
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

AMCIS 2020 Proceedings IS in Education, IS Curriculum, Education and
Teaching Cases (SIGED)

Aug 10th, 12:00 AM

Deploying APIs in the Cloud: A Novel Approach to the MIS Deploying APIs in the Cloud: A Novel Approach to the MIS

Infrastructure Course Infrastructure Course

David Schuff
Temple University, schuff@temple.edu

Mart Doyle
Temple University, mdoyle@temple.edu

Follow this and additional works at: https://aisel.aisnet.org/amcis2020

Recommended Citation Recommended Citation
Schuff, David and Doyle, Mart, "Deploying APIs in the Cloud: A Novel Approach to the MIS Infrastructure
Course" (2020). AMCIS 2020 Proceedings. 18.
https://aisel.aisnet.org/amcis2020/is_education/is_education/18

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in AMCIS 2020 Proceedings by an authorized administrator of
AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326836197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/amcis2020
https://aisel.aisnet.org/amcis2020/is_education
https://aisel.aisnet.org/amcis2020/is_education
https://aisel.aisnet.org/amcis2020?utm_source=aisel.aisnet.org%2Famcis2020%2Fis_education%2Fis_education%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/amcis2020/is_education/is_education/18?utm_source=aisel.aisnet.org%2Famcis2020%2Fis_education%2Fis_education%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 A Novel Approach to the MIS Infrastructure Course

Americas Conference on Information Systems 1

Deploying APIs in the Cloud: A Novel
Approach to the MIS Infrastructure Course

Completed Research

David Schuff
Temple University
schuff@temple.edu

Mart Doyle
Temple University

mdoyle@temple.edu

Abstract

Among the most in-demand technology jobs for 2020 include cloud architect and software developer. The
typical IT infrastructure position will require programming knowledge, while the typical developer will
require infrastructure knowledge. The creation and deployment of APIs is an ideal vehicle to teach both
programming and cloud infrastructure in an integrated way. This paper describes the design and
structure of a new undergraduate cloud infrastructure course that takes this integrated approach.

Keywords

Cloud computing, APIs, software development, curriculum design, pedagogy

Introduction

According to CIO Magazine, two of the 10 most in-demand technology jobs for 2020 include cloud
architect and software developer (White, 2020). However, these skills are increasingly seen as part of an
integrated whole. A “full stack” developer is described as someone with front and back-end development
knowledge; this can also include DevOps knowledge to implement and deploy the code they write
(Tylosky, n.d.; Alter, 2018). This combination of skills is also consistent with White’s (2020) definition a
cloud architect as someone responsible for not just the infrastructure but also “deploying, managing, and
supporting cloud applications” (White, 2020). In part due to DevOps, the lines between infrastructure
and development are blurring. The typical IT infrastructure position will require programming
knowledge, while the typical developer will require infrastructure knowledge. Future IT professionals
must be able to integrate these two skills in order to effectively manage modern software applications.

A practical example of the intersection of software development and cloud infrastructure is the
proliferation of software services that communicate through web application programming interfaces
(APIs). Web APIs facilitate communication between front and back-end components of a web-based
application (Wikipedia, n.d.; Olsen and Moser, 2013), and therefore serves as a conceptual and practical
framework for building cloud-based software applications that function at scale over the web.

Conceptual understanding and the ability to consume APIs has been a topic in IS curricula (Olsen and
Moser, 2013; Hosack et al., 2012; Wyner and Lubin, 2011). However, we propose the creation and
deployment of APIs is an ideal vehicle to teach both programming and cloud infrastructure in an
integrated way that gives students a holistic view how cloud-based applications work. This paper
describes the design and structure of a new, unique undergraduate cloud infrastructure course introduced
last year into the MIS curriculum at Temple University in Philadelphia, Pennsylvania. It is required of all
MIS majors and builds skills in constructing a cloud infrastructure using Amazon Web Services,
developing an API using Node.js, and then deploying that API on a cloud infrastructure.

The Environment

Temple University is a large, public, urban institution with over 39,000 students. Its primary mission is to
educate the regional undergraduate population through its over 400 degree programs. There are 17

 A Novel Approach to the MIS Infrastructure Course

Americas Conference on Information Systems 2

schools and colleges including liberal arts, business, education, law, media and communication, music
and dance, and engineering. The business school has over 8,500 students and nine academic
departments. The Department of Management Information Systems has over 430 undergraduate majors
and 330 undergraduate minors.

The department recently went through a major curriculum revision, shifting its emphasis to API-based
software development, cloud infrastructure, user experience design, and cybersecurity. One of the major
changes was the IT infrastructure course, which had focused on traditional physical networking concepts
and virtualization. Some cloud topics in that course used the Microsoft Azure platform.

In order to address changes in technology and place a greater emphasis on the cloud, the course was re-
imagined as a cloud infrastructure course. There are two software development courses in the curriculum:
the first covered developing web-based interfaces using JavaScript and consuming APIs; the second
covered software services and APIs using JavaScript and Node.js. We decided the cloud infrastructure
course would act as a bridge between the two software development courses. This achieved three
pedagogical goals. First, it would reinforce the programing concepts students learned in their first
programming course. Second, it would allow for the introduction of API programming so students would
have something to deploy on a cloud infrastructure. Third, it would give students a “head start” on the
second programming course, which required them to build more sophisticated services and APIs.

Course Goals

The course addresses several key learning objectives:

1. Understand the concepts of modern cloud computing.

2. Build a cloud application deployment infrastructure using Amazon Web Services (AWS).

3. Analyze and configure a cloud infrastructure for scaling and redundancy.

4. Develop a simple RESTful API using Node.js.

5. Deploy an API to a cloud infrastructure using instance-based and application-based methods.

From these broad goals, we developed nine specific learning goals for the course that could be evaluated
through assignments and exams:

1. Understand TCP/IP-based networking concepts – This includes topics such IP addressing,
routing, network tools such as ping and tracert, and ports. These topics are explained within the
context of both physical and virtual, cloud-based networks.

2. Understand the economics of cloud services – Students learn the value proposition of the
cloud and how businesses accrue costs when using cloud-based services. They learn how to set up
cloud-based networks that minimize costs while maintaining a target service level.

3. Create and secure an AWS Virtual Private Cloud – Students set up a virtual network that is
redundant and secure. They implement redundancy through multiple subnets and implement security
through AWS security groups, public and private subnets, and operating system level firewalls.

4. Create and configure Elastic Compute Cloud (EC2) Virtual Machines – This includes
choosing the operating system, configuring network options, storage, and security groups. Students
then connect to and test their virtual machine. They also create custom Amazon Machine Images
(AMIs) that will be used for server scaling.

5. Create a robust server infrastructure using load balancing and auto-scaling – This
involves creating AWS launch configurations and auto-scaling groups containing rules for
dynamically increasing or decreasing on demand the number of application and web servers based.

6. Configure and deploy a database using the Relational Database Service (RDS) – Students
create and configure a relational database server using RDS. They also connect to the database using
client software, create several schemas, and populate those schemas with data.

7. Create a RESTful API using Node.js – Students build an API that responds to a HTTP GET or
POST request from a web page using the Express framework. They also create the web client to test

 A Novel Approach to the MIS Infrastructure Course

Americas Conference on Information Systems 3

the API. Students augment their API with the capability of receiving parameters from an HTTP GET
or POST request and performing actions based on the value of those parameters. This includes using
those parameter values to construct a SQL query.

8. Deploy a web-based application to a set of EC2 instances – Students deploy their functioning
API and client application to web and application servers and create an AMI based on that
configuration. Then they apply load balancing and auto-scaling to ensure the application runs
optimally under high and low loads and continues to run when one of the servers fail.

9. Deploy a web-based application using Elastic Beanstalk – As an alternative deployment
method, students deploy their API on the AWS Elastic Beanstalk managed deployment service instead
of their own application server. They compare and contrast the two deployment methods.

Technology Choices

The two key technologies used in the course are Amazon Web Services (AWS) as the cloud platform and
Node.js (and JavaScript) for the development environment. We chose AWS for several reasons. First, it
has a well-developed, wizard-driven user interface. It is easy to use, allowing students to focus on what
they are building instead of navigating the interface. Second, it has a robust “free-tier” allowance, giving
students a lot of room to experiment before they start incurring charges. Third, it has services such as
Elastic Beanstalk and Lambda that are well-suited to the scalable deployment of software services; this
gives the flexibility to introduce new topics such as microservices as the course (and the industry) evolves.

The decision to use Node.js was based on several factors. First, using Node.js allowed for the use of a
single language – JavaScript – across all the programming courses, reducing the time required to teach
syntax. JavaScript is one of the few languages used on both the client-side and server-side. Second,
JavaScript is among the top five most popular programming languages in many lists (Putano, 2019; Chan,
2019). Third, Node.js is a popular environment and it is open-source. Along with a free editor such as
Notepad++ or Visual Studio Code, students use realistic, widely-used development tools at no cost.

Course Structure

The course is divided into three multi-week modules:

 Module 1: Building a robust, scalable AWS cloud infrastructure

 Module 2: Building a web-based application with a RESTful API

 Module 3: Deploying the web-based application to the cloud

Each class topic is divided into two 80-minute sessions. The first session is a discussion-driven “lecture”
that covers key concepts and requires students to integrate readings and videos to demonstrate
understanding. The second session is a lab-driven, experiential in-class activity that walks them through
building a component of their cloud infrastructure (in Module 1), creating their application (in Module 2),
and deploying their application (in Module 3). All in-class exercises build on previous exercises and by the
end of the course students build a complete cloud infrastructure and working application.

The in-class activities are also supplemented with experiential learning outside of class. In the first course
module, students complete a series of “Qwiklab” exercises (see http://qwiklabs.com). The Qwiklabs
introduce an aspect of AWS through a highly-controlled “sandbox” experience. For the second part of the
course, the additional experiential activities are Node.js exercises that refresh the students’ JavaScript
knowledge from prior courses. We designed the course to be delivered to medium class sizes (40 to 60
students) with multiple sections and multiple instructors. The in-class activities are designed to be
completed individually but working together in small groups of two or three students is encouraged.

A semester-long, four-part class project uses concepts introduced in the lecture and in-class activities. The
project requires students to independently build a second cloud infrastructure, develop a second web-
based, API-driven application, and deploy that application to their infrastructure. The following table
summarizes how the nine learning goals are covered throughout the course. The rest of this section
describes each module, how it addresses the learning goals, and that module’s in-class activities.

http://qwiklabs.com/

 A Novel Approach to the MIS Infrastructure Course

Americas Conference on Information Systems 4

Learning Goal Module 1 Module 2 Module 3

Understand TCP/IP-based networking concepts

Understand the economics of cloud services

Create and secure an AWS Virtual Private Cloud

Create and configure Elastic Compute Cloud (EC2) Virtual
Machines

Create a robust server infrastructure using load balancing and
auto-scaling

Configure and deploy a database using the Relational Database
Service (RDS)

Create a RESTful API using Node.js

Deploy a web-based application to a set of EC2 instances

Deploy a web-based application using Elastic Beanstalk

Table 1. Learning Goal Mapping by Module

Module 1: Building a robust, scalable AWS cloud infrastructure

This module builds skills in support of six learning goals: “understand basic TCP/IP-based networking
concepts,” “understand the economics of cloud services,” “create and secure an AWS Virtual Private
Cloud,” “create and configure Elastic Compute Cloud (EC2) virtual machines,” “create a robust server
infrastructure using load balancing and auto-scaling,” and “configure and deploy a database using the
Relational Database Service (RDS).” Students spend the first half of the course learning how to create a
fault-tolerant, scalable network infrastructure in the cloud. They create software images so virtual servers
can be created on demand. Security is implemented through the server (using security groups) and
operating system (using the Windows firewall). The economics of cloud services is explored using the
pricing models for these services. Figure 1 depicts the AWS virtual network students build, and an
overview of several of those exercises is described in Table 2.

Figure 1. AWS Virtual Network Created in Module 1

 A Novel Approach to the MIS Infrastructure Course

Americas Conference on Information Systems 5

In-Class Activity Overview Objectives

Creating Your First
Instance

In this in-class activity you will create
your first instance (e.g., virtual machine)
using Amazon Web Services (AWS).

1. Ensure that you can access your

AWS account

2. Create your first instance

3. Login to your first instance

Creating Your VPC In this in-class activity you will get create
your first Virtual Private Cloud (VPC).
The VPC will span two Availability Zones
(AZ). It will include four subnets, two in
each AZ. One of the subnets in each AZ
will be a public subnet, that is, accessible
from the Internet using an Internet
Gateway and public IP addresses.

Create a VPC that spans two

Availability Zones (AZ) with:

1. A “Public” network segment in

each AZ.

2. A “Private” network segment in

each AZ.

3. Explore the routing tables for

each network segment.

Creating Your Own
AMI

In this in-class activity you will create
your own Amazon Machine Image (AMI)
in the cloud using Amazon Web Services
(AWS). You will create and tailor this
instance, updating a few settings like
opening ports on the Windows Firewall
and installing software that could be
used as a single instance for an
application. You will then create an AMI
from this instance. The AMI will be
stored in S3. Finally, we will create and
launch additional instances from this
AMI, demonstrating auto scaling.

1. Learn how to create and use a

custom AMI.

2. Learn how to create clones from

the AMI.

Table 2. Selected In-Class Exercises from Module 1

Module 2: Building a web-based application with a RESTful API

This module builds skills in support of the learning goal “create a RESTful API using Node.js.” Once
students have learned how to build a cloud infrastructure on which to run a web application, they learn
how to construct a simple web API and web client. The course assumes a working knowledge of JavaScript
(a prerequisite for this course is an introductory course in JavaScript), but does not assume prior
knowledge of Node.js. Students build a multi-user number guessing game with a web-based form. A
server-side application, implemented as a RESTful API, randomly generates a number, keeps track of the
guesses, and determines whether the guess is correct. The API runs on a Node.js server using the Express
framework. Students start with a basic application that responds to a message from the client through an
HTTP POST request. Then they add the guessing game functionality along with the ability to pass
parameters from the client to the server. Finally, they incorporate the ability to make database calls using
the “sync-mysql” module into the application to track guesses and the “right” answer. An overview of the
in-class exercises used in this module is detailed in Table 3.

 A Novel Approach to the MIS Infrastructure Course

Americas Conference on Information Systems 6

In-Class Activity Overview Objectives

Restful APIs with
Node.js

In this in-class activity you will create the
first version of a client/server application
which uses a RESTful API. In this
version of this program, your laptop will
play the role of both the client and the
server and no data will be passed from
the client to the server. At this point this
will not be much of a game but will be a
stepping-stone to a complete
client/server application with data being
passed between the client and the server
with the server running in the cloud.

Create your first client/server

program that uses a RESTful API and

provides a stepping-stone for a more

feature rich game. Both the client and

the server will run on your laptop.

Building out an API
– Taking Parameters

In this in-class activity you will create the
second version of a client/server
application which uses a RESTful API.
In this version, your laptop will play the
role of both the client and server and
data will be passed from the client to the
server.

Create your second client/server

program that passes parameters using

a RESTful APIs and provides a

stepping-stone for a more scalable

version of the game.

Building out an API
– Retrieving Data
from an RDS
Instance

In this in-class activity you will create the
third version of a client/server
application which uses a RESTful API.
In this version, your laptop will play the
role of both the client and server. By the
time you have completed this in-class
activity, your game will be implemented
so that it can scale using AWS cloud
services AWS. The main change for
GuessANumber3.js is that instead of
referencing an array to find the random
number for the user to guess associated
with that game, we will store and retrieve
that number using a MySQL database.

Create your third client/server

program that passes parameters using

a RESTful API and stores data in an

RDS instance instead of arrays

providing another stepping-stone for

a more scalable version of the game.

Table 3. In-Class Exercises from Module 2

Module 3: Deploying the web-based application to the cloud

This module builds skills in support of two learning goals: “deploy a web-based application to a set of EC2
instances” and “deploy a web-based application using Elastic Beanstalk.” Students deploy the guessing
game they created in module 2 to the infrastructure they created in module 1. First, students deploy their
application to the web and application virtual servers using EC2 and the AMIs created in module 1. This
allows students to see how their cloud infrastructure scales and supports a web-based multi-tier
application. Second, students use the Elastic Beanstalk service to deploy the server-side API. This allows
them to see how cloud services can be bundled to minimize infrastructure management. Table 4 provides
an overview of the in-class exercises used in this module.

 A Novel Approach to the MIS Infrastructure Course

Americas Conference on Information Systems 7

In-Class Activity Overview Objectives

Deploying Cloud
Software – Instance-
Based

In this in-class activity you will create the
fourth version of a client/server
application which uses a RESTful API.
In this version of this program, you will
deploy your web page and your Node.js
code to your EC2 instance running in the
cloud. In addition, the database will be
accessed from your RDS instance. By the
time you have completed this in-class
activity, your game will run entirely in
the AWS cloud and will scale.

Create your next version of the

GuessANumber game and learn to:

1. Deploy GuessANumber4.html to

the IIS web server running on

your EC2 instance.

2. Deploy GuessANumber.js to the

EC2 instance.

3. Communicate between your

browser and your IIS web server

running on your EC2 instance.

4. Communicate between your

HTML client page and your

GuessANumber.js Node.js server

running on your EC2 instance.

5. Communicate between your

GuessANumber.js application and

the MySQL RDS instance you

created in an earlier activity.

6. Use qckwinsvc to run

GuessANumber.js as a Windows

service on the EC2 instance,

making the startup of the game

server automatic when the

instance starts.

Deploying Cloud
Software –
Application-Based

In this in-class activity you will create the
final version of a client/server
application which uses a RESTful API.
You will build upon what you have done
in class with GuessANumber4. In this
version of this program, you will move
your Node.js code into the Elastic
Beanstalk service. By the time you have
completed this in-class activity, your
game will operate as before, but the
application servers will scale and execute
your software using Elastic Beanstalk.

Create your next version of the

GuessANumber game and learn how

to configure GuessANumber to run

under ElasticBeanstalk.

Table 4. In-Class Exercises from Module 3

 A Novel Approach to the MIS Infrastructure Course

Americas Conference on Information Systems 8

Table 5 provides a summary of all twelve in-class exercises, and how they map to the learning objectives.

Module In-Class Exercise Learning Goals

1 Creating Your First Instance Understand basic TCP/IP-based networking
concepts

Understand the economics of cloud services

Create and configure Elastic Compute Cloud
(EC2) virtual machines

Creating a VPC Create and secure an AWS Virtual Private Cloud

Securing a VPC Create and secure an AWS Virtual Private Cloud

Creating Your Own AMI Create and configure Elastic Compute Cloud
(EC2) virtual machines

Load Balancing, Redundancy, and Auto
Scaling

Create a robust server infrastructure using load
balancing and auto scaling

Cloud Storage – Elastic Block Store Understand the economics of cloud services

Create and configure Elastic Compute Cloud
(EC2) virtual machines

Cloud Storage – Relational Database Service Configure and deploy a database using the
Relational Database Service (RDS)

2 RESTful APIs with Node.js Create a RESTful API using Node.js

Building out an API – Taking Parameters Create a RESTful API using Node.js

Building out an API – Retrieving Data from
an RDS Instance

Create a RESTful API using Node.js

3 Deploying Cloud Software – Instance-Based Deploy a web-based application to a set of EC2
instances

Deploying Cloud Software – Application-
Based

Deploy a web-based application using Elastic
Beanstalk

Table 5. Mapping Learning Goals to In-Class Exercises

Class Project

The class project is a four -part, individual assignment that requires students to bring together what they
have learned throughout the course. The format of the project largely follows what the students built
through the in-class exercises, and each part of the project builds on the previous part:

 In part 1 of the project, build a Virtual Private Cloud in AWS with security groups and public and
private subnets.

 In part 2 of the project, build AMIs, launch configurations, load balancers, and auto-scaling groups
that will distribute and scale their server capacity up or down depending on load.

 In part 3 of the project, create a “local” version of a web-based, API-driven application. They create
the client and server and ensure it runs on their own computer.

 In part 4 of the project, deploy the application to the infrastructure built in parts 1 and 2 of the
project.

 A Novel Approach to the MIS Infrastructure Course

Americas Conference on Information Systems 9

The application is a fare calculator for a toll highway in Pennsylvania (see Figure 2). Users must select the
interchanges where they begin and end their trip and whether they are using EZPass or cash using an
HTML form. The user’s choices are sent to an API that queries a database and returns the correct toll
amount. The toll is displayed in the browser through an alert.

Figure 2: Client and Server Screenshots from the Completed Class Project

The project is more complex than the in-class exercises. In the in-class exercises, the web server and
application server are hosted on the same virtual machine. For the project, they implement the web and
application servers on separate virtual machines. This added level of complexity requires the students go
beyond mimicking the in-class exercises and apply what they have learned to a new scenario.

Each part of the project reinforces one or more of the course learning goals (see Table 6). The exception is
the final learning goal – the project does not require students to deploy their web-based application to
Elastic Beanstalk. It was decided that there was not time in the course to make this a project deliverable –
future versions of the course may integrate an Elastic Beanstalk implementation into the project.

Project Description Learning Goals

Part 1 Create a VPC with properly configured
network and security groups.

Understand basic TCP/IP networking concepts

Understand the economics of cloud services

Create and configure Elastic Compute Cloud (EC2)
virtual machines

Create and secure an AWS Virtual Private Cloud

 A Novel Approach to the MIS Infrastructure Course

Americas Conference on Information Systems 10

Part 2 Configure load balancers, launch
configurations, auto scaling groups, and
RDS

Create a robust server infrastructure using load
balancing and auto scaling

Configure and deploy a database using the
Relational Database Service (RDS)

Part 3 Create the prototype of the application to
display toll information between two toll
highway interchanges.

Create a RESTful API using Node.js

Part 4 Deploy the prototype Turnpike Prototype
Toll Calculator to the AWS VPC created
in part 2 so that it runs and can scale.

Deploy a web-based application to a set of EC2
instances

Table 6. Mapping Course Learning Goals to Class Project

Conclusions

Deploying cloud-based, API-driven software applications requires a complex set of interrelated skills that
are also in high demand by industry. Cloud architects must understand software development, and
software developers must understand infrastructure. This DevOps mindset of tighter integration between
software development and operations should be reflected in how we teach these topics in the classroom.
We propose a pedagogical approach that integrates networking, cloud infrastructure, and API-based
software development. This holistic methodology enables students to see the complete picture of an end-
to-end software service solution within the scope of a single course.

The result of this integrated approach is a departure from traditional networking and cloud computing
courses because the network infrastructure principles are taught within the context of application
development and deployment. Building the course around API deployment has the dual advantage of
being a fundamental programming skill for modern web-based application development and a network-
centric paradigm that serves as the motivating backdrop for a modern infrastructure course.

References

Alter, S. 2018. “System Interaction Theory: Describing Interactions between Work Systems,”
Communications of the Association for Information Systems (42:9), pp. 233-267.

Chan, R. 2019. “The 10 Most Popular Programming Languages, According to the Microsoft-Owned
GitHub,” BusinessInsider.com. Retrieved February 25, 2020 from https://www.businessinsider.com/
most-popular-programming-languages-github-2019-11.

Hosack, B., Lim, B., and Vogt., W. Paul. 2012. “Increasing Student Performance Through the Use of Web
Services in Introductory Programming Classrooms: Results from a Series of Quasi-Experiments,” Journal

of Information Systems Education (23:4), pp. 373-383.
Olsen, T., and Moser, K. 2013. “Teaching Web APIs in Introductory and Programming Classes: Why and

How,” in Proceedings of the AIS SIG-ED IAIM 2013 Conference. 16.
Putano, B. 2019. “A Look at 5 of the Most Popular Programming Languages of 2019,” Stackify.com.

Retrieved February 25, 2020 from https://stackify.com/popular-programming-languages-2018/.
Tylosky, T. n.d. “What is a full-stack developer?” Thinkful.com. Retrieved February 25, 2020 from

https://www.thinkful.com/blog/what-is-a-full-stack-developer-2/.
White, Sarah K. 2020. “The 10 most in-demand tech jobs for 2020 – and how to hire for them,” CIO.com.

Retrieved February 25, 2020 from https://www.cio.com/article/3235944/hiring-the-most-in-
demand-tech-jobs-for-2018.html.

Wikipedia contributors. 2020. “Application programming interface,” Wikipedia. Retrieved February 25,
2020 from https://en.wikipedia.org/wiki/Application_programming_interface.

Wyner, G., and Lubin, B. 2011. “From Hello World to Interface Design in Three Days: Teaching Non-
technical Students to Use an API,” in Proceedings of the 2011 Americas Conference for Information
Systems, 407.

https://www.businessinsider.com/%0bmost-popular-programming-languages-github-2019-11
https://www.businessinsider.com/%0bmost-popular-programming-languages-github-2019-11
https://stackify.com/popular-programming-languages-2018/
https://www.thinkful.com/blog/what-is-a-full-stack-developer-2/
https://www.cio.com/article/3235944/hiring-the-most-in-demand-tech-jobs-for-2018.html
https://www.cio.com/article/3235944/hiring-the-most-in-demand-tech-jobs-for-2018.html
https://en.wikipedia.org/wiki/Application_programming_interface

	Deploying APIs in the Cloud: A Novel Approach to the MIS Infrastructure Course
	Recommended Citation

	tmp.1594258206.pdf.feRBk

