking and agreeing on any major changes before release.

The roadmaps can be found at:

 http://oskari.org/trello (in Finnish)

 http://www.oskari.org/documentation/development/roadmap (in English)

Change management Requesting changes: Based on proposals from the development projects, the Oskari coordinator collects the

new features that are proposed to be integrated into Oskari. Major changes in the software core are planned by
the coordinator and presented to the Oskari architecture board, which discusses and agrees on the proposed

changes. All other remarks and proposals will be reported as GitHub issues.

Change proposal: The coordinator prepares the proposal.

Change decision: The Oskari steering committee makes change decisions based on the coordinator’s proposals.

Change implementation: The coordinator arranges tendering for Oskari integration and core framework

development work and makes acquisitions based on the tendering results. Tendering material templates are
provided as guidance for other projects for their tendering purposes. The coordinator maintains the Oskari

integration backlog in cooperation with the integrator. The coordinator updates the backlog based on the agreed
integration tasks. The integrator is responsible for defining and scheduling more detailed tasks and setting

foreseeable version numbers for backlogged items. The selected integrator takes care of the integration work:

coding, testing, version updates, documentation and any necessary IT support.

http://oskari.org/trello
http://www.oskari.org/documentation/development/roadmap

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 34 ►

Table 7. Practices for lifecycle management (cont.)

Issues Details

Release management and
versioning

After integration and testing, the integrator prepares a software version for release. The version numbering
scheme is as follows:

 X = Major version with significant changes in architecture and/or APIs of the software: planned in

the Oskari roadmap.
 Y = Minor version: planned in the Oskari roadmap.

 Z = Maintenance version: other small changes and bug fixes are marked with a maintenance version

number.
The coordinator introduces a new software release proposal (major or minor release) for the Oskari steering

committee who check and agree on major integrations before the release. The steering committee is informed of

any major plans to change the software core. The committee schedules the major changes to ensure smooth
transition to the new version within member organizations.

The coordinator takes care of any other necessary small changes and bug fixes (maintenance releases).

Instructions on how to contribute to Oskari development using GitHub branches:
http://www.oskari.org/documentation/development/how-to-contribute

Communications The Oskari steering committee is responsible for the communication plan. The coordinator prepares change

requests to the communication plan and the steering committee agrees them. The coordinator is responsible for
implementing the communication activities as scheduled.

Documentation Functional specification: http://www.oskari.org/

User guides:
Developer guides for applying Oskari: http://www.oskari.org/

http://oskari.org/examples/rpc-api/rpc_example.html

End-user guides: ELF service http://demo.locationframework.eu/
National Geoportal Map window: http://www.paikkatietoikkuna.fi/web/en/user-guide

Installation and operational environment: http://oskari.org/documentation/

Technical description and instructions for Oskari developers: http://oskari.org/documentation/

Table 8. Financing practices

Issues Details

Coordinator Mostly integration fees collected from organizations who have signed the Integration agreement.

Community manager Financed as part of the coordinator’s work.

Integrator Will be financed by the partners who have signed the Integration agreement (annual integration fee). The

coordinator and development projects can also negotiate the sharing of integration costs if the integration fee
turns out to be too low.

Oskari development National Land Survey Development Centre/SDI team. Oskari network. Project funding.

Deployment and
customisation

Each organization takes care of its own funding to apply the Oskari software.

Network and steering

committee meetings

Each organization takes care of its own participation expenses. Meeting costs are covered by the integration fee.

New entrants Oskari network: Free of charge. New members have to sign the Memorandum of Understanding.

Oskari steering committee: steering committee members (development projects) sign the Integration agreement

where they agree the annual integration fee. The steering committee agrees on the annual integration fee.

http://www.oskari.org/documentation/development/how-to-contribute
http://www.oskari.org/
http://www.oskari.org/
http://oskari.org/examples/rpc-api/rpc_example.html
http://demo.locationframework.eu/
http://www.paikkatietoikkuna.fi/web/en/user-guide
http://oskari.org/documentation/
http://oskari.org/documentation/

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 35 ►

6. Experiences on deploying CO-SLM

This chapter reports experiences, particularly benefits, challenges and lessons from deploying CO-SLM model and

framework within the Oskari project.

6.1 Product acceptance and quality

CO-SLM model and framework provided a strong governance model for cooperation by clearly defining

responsibilities and processes. As one of the interviewees point out, “lifecycle management is what actually turns an

open software application into a software product…”. Being a product means the availability of technical support and

documentation, version schemes and roadmaps for future development, for example. This allows potential users to

evaluate the suitability of the software to their current and future needs. The productization also includes

communications and marketing activities, which – together with the robust management model – have helped to

improve the “brand” of the software and make it more attractive to adopt. Overall, many interviewees talked about the

Oskari brand and its importance to project acceptance.

The Oskari project had recently entered incubation process to join the OSGeo foundation, a not-for-profit legal entity

supporting the open source geospatial community. This is expected to further improve the Oskari brand and acceptance

of the software product, also internationally, but the process is in early stage. Generally, presence on platforms like

GitHub and OSGeo where curious outsiders can explore the software without making financial or other commitments,

is seen as a key to identifying stakeholders and growing the user base. One of the interviewees expressed this as

follows:

OsGEO, GitHub and other platforms where anybody can participate in the discussion are really good. You do

not have to identify all stakeholders in advance, but just throw out something and interested parties will come

to you. We have received inquiries from as far as Moldova…[]... If you want “fresh blood” [into the project],

it is great that people can start following you without commitment and then deepen their involvement

gradually.

The CO-SLM model has also helped to improve non-functional qualities of the software, particularly adaptability and

extensibility. When a software is developed by a single organization alone, hectic demands and limited resources can

cause focusing on immediate user needs at the expense of long-terms software quality, e.g. architecture design that

allows software to adopt to future needs. Consequently, the software becomes hard to maintain within a single

organization and impossible to share with other organizations without significant refactoring. However, CO-SLM

model forces the owner to look at the software from a wider perspective, beyond their own immediate use cases. Each

modification to the baseline version is considered from the viewpoint of multiple organizations, leading to improved

adaptability. One informant explained:

Our understanding [of software design] has broadened so much after we started talking with other

organizations who have similar needs. It was a bit like ‘oh, right, we do not have to reinvent that wheel’. We

have learned that we can develop things collaboratively even though the needs are not exactly the same”.

The CO-SLM model has also helped to secure resources for developing project-wide testing methods and tools

available to all member organizations. This has reportedly decreased the number of software bugs in new releases.

6.2 Resource pooling

6.2.1 Human resources

For more than two decades, public sector organizations in Finland have been inclined to outsource all their software-

development activities. This has caused a shortage of skilled in-house ICT personnel in many organizations, making it

harder for them to take responsibility for software development and lifecycle activities. For example, when

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 36 ►

organizations buy Oskari implementations from software companies, they may not know how to communicate key

architectural principles to the companies or conduct tendering process in a manner that obligates companies to follow

them.

This has sometimes led to poor-quality code contributions, e.g. new functionalities have been placed in illogical parts of

code structure and/or interfaces are used in a non-standardised way. The resulting problems require significant effort

from the technical coordinator (NLS) who underlines that, in the future, more effort must be put into ensuring a

common understanding of proper architecture principles and their inclusion in the request for tenders.

The alternative strategy to address human resource deficits has been to acquire manpower from software companies in a

form of ‘body shopping’. This differs significantly from a process where public sector organizations place a request for

tenders (RFT) for software implementation. As the bidders aim to offer the lowest possible price, no requirements apart

from those explicitly mentioned in the RFT will be taken into account. According to both the interviewees and prior

studies [35], [40], the heavy-weight requirements specification (for RTF) makes it difficult to incorporate new ideas

afterwards and can thus hinder innovativeness. Oskari community has noticed that, in complex development cases, it is

often better to tender for individual developers instead of tendering for specific implementations. This approach has

enabled agile software development processes and intensified knowledge exchange between public- and private-sector

organizations. In this model, the leadership of the software-development process stays entirely with the public sector,

which again requires specific skills, different from those required by mere software acquisition.

It was also repeatedly noted that, while CO-SLM model does indeed require new skills, it also creates an environment

for inter-organizational learning and thereby helps building new skills. For example, interviewees gave statements like

“inter-organizational learning is a key benefit [from Oskari participation]”, “even organizations who do not contribute

code have provided much valuable inputs [of skills and ideas]” and “we have learned so much just by talking to other

organizations with similar needs”.

6.2.2 Financial resources

Because Oskari is open source licenced, any organization could download it and use it without participating in

development expenses. However, the majority of organizational users have chosen to pay an integration fee. The

payment ensures them a membership in the steering group and an opportunity to influence the future development of

the software. By participating in the decision-making, organizations can ensure that the software will continue to meet

their needs in the future. This has been enough to motivate organizations to contribute financially, and, thus, open

source licensing has not lead to a significant ‘free riding’ problem.

Despite this, financing the Oskari baseline software development has not been easy. The relatively low integration fee

(currently EUR 5,000 per organization annually) has been sufficient to cover the integration, co-ordination and

communication activities of the Oskari community but not maintenance of the baseline software. Steering committee

members felt it was impossible to increase the fee without forcing member organizations to go through a significant

amount of bureaucracy. For long time, the development of the baseline version was paid for entirely by the National

Land Survey of Finland, which made the project extremely dependent on a single organization. However, the increasing

number of participants has recently improved finances and Oskari community is moving towards a model where it is

less dependent on NLS funding.

In general, interviewees felt that the CO-SLM model has enabled significant savings because development cost can be

split with others. One of the informants put it as follows:

One of the major goals of this collaborative development model has been to save funds. I feel that we have

achieved that… We can go to a steering group and split up tasks [between organizations], like ‘you do this and

I do that’… If we did not have this collaboration, we would have had to pay everything alone.

In practice, there were two ways to finance major extensions to Oskari: (1) some member organizations pay for Oskari

extensions alone but comply with architectural rules and share them with others for free and (2) some organizations

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 37 ►

form ‘mini consortia’ with other organizations who needed the same functionality and make the requirement analysis,

tendering and financing jointly. The latter was considered as more mature form of co-development but required more

inter-organizational communication and trust. One interviewee explained:

The first level is that each organization manages their own projects but follows some commonly agreed principles.

Meanwhile, others are waiting to get their hands on it. This is the most common way because it is fast and easy if

you have money [within one organization]. The second level involves collaborative financing; it is much more

complex and requires trust. One organization is chosen as a leader and then the leader organization makes

consortium agreement with other organizations to co-finance and co-develop something together.

6.3 Project sustainability

Because big money is circulated in public sector ICT procurement, successful new models, which create savings for

governmental organizations, unavoidably shrink revenues of some companies. Consequently, Finnish Location

Information Cluster, an advocacy group of some established companies offering geospatial solutions, has been very

critical of the Oskari project and tried to create political pressure against it. While no significant harm has been caused,

aggressive industrial lobbying was noted to be a risk factor which can negatively influence sustainability of any

government-driven open source project. CO-SLM approach partially helped to tackle the issue, e.g. by resourcing

communication and public relations (PR) activities.

However, with Oskari, the biggest sustainability challenge is to decrease the project’s dependence on the coordinator,

NLS, and thus make it less vulnerable to changing management interests and/or shifts in key personnel within that

organization. This was expressed in several interviews, for example as follows: “even though NLS has been a primus

motor in the start, there is no particular reason why it should remain as a primary or principal actor” and “other actors

must take more responsibility because we [the project] should not be overly dependent on NLS”.

Significant informing and marketing effort has been undertaken to attract more organizations to the Oskari network.

When more organizations are participating, more financing will come in and relevant technical knowledge will be

distributed among multiple organizations and people. If the software is strategically important to a sufficiently large

number of organizations, the development will continue even if the NLS decides to drop out. The project is now

entering a new phase as the co-ordinator role is planned to be shifted from NLS to an outsourced project organization

whose costs are covered with integration fees.

7. Discussion

7.1 Lessons for researchers and practitioners

For practitioners in the public sector who consider engaging their organizations in collaborative open source projects,

the case study highlights the importance of ensuring sufficient in-house IS skills. This is in line with prior literature

pointing out in-house IS skills as a key success factor to open source and other agile projects on the public sector [32],

[35]. Even though it is possible and often recommended [34] to exploit external experts, open source development

requires the public sector to take on the responsibility of a software owner. This requires both sufficient technical

competence and knowledge in software lifecycle management. To support the latter, the CO-SLM framework acts as a

document template for planning software governance and lifecycle activities.

The second lesson for practitioners has to do with the importance of enabling community growth. A ‘critical mass’ of

active organizational users helps to ensure steady funding and guarantee project continuity, even if one dominant

organization drops out. This is also in line with prior studies which have emphasised versatile developer and donor

bases as a success factor to all types of open source projects [41], [42]. In part, CO-SLM supports community growth

by making the software more attractive to new users. This is because clarified governance processes and responsibilities

make the whole process more predictable and manageable. Software must also be ‘generic’ enough so that it can be

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 38 ►

adapted to the diverse use cases for heterogeneous organizations. As the software is developed further, one must keep a

multi-organizational perspective in mind.

For researchers and consultants, a key lesson relates to appreciating the huge diversity of organizations and software

projects. Due to the heterogeneity of environments, it has proven pointless to develop a detailed predefined set of

lifecycle management practices for all public sector driven open source projects. We noticed that a high flexibility of

the framework is more important, taking, e.g. the form of ‘check lists’ on lifecycle management issues to be taken into

account. Each project can then take the framework as a basis and develop lifecycle management practices suitable to

their particular circumstances. If one wishes to develop ‘best practices’ on lifecycle management, one must focus on a

particular software domain and type of application, not public sector driven OSS projects in general.

7.2 Limitations of the study and further research

While diverse stakeholders were involved in the drafting and development of the CO-SLM framework (see Section 3

for details), we did not interview all members of the Oskari network after its deployment. Because we had an

opportunity to interview only people from three heavily-engaged organizations (see chapter 3), the results are biased

towards their perspectives. We acknowledge that ‘peripheral’ members of the Oskari community may have different

perspectives that are not visible in this study. We also understand that a single case study is not enough to make

definitive conclusions regarding the applicability of the framework in diverse public sector environments. Our next step

is to deploy the CO-SLM model and framework in other public sector open source software development efforts and,

thereby, to gain further experience on their applicability in different organizational settings. We also hope to collect and

analyse more qualitative and quantitative data on the supposed benefits of the CO-SLM approach.

8. Conclusions

This paper introduced the CO-SLM model and flexible framework developed for helping public sector organizations to

follow sound lifecycle management practices in open source development projects. The model and the framework were

successfully deployed in a real-life setting, where a dozen public sector organizations were jointly developing spatial

data analysis software under an open source licence. The adoption of CO-SLM benefited the software project by

encouraging community growth, improving the ‘image’ of the software and enhancing software quality, especially

regarding software maintainability and extensibility. Challenges stemmed from deficit software development and

acquisition skills in some organizations and insufficient funding due to relatively low membership fees. Furthermore,

the study shows that a project’s financial and technical dependence on the leading organization should be decreased in

the future to lower risks and ensure long-term sustainability.

9. References

[1] J. Kääriäinen, P. Pussinen, T. Matinmikko, and T. Oikarinen, “Lifecycle Management of Open-Source Software in

the Public Sector A Model for Community-Based Application Evolution,” ARPN Journal of Systems and Software, vol.

2, no. 11, pp. 279–288, 2012.

[2] J. C. Colannino, “Free and Open Source Software in Municipal Procurement: The Challenges and Benefits of

Cooperation,” Fordham Urban Law J., vol. 39, p. 903, 2012.

[3] I. Mergel, “Open collaboration in the public sector: The case of social coding on GitHub,” Gov. Inf. Q., vol. 32, no.

4, pp. 464–472, Sep. 2015.

[4] Finnish Ministry of Finance, “Sade-ohjelma: open source approach,” Helsinki, Finland: VM, 2012. Available:

https://www.europeandataportal.eu/data/en/dataset/sade-ohjelma-avoimen-lahdekoodin-toimintamalli00

[5] JHS, JHS 169 Use of Open Source software in Public Administration. Helsinki, Finland: JUHTA (Advisory

Comittee on Information Management in Public Administration), 2012.

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 39 ►

[6] A. Nurmi, “Coordination of Multi-Organizational Information Systems Development Projects – Evidence From Two

Cases,” J. Inf. Technol. Theory Appl., vol. 10, 2010.

[7] T. A. Pardo, A. M. Cresswell, F. Thompson, and J. Zhang, “Knowledge sharing in cross-boundary information

system development in the public sector,” Inf. Technol. Manag., vol. 7, no. 4, pp. 293–313, Dec. 2006.

[8] J. Kääriäinen, “Towards an application lifecycle management framework,” VTT Publications, no. 759. Espoo,

Finland: VTT Technical Research Centre of Finland, 2011.

[9] S. Chanda and D. Foggon, “Application Lifecycle Management,” in Beginning ASP. NET 4.5 Databases, Berkeley,

USA: Apress, 2013, pp. 235–249.

[10] K. Vlaanderen, I. Van de Weerd, and S. Brinkkemper, “Improving software product management: a knowledge

management approach,” Int. J. Bus. Inf. Syst., vol. 12, no. 1, p. 3, 2013.

[11] G. Weiß, G. Pomberger, W. Beer, G. Buchgeher, B. Dorninger, J. Pichler, H. Prähofer, R. Ramler, F. Stallinger,

and R. Weinreich, “Software engineering - Processes and tools,” Hagenb. Res., no. 1, pp. 157–235, 2009.

[12] D. Chappell, “What is application lifecycle management,” David Chappel and Associates, 2008, Available:

http://davidchappell.com/writing/white_papers/What_is_ALM_v2.0--Chappell.pdf

[13] C. Schwaber, “The Expanding Purview Of Software Configuration Management”, Forrester Research, 2009.

[14] E. H. Bersoff, “Elements of Software Configuration Management,” IEEE Trans. Softw. Eng., vol. SE-10, no. 1, pp.

79–87, 1984.

[15] J. Estublier, “Software configuration management,” Proc. Conf. Futur. Softw. Eng. - ICSE ’00, pp. 279–289, 2000.

[16] J. Koskela, “Software configuration management in agile methods,” VTT Publications, no. 514. Espoo, Finland:

VTT Technical Research Centre of Finland, pp. 3–54, 2003.

[17] M. E. Moreira, Software configuration management implementation roadmap. Chichester, England: John Wiley &

Sons, 2004.

[18] J. Estublier, D. Leblang, A. Van Der Hoek, R. Conradi, G. Clemm, W. Tichy, and D. Wiborg-Weber, “Impact of

software engineering research on the practice of software configuration management,” ACM Trans. Softw. Eng.

Methodol., vol. 14, no. 4, pp. 383–430, 2005.

[19] T. Mens and S. Demeyer, Software evolution. Springer Berlin Heidelberg, 2008.

[20] B. W. Boehm, “A spiral model of software development and enhancement,” Computer (Long. Beach. Calif)., vol.

21, no. 5, pp. 61–72, 1988.

[21] M. Lehman and J. C. Fernáandez-Ramil, “Software Evolution,” Softw. Evol. Feed. Theory Pract., vol. 27, no. 4,

pp. 7–40, 2006.

[22] T. Mens, “Introduction and roadmap: History and challenges of software evolution,” in Software Evolution, T.

Mens and S. Demeyer, Eds. Berlin, Heidelberg, Germany: Springer, 2008.

[23] K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/Libre open-source software development: What we know

and what we do not know,” ACM Comput. Surv., vol. 44, no. 2, p. 7, 2012.

[24] Open Source Initiative, “The Open Source Definition,” Open Source Initiative, 2013. [Online]. Available:

http://opensource.org/osd.

[25] J. West and S. O’mahony, “The Role of Participation Architecture in Growing Sponsored Open Source

Communities,” Ind. Innov., vol. 15, no. 2, pp. 145–168, Apr. 2008.

[26] K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/Libre open-source software development,” ACM

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 40 ►

Comput. Surv., vol. 44, no. 2, pp. 1–35, 2012.

[27] B. Rossi, B. Russo, and G. Succi, “Adoption of free/libre open source software in public organizations: factors of

impact,” Inf. Technol. People, vol. 25, no. 2, pp. 156–187, Jun. 2012.

[28] M. Shaikh and T. Cornford, “Navigating Open Source Adoption in the Public Sector,” 18th Am. Conf. Inf. Syst.

(AMCIS 2012), pp. 1–10, 2012.

[29] J. Allen and D. Geller, “Open source deployment in local government: Rapid innovation as an occasion for

revitalizing organizational IT,” Inf. Technol. People, vol. 25, pp. 136–155, 2012.

[30] O. Jokonya, “Investigating open source software benefits in public sector,” in Proceedings of the Annual Hawaii

International Conference on System Sciences, 2015, vol. 2015–March, pp. 2242–2251.

[31] D. Bryant and P. Ramsamy, “Public Administration Code Release Communities,” Madrid, Spain: ONSFA, 2014.

[32] S. S. Feldman and T. A. Horan, “Collaboration in electronic medical evidence development: A case study of the

Social Security Administration’s MEGAHIT System,” Int. J. Med. Inform., vol. 80, no. 8, 2011.

[33] M. Liu, B. C. Wheeler, and J. L. Zhao, “On Assessment of Project Success in Community Source Development,”

Proc. Twenty Ninth Int. Conf. Inf. Syst. (ICIS 2008), 2008.

[34] M. Liu, X. Wu, J. Leon Zhao, and L. Zhu, “Outsourcing of Community Source: Identifying Motivations and

Benefits.,” J. Glob. Inf. Manag., vol. 18, no. 4, pp. 36–52, 2010.

[35] J. Nuottila, K. Aaltonen, and J. Kujala, “Challenges of adopting agile methods in a public organization,”

International Journal of Information Systems and Project Management, vol. 4, no. 3, pp. 65–85, 2016.

[36] R. Vidgen and K. Braa, “Balancing interpretation and intervention in information systems research: the action case

approach,” in Information Systems and Qualitative Research, 1997, pp. 524–541.

[37] N. King, “Template analysis. Qualitative methods and analysis in organizational research: A practical guide. ,” in

Qualitative methods and analysis in organizational research: A practical guide, 1998, pp. 118–134.

[38] A. Leon, Software Configuration Management Handbook. Boston, USA: Artech House, 2005.

[39] F. J. Buckley, Implementing Configuration Managment, Hardware, Software and Firmware. IEEE Standards

Office, 1996.

[40] P. F. Manso and A. Nikas, “The application of post tender negotiation procedure: A public sector procurement

perspective in UK,” International Journal of Information Systems and Project Management, vol. 4, no. 2, pp. 23–39,

2016.

[41] I. Chengalur-Smith, A. Sidorova, and S. Daniel, “Sustainability of Free/Libre Open Source Projects: A

Longitudinal Study,” J. Assoc. Inf. Syst., vol. 11, no. 11, 2010.

[42] M. Stuermer, G. Abu-Tayeh, and T. Myrach, “Digital sustainability: basic conditions for sustainable digital

artifacts and their ecosystems,” Sustain. Sci., vol. 12, no. 2, pp. 247–262, 2017.

Lifecycle management in government-driven open source projects – practical framework

International Journal of Information Systems and Project Management, Vol. 5, No. 3, 2017, 23-41

◄ 41 ►

Biographical notes

Katja Henttonen

Ms. Katja Henttonen is working as a digitalization specialist at VTT Technical Research

Centre of Finland. She has over 15 years of experience in software development gained

in both the public and private sector. Since joining VTT, she has worked in various

research projects around the following topics: open source systems, open innovation and

collaborative economy. She holds a M.Sc. degree in ICTs and socio-economic

development from the University of Manchester and is studying towards a Phd.

www.shortbio.org/katja.henttonen@vtt.fi

Jukka Kääriäinen

Dr. Jukka Kääriäinen works as a Senior Scientist at VTT Technical Research Centre

of Finland Ltd in the Digital Transformation team. He has received PhD degree in

2011 in Information Processing Science from the University of Oulu. He has over 10

years of experience with product management, configuration management and

lifecycle management. He has been involved in various European ITEA, ITEA2 and

Artemis research projects.

www.shortbio.org/jukka.kaariainen@vtt.fi

Jani Kylmäaho

Mr. Jani Kylmäaho is currently employed at the National Land Survey of Finland, where his

position is Head of Development for topographic data production. Jani worked as the product

owner for the Oskari open source software until January 2017. He has been working with

OGC services and both national and international SDIs for 15 years. He has extensive

experience of open source software, agile methods, collaboration networks as well as

INSPIRE implementation. Jani holds an MSc degree in Geography from the University of

Helsinki, Finland.

www.shortbio.org/jani.kylmaaho@nls.fi

mailto:jukka.kaariainen@vtt.fi
http://www.shortbio.org/jani.kylmaaho@nls.fi

	Lifecycle management in government-driven open source projects – practical framework
	Recommended Citation

	tmp.1594306443.pdf.Oezky

