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Abstract 

Opioid Use Disorder (OUD) has become a major public health challenge. There have been several 
interventions, including those based on health-IT, proposed recently. There is a major need to study these 
interventions. We are interested in exploring how different IT-based interventions impact opioid related 
Quality of Life. We developed a model using Markov chain for three different states in OUD. The model and 
results can lead to better decision making by healthcare professionals, patients and insurance companies. 
More specifically, the proposed model and results can help in (a) whether to prescribe opioids to different 
types of patients, (b) what IT-based interventions are suitable with an opioid prescription, and (c) how 
patients and healthcare professionals can select an intervention out of multiple available interventions. 

Keywords 

IT-based interventions, opioid use disorder, Markov model, evaluation. 

Introduction 

Opioid Use Disorder (OUD) is a pattern of opioid consumption that causes significant problems for the 
patients including impairment and distress (Schatman and Ziegler 2017). OUD is also defined as any 
intentional use of opioids not following a physician’s prescription for a specific medical condition (Finley et 
al. 2017; Sinha et al. 2017). OUD is a national public health crisis that can lead to an increase in healthcare 
costs and serious harm to patients  (Blendon and Benson 2018). With 2 million people suffering from OUD 
in the US, the total cost is reaching to $100B/year (NIH 2019). Further, about 50% of the drug overdose 
deaths in the US are due to opioids (NIH 2019). OUD has become a major challenge for patients and family 
members, healthcare professionals, employers, regulators, and society. The vulnerability to OUD is related 
to the history, genetic makeup, current environment and stressors, medical condition (co-morbidities) and 
type of opioid prescribed. This could lead to mild, moderate, or severe form of OUD (Association 2013), all 
of which are considered and treated as chronic diseases. Once there, the OUD patients, with or without 
overdose events, will require expensive inpatient treatment (Chintha et al. 2018; Ivanov and Tacheva 2018) 
followed by a long-term outpatient treatment in remission.  

In this paper, we want to explore what role IT-based interventions can play in OUD.  To start, OUD can be 
expressed as three states for patients (prevention, addiction, and remission). Figure 1 shows the states and 
possible IT-based interventions for OUD. IT-based interventions can be implemented using both simple 
and sophisticated mobile apps, sensors, mobile devices, and smart medication boxes (Singh and Varshney 
2019; Varshney 2013). This could proactively stop patients from becoming dependent on prescription 
opioids or developing OUD. This brings our research question: To what extent the IT-based interventions 
are useful for patients with Opioid Use Disorder (OUD)? 
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Figure 1. IT-based Interventions at Different Opioid States 

 

To answer our research question, we explored various metrics to measure the impact of IT-based 
interventions. We observed that Quality of Life (Diener and Suh 1997) is a multi-faceted attribute used in 
numerous studies in healthcare (Carlsson and Walden 2018; Chen et al. 2014; Mansingh et al. 2013; 
WHOQOL-BREF 1998; WHOQOL 1995). QOL can measure physical health, psychological, social 
relationships and environment (WHOQOL-BREF 1998; WHOQOL 1995). These factors are somewhat and 
very broadly related to people with OUD. Further, another metric for QOL is healthcare related (HRQOL) 
that measures mobility, self-care, main activity, social relationships, pain, and mood (EuroQol 1990). 
HRQOL is used both for generic health and specific diseases (Guyatt et al. 1993). However, we felt that QOL 
and HRQOL are too broad for our study to measure the impact of IT-interventions for Opioid Use Disorder. 
Therefore, we propose and use a new metric, termed opioid related QOL (ORQOL) that can measure risk 
score, current condition, prevention, addiction, and remission.  

Markov models have been used in numerous healthcare studies (Ayabakan et al. 2016; Kwon et al. 2017; 
Lam et al. 2018; Luo et al. 2019). In our exploration, we discovered that the quality of life for OUD patients 
and the impact of IT-based interventions can be studied using Markov models. Therefore, we utilize a 
Markov chain, a special type of Markov model, for different states of OUD when the system is observable 
and autonomous (Sonnenberg and Beck 1993). We model prevention, addiction, remission, related 
treatments, and IT-based interventions for OUD. The model includes decision scenarios for both single and 
polypharmacy of opioid prescriptions. To the best of our knowledge, this is the first study that uses the 
Markov chain for studying opioids.  

Our model and results can be very helpful for decision making in (a) whether to prescribe opioids to 
different types of patients, (b) what IT-based interventions are suitable with an opioid prescription, and (c) 
how patients and healthcare professionals can select an intervention out of multiple available interventions. 
Several factors are likely to affect these decisions and are addressed in this study.  

In the next section, we present the Markov chain for OUD states for patients. We show how the model is 
developed and solved for different scenarios of decision making. The results from the model are presented 
and discussed next. Finally, the discussion and conclusion are presented. 
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The Model for Opioid Use Disorder (OUD) 

Markov Chain and QOL 

Markov models are useful when a decision problem involves a risk that is continuous over time (meaning 

the risk is ongoing), when the timing of events is important, and when important events may happen more 

than once (Sonnenberg and Beck 1993). Markov models have been used in numerous studies when the 

system is observable and autonomous. We use it to model the patient’s opioid states, where the patient 

moves from one state to the other based on a different set of actions. Since transition probabilities among 

states are constant over time, we use the Markov chain. More specifically, it is a 3-states model including 

Prevention, Addiction, and Remission. For example, a patient moves from Prevention to Addiction based 

on his/her current condition, history, and access to opioid prescriptions. The Prevention state indicates that 

the patient is vulnerable as he/she has some condition for addiction or is taking prescription opioids. The 

Addiction state indicates that the patient has developed an addiction and is getting an in-patient treatment 

(detoxification). After successful treatment, the patient moves to the Remission state and can stay there or 

move back to Addiction state, or after successful remission, can move to the Prevention state. Because of 

the Markovian assumption (Sonnenberg and Beck 1993), the current state has no memory for time spent in 

earlier states, so when the patient is in Addiction state, it does not matter how much time he/she had spent 

in Prevention state. In practice, the Markovian assumption is not followed strictly in medical problems 

(Sonnenberg and Beck 1993). However, the assumption is necessary to model the opioid behavior with a 

finite number of states. The use of Markov models has the potential to permit the development of decision 

models that more faithfully represent healthcare problems (Sonnenberg and Beck 1993). 

Our goal is to estimate the probability of a patient in a given state and then translate that to ORQOL (Opioid 

Related Quality of Life), a new metric for measuring Quality of Life for patients taking prescription opioids. 

The use of a specific measure, with normalized values (0 to 1), allows us to study the impact of different IT-

based interventions. We find that different interventions at different opioid states have an impact on 

ORQOL. The change in ORQOL is used to compare and decide which intervention to use when and where. 

This can help in improved decision making, resulting in more efficient resource allocation in healthcare. 

Assumptions 

Several assumptions were made to keep the model tractable and reasonably accurate (Tedeschi 2006). The 
assumptions are (1) the patients are adults and living independently and can make rational decisions, (2) 
the patients can take opioids as prescribed, (3) the patients are willing to try interventions and, (4) for 
Markov chain, state-transition probabilities are constant over time. These assumptions could be relaxed in 
future work. We decided to keep the model at reasonable complexity leading to approximated results. For 
more accurate results, significant details must be added in the model and much more complex analysis 
must be carried out.  

Model Description 

The Markov chain is shown in Figure 2 with three different opioid states for patients and seven transition 
probabilities. Two transition probabilities are zero as patients cannot move to (a) Prevention state from 
Addiction state and to (b) Remission state from Prevention state directly. Different transition probabilities, 
impacted by the absence or presence of different interventions, are defined as follows: PPP indicates that the 
patient does not get a prescription or has a prescription and is managing it well, PPA indicates that the 
patient is moving from Prevention to Addiction state, PAA indicates that patient remains in Addicted state, 
while PAR indicates moving from Addiction to Remission state. PRA shows moving back from Remission to 
Addiction state, PRR indicates that the patient remains in the Remission state, and PRP indicates that the 
patient has completed remission and is moving to the Prevention state.  
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Figure 2. Markov Model for Evaluating the Impact of Different Interventions 

 

Solving the above chain (Figure 2), we obtain the following sets of equations for different actions and 
transition probabilities that will lead to the development of the model for analyzing ORQOL.  

The steady-state probability of being in Prevention state (PP) is given as      

𝑃𝑃 =

𝑃𝑅𝑃
1−𝑃𝑃𝑃

1+(
𝑃𝑅𝑃

1−𝑃𝑃𝑃
)+(

1−𝑃𝑅𝑅
𝑃𝐴𝑅

)
       (1) 

The steady-state probability of being in Addiction state (PA) is given by      

𝑃𝐴 =

1−𝑃𝑅𝑅
𝑃𝐴𝑅

1+(
𝑃𝑅𝑃

1−𝑃𝑃𝑃
)+(

1−𝑃𝑅𝑅
𝑃𝐴𝑅

)
        (2) 

Probability of being in Remission state (PR) is given by     

𝑃𝑅 =
1

1+(
𝑃𝑅𝑃

1−𝑃𝑃𝑃
)+(

1−𝑃𝑅𝑅
𝑃𝐴𝑅

)
        (3) 

For Prevention state, 

𝑃𝑃𝑃 = 1 − 𝑃𝑃𝐴 

Where, PPA can be expressed as a product of Risk Score and Prescription Probability, as shown in equation 
4.    

𝑃𝑃𝐴 = RiskScorePPRESC        (4) 

Further, Risk Score is presented as follows: 

RiskScore = RiskWeight1 × PastHistory + RiskWeight2 × SpecificCondition +  RiskWeight3 × HealthComorbidities +

 RiskWeight4 × RiskReqMed         (5) 

For three different scenarios, Prescription Probability is given as shown in equations 6, 7, and 8. 

PPRESC.Scenario1 = CurrentCondition      (6)  

PPRESC.Scenario2 = 1 − RiskScore     (7) 
  

PPRESC.Scenario3 = Weight1  (1 − RiskScore) + Weight2  CurrentCondition    (8) 

   

Prescription probability with doctor shopping or polypharmacy can be expressed for N doctors as follows: 
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𝑃𝑃𝑃𝑜𝑙𝑦 = ∑ (𝑁
𝑅

) (𝑃𝑃𝑟𝑒𝑠𝑐)𝑅 (1 − 𝑃𝑃𝑟𝑒𝑠𝑐)𝑁−𝑅 
𝑁

𝑅=1
       (9) 

For Addiction state, PAA  =  1 − PAR           

Where, PAR =  (PTreatmentResources  PTreatment  PTreatmentEffective)      (10) 
  

For Remission state, the transition probabilities are shown in equations 11, 12, and 13.    

PRA =  1 − PPostOUDTreatmentNotEffective         (11)  

PRP =  PPostOUDTreatmentEffectivePCompletedReqDur        (12) 

PRR =  PPostOUDTreatmentEffectivePNotCompletedReqDur      (13) 

Finally, the Opioid Related Quality of Life (ORQOL) can be expressed as a function of probability of being 
in different states and the corresponding QOLs. 

𝑂𝑅𝑄𝑂𝐿 = ∑ PI𝑄𝑂𝐿𝐼
𝑀
𝐼=1           (14) 

Results 

We wanted to explore the role of IT-based prescription decisions and incentives. Using the above model, 
we derived ORQOL for three different scenarios of opioid prescriptions where information is collected from 
EHR, sensors, mobile apps and PDMP (Prescription Drug Monitoring Program). The first uses patient’s 
current condition only, while the second scenario considered both risk score (computed by an algorithm 
using multiple factors) and patient’s current condition (0.25 & 0.75, 0.5 & 0.5, 0.75 & 0.25), and the third 
scenario focused on risk score only. The detailed results including the intermediate analysis are shown in 
Table 1. The results visualizing the ORQOL for various risk score/current condition are shown in Figure 3. 

 

Decision 
Scenario 

Risk Score Prescription 
Probability 

PV PA PR ORQOL 

Scenario 1: 

W1 = 0 and W2 
= 1.0 (no weight 
for risk score) 

0.0 0.75 1.0 0.0 0.0 1.0 

0.25 0.75 0.348 0.391 0.261 0.479 

0.5 0.75 0.211 0.474 0.316 0.369 

0.75 0.75 0.151 0.509 0.340 0.321 

1.0 0.75 0.118 0.529 0.353 0.295 

 

Scenario 2: 

W1 = 0.25 and 
W2 = 0.75 
(some weight for 
risk score) 

0.0 0.813 1.0 0.0 0.0 1.0 

0.25 0.75 0.348 0.391 0.261 0.479 

0.5 0.688 0.225 0.465 0.310 0.380 

0.75 0.625 0.176 0.495 0.329 0.341 

1.0 0.563 0.151 0.510 0.339 0.321 

Scenario 2: 

W1= 0.5 and 
W2= 0.5 
(average weight 
for risk score) 

0.0 0.875 1.0 0.0 0.0 1.0 

0.25 0.75 0.348 0.391 0.261 0.479 

0.5 0.625 0.243 0.454 0.303 0.395 

0.75 0.5 0.211 0.474 0.316 0.369 

1.0 0.375 0.211 0.474 0.316 0.369 

Scenario 2: 0.0 0.938 1.0 0.0 0.0 1.0 
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W1= 0.75 and 
W2= 0.25 (high 
weight for risk 
score) 

0.25 0.75 0.348 0.391 0.261 0.479 

0.5 0.563 0.262 0.443 0.295 0.410 

0.75 0.375 0.262 0.443 0.295 0.410 

1.0 0.188 0.348 0.391 0.261 0.479 

 

Scenario 3: 

W1 = 1.0 and W2 
= 0.0 (complete 
weight for risk 
score)  

0.0 1.0 1.0 0.0 0.0 1.0 

0.25 0.75 0.348 0.391 0.261 0.479 

0.5 0.5 0.286 0.429 0.286 0.429 

0.75 0.25 0.348 0.391 0.261 0.479 

1.0 0.0 1.0 0.0 0.0 1.0 

Table 1. The Role of Prescription decisions on ORQOL 

 

Figure 3. ORQOL for Rewarding Healthcare Professionals for Improved Prescriptions 

 

The next set of results is obtained to show the role of polypharmacy where patients approach multiple 
healthcare professionals to obtain one or more opioid prescriptions. This is normally done across multiple 
states in the US, as state level monitoring (Prescription Drug Monitoring Programs) keeps track of opioid 
prescriptions in an individual state. As expected, the ORQOL becomes worse with an increased level of 
polypharmacy as shown in detailed results in Table 2 and as a pattern in Figure 4.  

 

Polypharmacy 
level 

Risk Score Prescription 
Probability 

PP PA PR ORQOL  

 

1 

0.0 0.875 1.0 0.0 0.0 1.0 

0.25 0.75 0.348 0.391 0.261 0.479 

0.5 0.625 0.243 0.454 0.303 0.395 
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0.75 0.5 0.211 0.474 0.316 0.369 

1.0 0.375 0.211 0.474 0.316 0.369 

 

 

2 

0.0 0.984 1.0 0.0 0.0 1.0 

0.25 0.938 0.299 0.420 0.280 0.439 

0.5 0.859 0.189 0.487 0.324 0.351 

0.75 0.750 0.151 0.509 0.340 o.321 

1.0 0.609 0.141 0.515 0.344 0.313 

 

 

3 

0.0 0.997 1.0 0.0 0.0 1.0 

0.25 0.984 0.289 0.427 0.284 0.431 

0.5 0.947 0.175 0.495 0.330 0.340 

0.75 0.875 0.132 0.521 0.347 0.301 

1.0 0.756 0.117 0.530 0.353 0.294 

Table 2. Role of Polypharmacy on ORQOL 

 

  

Figure 4. ORQOL for Different Levels of Polypharmacy 

 

Now, we want to explore the impact of IT-interventions, such as a mobile app for patient support and 
education, in Remission. Using the Markov chain and associated equations, we derive the ORQOL. These 
results show that the time a patient spends in the Remission state and Addiction state (highly undesirable) 
reduces with a corresponding increase in the Prevention state (highly desirable). Overall, the ORQOL 
improves as the effectiveness of IT-interventions increases. The results are shown in Figure 5. 
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Figure 5. ORQOL for IT-interventions in Remission 

 

Finally, we want to explore how preventive IT-interventions will impact ORQOL. These include educational 
interventions: (a) discouraging patients from polypharmacy, (b) managing the opioid consumption safely 
by being adherent, and (c) reducing the risk of addiction. These potentially implemented as mobile or web-
based IT-interventions could reduce the risk of addiction. The results are shown in Table 3 and Figure 6. 
The ORQOL is improved as the effectiveness of preventive IT-intervention increases.  

 Risk 
Score 

Actual 
Risk 

Reduction 

Prescription 
Probability 

PP PA PR ORQOL 

 

No 
preventive 
IT-
intervention 

0.0 0.0 0.875 1.0 0.0 0.0 1 

0.25 0.0 0.75 0.348 0.391 0.261 0.479 

0.5 0.0 0.625 0.243 0.454 0.303 0.395 

0.75 0.0 0.5 0.211 0.474 0.316 0.369 

1.0 0.0 0.375 0.211 0.474 0.316 0.369 

 

IT-
intervention 
for max. risk 
reduction = 
0.25 

0.0 0.0 0.875 1.0 0.0 0.0 1 

0.25 0.25 0.875 1.0 0.0 0.0 1 

0.5 0.25 0.75 0.348 0.391 0.261 0.479 

0.75 0.25 0.625 0.243 0.454 0.303 0.395 

1.0 0.25 0.5 0.211 0.474 0.316 0.369 

 

IT-
intervention 
for max. risk 
reduction = 
0.50 

0.0 0.0 0.875 1.0 0.0 0.0 1 

0.25 0.25 0.875 1.0 0.0 0.0 1 

0.5 0.5 0.875 1.0 0.0 0.0 1 

0.75 0.5 0.75 0.348 0.391 0.261 0.479 

1.0 0.5 0.625 0.243 0.454 0.303 0.395 
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IT-
intervention 
for max. risk 
reduction = 
0.75 

0.0 0.0 0.875 1.0 0.0 0.0 1 

0.25 0.25 0.875 1.0 0.0 0.0 1 

0.5 0.5 0.875 1.0 0.0 0.0 1 

0.75 0.75 0.875 1.0 0.0 0.0 1 

1.0 0.75 0.75 0.348 0.391 0.261 0.479 

IT-
intervention 
for max. risk 
reduction = 
1.0 

0.0 0.0 0.875 1.0 0.0 0.0 1 

0.25 0.25 0.875 1.0 0.0 0.0 1 

0.5 0.5 0.875 1.0 0.0 0.0 1 

0.75 0.75 0.875 1.0 0.0 0.0 1 

1.0 1.0 0.875 1.0 0.0 0.0 1 

Table 3. Impact of Preventive IT-interventions 

 

Figure 6. ORQOL for Preventive IT-interventions  

Discussion and Conclusion 

In this paper, we study how IT-based interventions impact the Quality of Life for OUD patients. IT-based 
interventions can be implemented using both simple and sophisticated mobile apps, sensors, mobile 
devices, and smart medication boxes. We explored various metrics to measure the impact of IT-based 
interventions and decided to use a new metric termed opioid related QOL (ORQOL). We developed a 
Markov chain model with three states of OUD. Using this, we included prevention, addiction, remission, 
related treatments, and interventions. The work includes both single and polypharmacy scenarios for opioid 
prescriptions. To the best of our knowledge, this is the first study that uses the Markov chain for opioids.  

We derived several results on the impact of different IT-interventions on decision making, prescription 
writing, addiction, and remission. This can be very helpful for decision making in (a) whether to prescribe 
opioids to a different type of patients, (b) what interventions are provided along with an opioid prescription, 
and (c) how patients can select an intervention out of multiple available interventions.   

More work is needed to study QOL/HRQOL using empirical data for OUD. Work is also needed to extend 

and validate ORQOL to increase its usefulness for multiple opioid studies. The current work can be 

extended to include a randomized controlled trial (RCT) to evaluate the medical effectiveness of IT-based 

interventions. The research can be further extended to field studies and empirical work using the Health 

Promotion Model, Theory of Addiction, Theory of Adaptation, and other theories related to OUD. 
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