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Abstract 
Activation functions are a very crucial part of convolutional neural networks (CNN) because to a very large 
extent, they determine the performance of the CNN model. Various activation functions have been 
developed over the years and the choice of activation function to use in a given model is usually a matter of 
trial and error. In this paper, we evaluate some of the most-used activation functions and how they impact 
the time to train a CNN model and the performance of the model. We make recommendations for the best 
activation functions to use based on the results of our experiment. 
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Introduction 
Convolutional Neural Networks (CNN) have non-linear activation functions that allow the network to learn. 
This function controls how a neuron fires depending on its input received from the previous layer. There 
are several types of activation functions that have been used throughout the history of neural networks. The 
classical activation functions include the step function, the sigmoid function, and the tanh function. The 
smoothness of the sigmoid function makes it easier to devise learning algorithms (Rosebrock, 2017). 
However the standard activation functions, such as the sigmoid function or the tangent hyperbolic function, 
are contractive almost everywhere, and the gradients at the large values become almost zero which makes 
the updates by the stochastic gradient descent very small (Ide & Kurita, 2017). This problem is referred to 
in the literature as the vanishing gradient problem (Hochreiter, 1998). The vanishing gradient implies that 
the model can neither converge nor learn from data and therefore cannot perform its purposes such as 
classification or prediction. The more recent functions such as the RELUs (Hahnloser et al., 2000) and 
Leaky RELUs (Maas, Hannun, & Ng, 2013) avoid the vanishing gradient problem because, for a positive 
output, the gradient is constant and does not vanish. 
 
Designing activation functions that enable fast training of accurate deep neural networks is an active area 
of research (Agostinelli et al., 2014). Researchers generally agree that the activation function employed in 
a CNN network impacts the accuracy of classification and time to train the network. However, this area of 
research is not being explored rigorously despite its potential impact on CNN performance. To fill this gap 
in the literature, we investigate the impact of activation functions on the prediction accuracy of the CNN 
model using CIFAR-10, dataset. We build a convolutional neural network and activate each layer of the 
CNN with various activation functions.   
 
The remainder of this paper is organized as follows. Section 2 provides the literature review, and Section 3 
presents an overview of various activation functions. Section 4 presents the architecture of CNN followed 
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by the five experiments that we conduct to analyze the impacts of activation functions on various aspects. 
Finally, section 6 offers conclusions and future research directions. 

Literature Review 
An approach to improve the learning of the deep neural networks is to modify the activation function of the 
hidden neuron (Ide & Kurita, 2017). Essentially, they are non-linear mappings interleaved at the end of a 
layer (Scardapane et al., 2019). Krizhevsky et al. (2012) created a convolutional neural network model that 
is popularly known as AlexNet that won the LSVRC 2012 contest. To make training the network faster, the 
CNN researchers used non-saturating neurons. They argue that the saturating nonlinear model of neuron’s 
output is much slower than the non-saturating counterpart, referring to neuron with this nonlinearity as 
Rectified Linear Units (ReLUs). Deep convolutional neural networks with ReLUs train several times faster 
than their equivalents with tanh units(Krizhevsky et al., 2012). This statement is what leads us to investigate 
in quantifiable terms how the choice of neuron activation function might impact training times and the 
accuracy of a convolutional neural network model. In other to further improve the accuracy of the model, 
Krizhevsky et al. applied a technique called local response normalization which implements a form of lateral 
inhibition inspired by the type found in real neurons, creating competition for big activities among neurons 
outputs computed using different kernels(Krizhevsky et al., 2012). They applied this normalization after 
applying the ReLU nonlinearity in certain layers of the network and found that it improved their network’s 
accuracy.  
 
Goodfellow et al., (2013) developed a new type of activation function, called maxout unit, and they describe 
the maxout model as “simply a feed-forward architecture, such as a multilayer perceptron or deep 
convolutional neural network, which uses a new type of activation function - the maxout unit.” Maxout 
networks learn not just the relationship between hidden units, but also the activation function of each 
hidden unit. The researchers concede that maxout features are a significant departure from the common 
characteristics found in other activation functions. For example, maxout is linear at every point while most 
other activation functions do have some curvature to them. While some are curve-linear, others are almost 
entirely a curve. Yet Given these departures from standard practice, it may seem surprising that maxout 
activation functions work at all. 
 
Agostinelli et al., (2014) proposed an adaptive activation function called adaptive piecewise units (APL). 
The APL is a parametrized, piecewise linear activation function and is learned independently for each 
neuron using gradient descent, and can represent both convex and non-convex functions of the input. When 
testing their adaptive piecewise unit, they used a network that is capable of learning diverse activation 
functions and they suggest that the standard one-activation-function-fit-all may be less than optimal for 
convolutional neural networks. Kheradpisheh, Ganjtabesh, Thorpe, & Masquelier, (2018) used a step 
function in all convolutional layers of their network. The neurons are non-leaky, integrate-and-fire neurons, 
which gather input spikes from presynaptic neurons and emit a spike when their internal potentials reach 
a prespecified threshold (Kheradpisheh et al., 2018). Their proposed solution uses a spiking deep neural 
network (SDNN) and can perform well on small and medium datasets. New activation functions have been 
proposed such as KAFs (Scardapane et al., 2019), SLAFs (Goyal et al., 2020) and adaptive activation 
functions (Jagtap et al., 2020), however, none of these has become widely used in building convolutional 
neural network models. 
 
Despite many prior studies, researchers still are not very certain about the activation function that works 
best for a given network and it is usually a case of trial and error. This trial and error method could be very 
expensive for large networks that take long periods to train, more so when the project is under time-
constraints. To fill in this gap in the literature, we evaluate the activation functions across various types of 
deep learning models such as CNNs and provide insights on the impact of activation functions on the 
prediction accuracy and training time. 

CNN Architecture 
The network architecture is shown in Figure 1. It has five layers in total. We vary the activation function 
each time we train the network to obtain training times and accuracy reports for each activation function. 
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The input is a 32 X 32 RGB image and we feed this input to the first layer consisting of 96 filters and 3X3 
kernel convolutions. We applied zero padding at each layer to keep the spatial outputs of the convolutions 
consistent with the input dimensions and to prevent the input volume from attenuating. Attenuation will 
in effect prevent our network from learning useful patterns. 

 

Figure 1. The CNN architecture 

Experiment 
We set up an experiment to quantify the impact of activation functions on training times and the accuracy 
of the predictions. We used CIFAR-10 as our experiment dataset. The CIFAR-10 dataset developed by 
(Krizhevsky & Hinton, 2009) consists of sixty thousand (60,000) color images which are 32x32 in size and 
consist of 10 classes. The dataset is completely balanced with each class having 6000 images. There are 
50,000 training images and 10,000 test images. Our hardware is a single NVidia Tesla K80 GPU card with 
13GB of RAM and our disk size is 400GB. We ran the entire model on a GPU only. We train and test our 
model using a given activation function and we swap another activation function after we have reset the 
runtime. We must reset the runtime after each run to avoid treatment diffusion that could threaten the 
validity of our results. We used a 3x3 strided convolution with stride 2 in our initial run; however, the 
training times were not significantly different while we varied the activation functions so we decided to use 
stride 1. We kept the epoch to a minimum ranging from 20 to 35. Higher epochs will typically lead to higher 
accuracy in the learning and prediction, however in this experiment, our aim is not to optimize the model 
for highest accuracy digits, and hence we did not set high numbers for training epochs.  

Results:  

The results of our experiment are presented in the line graphs below. We used five different activation 
functions for our experiment; the LeakyRELU, PRELU, RELU, Tanh and Sigmoid. These are some of the 
popular activation function typically applied in neural network architectures. Based on current best 
practices, we used a stochastic gradient descent (SGD) for updating the weight matrix and computation of 
the gradient. We used a set momentum of 0.9 for the entire training process. 
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Figure 2. Accuracy and Loss Plot of the Network with Five Activation Functions 

 
The accuracy and loss plot in figure 2 show the network performance over the training epochs. Results about 
the accuracy are discussed in figure 3, however, we note that the loss, which is a prediction error that is 
made as the model iterates through the dataset, is expected to keep decreasing as the model learns. The 
lower the loss values, the better the model and we have the lowest loss values on the RELU and the highest 
loss on the Sigmoid. For most activation functions, we observe a fairly consistent increase in the level of 
accuracy achieved with increase in epochs however, the sigmoid function produced a spiky accuracy plot 
indicating that it was not ideal to be used for the network.  
 
The result in Figure 3 shows a fairly wide range of training times across the five activation functions 
investigated in this study. It takes between 193.3 – 345.4 seconds to train the 50,000 training samples of 
the CIFAR-10 dataset. As highlighted in a previous section, we find that the RELU activation trains the 
fastest on the CIFAR-10 dataset and this is mainly due to its computational efficiency. On the accuracy side, 
it was outperformed by the LeakyRELU and the PRELU on the CIFAR-10 but the gap is not very significant. 
Though the PRELU did better than the RELU on the CIFAR-10 dataset, it took nearly twice as much time 
to train.  

 
Figure 3. Impacts of Five Activation Functions on CNN Accuracy and Training Time  

Conclusion 
Large CNN models take a significant amount of time to train. For instance, on the ImageNet dataset, 
Springenberg et al., (2014) network takes four days to train; AlexNet (Krizhevsky et al., 2012) takes between 
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five and six days to train; ZFNet (Zeiler & Fergus, 2014) takes twelve days to train; and VGGNet (Simonyan 
& Zisserman, 2014) takes about two to three weeks to train. These are official numbers posted on the cited 
papers. A researcher trying to build the VGGNet and train it on the ImageNet dataset will have to use 
between 14-21 days for each given activation function if the best function for the network is unknown. To 
assist the researchers in choosing the best activation function, this study analyzes the impacts of five 
extensively used activation functions on the training time and accuracy of a CNN model. The results show 
that the rectified linear unit (RELU) activation function trains a CNN model quicker than any other 
activation function. The Leaky RELU and the PRELU did outperform the RELU on the CIFAR-10; however, 
there is significant amount of time involved in training the network with these activations. If every decimal 
digit of the achieved accuracy is important and there is sufficient time, we recommend using the Leaky 
RELU. Our future work will include other activation functions and quantify their impacts to make an 
informed choice. We will also be testing other deep learning models such as recurrent neural networks and 
generative adversarial networks (GANS). 

References 
Agostinelli, F., Hoffman, M., Sadowski, P., and Baldi, P. 2014. "Learning Activation Functions to Improve 

Deep Neural Networks," ArXiv:1412.6830 [Cs, Stat]. http://arxiv.org/abs/1412.6830 
Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. 2013. "Maxout Networks," 

ArXiv E-Prints, 1302, arXiv:1302.4389. 
Goyal, M., Goyal, R., Venkatappa Reddy, P., and Lall, B. 2020. "Activation Functions." In Deep Learning: 

Algorithms and Applications, W. Pedrycz and S.M. Chen (eds.), Springer, pp. 1–30.  
Hahnloser, R. H. R., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., and Seung, H. S. 2000. "Digital 

selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature (405), pp. 947-
951.  

Hochreiter, S. 1998. "The vanishing gradient problem during learning recurrent neural nets and problem 
solutions," International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6(02), pp. 
107–116. 

Ide, H., and Kurita, T. 2017. "Improvement of learning for CNN with ReLU activation by sparse 
regularization," In Proceedings of 2017 International Joint Conference on Neural Networks (IJCNN), 
pp. 2684–2691. https://doi.org/10.1109/IJCNN.2017.7966185 

Jagtap, A. D., Kawaguchi, K., and Karniadakis, G. E. 2020. "Adaptive activation functions accelerate 
convergence in deep and physics-informed neural networks," Journal of Computational Physics 
(404:1), 109136. https://doi.org/10.1016/j.jcp.2019.109136 

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. 2018. "STDP-based spiking deep 
convolutional neural networks for object recognition," Neural Networks (99), pp. 56–67. 
https://doi.org/10.1016/j.neunet.2017.12.005 

Krizhevsky, A., and Hinton, G. 2009. "Learning multiple layers of features from tiny images,"  
 https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf 

Krizhevsky, A., Sutskever, I., and Hinton, G. E. 2012. "ImageNet Classification with Deep Convolutional 
Neural Networks," https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf 

Maas, A. L., Hannun, A. Y., and Ng, A. Y. 2013. "Rectifier Nonlinearities Improve Neural Network Acoustic 
Models," In Proceedings of the 30th International Conference on Machine Learning.  

Rosebrock, A. 2017. Deep Learning for Computer Vision with Python. PyImageSearch. 
Scardapane, S., Van Vaerenbergh, S., Totaro, S., and Uncini, A. 2019. "Kafnets: Kernel-based non-

parametric activation functions for neural networks," Neural Networks (110), pp. 19–32. 
https://doi.org/10.1016/j.neunet.2018.11.002 

Simonyan, K., and Zisserman, A. 2014. "Very Deep Convolutional Networks for Large-Scale Image 
Recognition," ArXiv:1409.1556 [Cs]. http://arxiv.org/abs/1409.1556 

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. 2014. "Striving for Simplicity: The All 
Convolutional Net," ArXiv:1412.6806 [Cs]. http://arxiv.org/abs/1412.6806 

Zeiler, M. D., and Fergus, R. 2014. "Visualizing and Understanding Convolutional Networks," In Computer 
Vision – ECCV 2014 (8689), D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars (eds.), Springer, pp. 818–
833).  

 


	Analyzing the Impacts of Activation Functions on the Performance of Convolutional Neural Network Models
	

	tmp.1594267922.pdf.kna_c

