
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

AMCIS 2020 Proceedings Systems Analysis and Design (SIGSAND)

Aug 10th, 12:00 AM

A Taxonomy of Software Delivery Performance Profiles: A Taxonomy of Software Delivery Performance Profiles:

Investigating the Effects of DevOps Practices Investigating the Effects of DevOps Practices

Nicole Forsgren
GitHub, nicolefv@gmail.com

Marcus A. Rothenberger
University of Nevada Las Vegas, marcus.rothenberger@unlv.edu

Jez Humble
Google LLC, humble@google.com

Jason B. Thatcher
Temple University, jason.thatcher@temple.edu

Dustin Smith
Google LLC, smithdc@google.com

Follow this and additional works at: https://aisel.aisnet.org/amcis2020

Forsgren, Nicole; Rothenberger, Marcus A.; Humble, Jez; Thatcher, Jason B.; and Smith, Dustin, "A
Taxonomy of Software Delivery Performance Profiles: Investigating the Effects of DevOps Practices"
(2020). AMCIS 2020 Proceedings. 8.
https://aisel.aisnet.org/amcis2020/systems_analysis_design/systems_analysis_design/8

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic
Library (AISeL). It has been accepted for inclusion in AMCIS 2020 Proceedings by an authorized administrator of
AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326836096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/amcis2020
https://aisel.aisnet.org/amcis2020/systems_analysis_design
https://aisel.aisnet.org/amcis2020?utm_source=aisel.aisnet.org%2Famcis2020%2Fsystems_analysis_design%2Fsystems_analysis_design%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/amcis2020/systems_analysis_design/systems_analysis_design/8?utm_source=aisel.aisnet.org%2Famcis2020%2Fsystems_analysis_design%2Fsystems_analysis_design%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Effects of DevOps Practices on Software Delivery Performance

Americas Conference on Information Systems 1

A Taxonomy of Software Delivery
Performance Profiles: Investigating the

Effects of DevOps Practices1
Emergent Research Forum (ERF)

Nicole Forsgren
GitHub

nicolefv@gmail.com

Marcus A. Rothenberger
University of Nevada Las Vegas
marcus.rothenberger@unlv.edu

Jez Humble
Google LLC

humble@google.com

Jason B. Thatcher
Temple University

jason.thatcher@temple.edu

Dustin Smith
Google LLC

smithdc@google.com

Abstract

This research develops a taxonomy of Software Delivery Performance Profiles for DevOps development
settings. We base the underlying Software Delivery Performance measure on the application of the
Economic Order Quantity (EOQ) model to software development. Consistent with the objectives of both,
development and operations departments, the measure includes attributes for throughput (release
frequency and lead-time to delivery) and for stability (mean time to restore). Hierarchical cluster analysis
on a global sample of 7,522 DevOps professionals results in three distinct Software Delivery Performance
Profiles; in addition, the results indicate that the measures for throughput and stability move in tandem.
Further analysis will show how the use of individual DevOps practices impacts Performance Profiles of
development settings. When completed, the study will support the utility of DevOps and the effectiveness
of individual DevOps practices.

Keywords

DevOps, Economic Order Quantity, cluster analysis, software delivery performance, transaction cost

Introduction

The concept of DevOps has been developed as an extension to the agile paradigm for IT service management
(Debois 2011), which focused on developing new processes for the continuous deployment of rapidly
changing software. By combining software development and IT Operations, DevOps implements a
combination of cultural shifts and technology-enabled practices (Wiedemann et al. 2019) with the goal of
achieving higher levels of both, throughput and stability, even in an environment of high uncertainty
(Humble and Molesky 2011). However, little academic research has emerged that has examined the
implications of individual DevOps practices on Software Delivery Performance (e.g., Leite et al. 2019). This
study will work towards alleviating this shortcoming by using the Economic Order Quantity (EOQ) model
as a theoretical framework to develop a taxonomy of Software Delivery Performance Profiles of DevOps

1 An early version of this research stream appeared in the 2016 Proceedings of the Western Decision Sciences Institute Annual Meeting
(Forsgren and Humble 2016).

Effects of DevOps Practices on Software Delivery Performance

Americas Conference on Information Systems 2

development settings, and to research the effects of DevOps practices on the Software Delivery Performance
Profiles. Hereby, the study will address the following research questions:

RQ1: Which Software Delivery Performance Profiles exist in development settings employing DevOps?

RQ2: How does the use of individual DevOps practices influence Software Delivery Performance?

This Emergent Research Forum (ERF) paper covers the development of the taxonomy that results from
addressing RQ1. First, we draw on EOQ to create our Software Delivery Performance construct. Then we
discuss the data collection and develop the taxonomy of Software Delivery Performance Profiles in DevOps
settings using cluster analysis. The completed research will further address RQ2 by relating individual
DevOps Practices to the Software Delivery Performance Profiles.

Economic Order Quantity

The Economic Order Quantity (EOQ) model was a precursor to Lean Manufacturing (e.g., Karlsson and
Ahlstrom 1996; Kilpatrick 2003; Tang and Musa 2011) and was derived by Ford W. Harris (1913). It models
the economic trade-offs between batch size and transaction cost, as well as holding cost. EOQ was created
in the context of manufacturing, so it is important to apply its variables to software development. In this
context, a batch is a system change that is modelled in terms of one or more version control commits, which
describe the changes that will be made to one or more IT services or the infrastructure on which they run
(Forsgren and Humble 2016). We define the holding cost as the opportunity cost of not completing and
deploying a change, measured as the cost of delay (Reinertsen 2009). In addition, we define the transaction
cost as the cost of completing and deploying a change. Accordingly, the sum of the transaction cost and the
holding cost is the total cost. Consistent with EOQ, we assume that organizations behave rationally by
choosing a batch size that minimizes total cost (Forsgren and Humble 2016).

Software Delivery Performance in the Context of DevOps

Software Delivery Performance in the context of DevOps must reflect what matters to development, as well
as operations departments. Development can be evaluated in terms of code delivery throughput, while
operations prioritizes the stability of infrastructure and software (Forsgren and Humble 2016; Humble and
Molesky 2011). Therefore, following our previous section’s discussion on EOQ, we use a performance
measure that captures both of these dimensions.

Throughput Attributes

In order to develop the throughput measures, we view the software development process as a process
similar to that of a manufacturing plant (Humble et al. 2006). We define batch size as the size of a system
change (Forsgren and Humble 2016). However, it is difficult to objectively measure the size of a change in
software development, which is a major problem when applying manufacturing principles to IT (Reinertsen
2009; Wang et al. 2012). Therefore, we use release frequency as a proxy for batch size (Forsgren and
Humble 2016). In fact, in just-in-time manufacturing, release frequency (production rate) approaches
infinity as batch size approaches zero (Khan and Sarker 2002), thus, release frequency is a suitable proxy
measure. In software development, it captures how often code is deployed or released to the production
environment. This measure can be easily collected, as it is highly visible and frequently used as a key
performance indicator (KPI) for software delivery teams (Bird 2012; Radigan 2015). The other throughput
measure is lead-time for delivery; in software development, this is typically called lead-time for changes.
We define this measure as the time required for a change to software or infrastructure from its commitment
to the central version control repository to running in production (including integration, testing, and quality
assurance) (Forsgren and Humble 2016; Rother and Shook 2003). Lead time for changes is easy to measure
and comparable across development settings (e.g., Khomh et al. 2012; Radigan 2015).

Stability Attribute

The second type of our performance measure is stability. We capture this by obtaining the time required to
restore the system when the system is impaired or unavailable; this is the lead time of “emergency changes”.
Short times to restore indicate high levels of software stability in an organization. Therefore, we use mean

Effects of DevOps Practices on Software Delivery Performance

Americas Conference on Information Systems 3

time to restore (MTTR) to measure stability (Forsgren and Humble 2016); MTTR is the time required to
restore software after an incident occurs that makes the system unavailable or impairs quality of service
(Kullstam 1981). This measure is an industry standard and reflects the transaction cost of emergency
changes well (Allspaw 2010).

Data Collection

Data from DevOps professionals were collected using a web-based survey. We have posted invitations to
participate in this study in different outlets, including DevOps messaging boards and Twitter. Participants
were also invited to refer colleagues who worked in DevOps to participate in the study. They were asked to
provide data on their development settings that captured the attributes of the Software Delivery
Performance measure discussed in the previous section. The survey was available over a four-week period
(see also Forsgren and Humble 2016).

After removing incomplete responses, we had collected 9,292 fully completed surveys out of which 7,522
were from technical professionals (the remainder were from participants from other functions, such as
project management, sales, and marketing). The survey was accessed 15,233 times, thus, the response rate
was 61%. Because we were interested in the responses of technical professionals, our analysis focuses only
on these respondents, who include IT operators (e.g., network administrators, system administrators,
operating system administrators, etc.), developers, security professionals, site reliability engineers, DevOps
engineers, etc. They came from 261 unique countries with the highest participation coming from the United
States (46.8%), the United Kingdom (7.2%), India (4%), Australia (3.8%), Canada (3.7%), and Germany
(3.1%). Most respondents worked in Technology companies (21%), followed by Web Software (11.3%), and
Education (7.9%) (Forsgren and Humble 2016).

Our analysis began with an investigation of the data and respondents. First, we compared early and late
respondents and found no significant differences. To assess the effect of common method bias, we took
several steps. First, an exploratory factor analysis was performed and extracted five factors explaining 61.7%
of the variance, with no single factor accounting for significant loading (p<0.10) for all items (MacKenzie
and Podsakoff 2012). Second, following Lindell and Whitney (2001), we adjusted for the second smallest
positive correlation in the data, and all significant correlations remained significant. Therefore, we conclude
that common method bias likely did not affect our evaluation of the research model.

Method for the Taxonomy Development

We have conducted cluster analyses to develop the taxonomy of Software Delivery Performance Profiles.
Candidate sets of clusters were obtained using five different methods: Ward (1963), between-groups
linkage, within-groups linkage, centroid, and median (Forsgren and Humble 2016). We have considered
different results with between three and five clusters and have evaluated them based on change in fusions
coefficients, imbalances in terms of number of individual settings in each cluster, and univariate F-statistics
(Ulrich and McKelvey 1990). According to these criteria, the three-cluster solution that was based on Ward’s
method performed best, thus it was used for the remainder of the study. The solution included one large
cluster with 43.5% of the respondents (Cluster 3) and two smaller clusters with 29.6% and 26.8% of the
respondents, respectively (Clusters 1 and 2) (Forsgren and Humble 2016).

Further, we have conducted post-hoc comparisons of the throughput and stability measure means to
understand the clusters in terms of the performance profiles they represent, using Duncan’s Multiple Range
test (Hair et al. 2006). We found significant differences for each measure using pairwise comparisons across
each cluster, with similar means within each cluster, but means significantly different (p < 0.05) from those
of other clusters. That indicates that all variables of Cluster 1 perform significantly higher than those of the
other clusters; all variables of Cluster 3 perform significantly lower than those of the other clusters; and all
variables of Cluster 2 perform significantly lower than those of Cluster 1 and significantly higher than those
of Cluster 3 (Forsgren and Humble 2016). It shall be noted that all measures in Table 1 are based on a 6-
point scale, where 6 is the highest and 1 is the lowest performance. Thus, low lead-time for changes and
low mean time to restore are expressed as high values and high lead-time for changes and high mean time
to restore are expressed as low values (Forsgren and Humble 2016). According to the results of the post-
hoc comparisons, we have named Cluster 1 as the “High Performers”, Cluster 2 as the “Medium
Performers”, and Cluster 3 as the “Low Performers” (Table 2).

Effects of DevOps Practices on Software Delivery Performance

Americas Conference on Information Systems 4

 Cluster 1 Cluster 2 Cluster 3

Software Delivery
Performance

Attributes F-valuesa

High
Performers

Medium
Performers

Low
Performers

Throughput
Release frequency 5261.372*** 4.30 (Hb) 3.57 (M) 2.06 (L)

Lead time for
changes 3916.669*** 5.27 (H) 3.37 (M) 3.07 (L)

Stability
Mean time to restore 741.113*** 5.52 (H) 5.32 (M) 4.57 (L)

a Significances of the F-values are at the 0.001 level (***)
b H, M, and L stand for high, medium, and low cluster means, based on Duncan's Multiple Range Test.

Table 1. Software Delivery Performance Profile Taxonomy
(adapted from Forsgren and Humble 2016)

Table 2 describes the three Performance Profiles. Measures for Throughput and Stability move together
across all Performance Profiles. In terms of the EOQ that means that high performers have smaller batch
sizes (higher throughput) and low performers have larger batch sizes (lower throughput). Furthermore,
there are no trade-offs between throughput and stability (Forsgren and Humble 2016).

Role Freq Performance Profile

High

Performers

n=1,879

(29.6%)

Throughput and Stability measures perform at significantly higher levels

than those of the other two performance profiles.

Medium

Performers

n=2,759

(43.5%)

Significantly lower levels of Throughput and Stability than the High

Performers, but also significantly higher levels of Throughput and Stability

than the Low Performers.

Low

Performers

n=1,700

(26.8%)

Throughput and Stability measures perform at significantly lower levels

than those of the other two performance profiles.

Table 2. Software Delivery Performance Profiles
(adapted from Forsgren and Humble 2016)

Conclusion and State of the Complete Study

Drawing on EOQ, we have used throughput and stability as key measures for capturing the performance-
related concerns of key stakeholders found in development and operations in many organizations and uses
these measures to define Software Delivery Performance. The empirical analysis has resulted in a taxonomy
of three distinct Software Delivery Performance Profiles for DevOps settings; the performance clusters
demonstrate that organizations achieve throughput and stability concurrently. Thus, it is possible to achieve
high throughput and high stability without any tradeoffs.

The second part of the study is going to build on the taxonomy of Software Delivery Performance Profiles.
We will investigate the effects of individual DevOps practices and cultural transformations on the Software

Effects of DevOps Practices on Software Delivery Performance

Americas Conference on Information Systems 5

Delivery Performance Profiles in different DevOps development settings, using logistical regression
analysis. We have developed hypotheses that model the effects of Automated Continuous Integration,
Automated Test Suites, Test Coverage, Test Lead Time, Version Control, as well as DevOps Culture on
Software Delivery Performance.

REFERENCES

Allspaw, J. 2010. “MTTR Is More Important than MTBF (for Most Types of F),” Kitchen Soap.
(https://www.kitchensoap.com/2010/11/07/mttr-mtbf-for-most-types-of-f/, accessed April 28,
2019).

Bird, J. 2012. “Software Development Metrics That Matter,” DZone Agile Zone.
(https://dzone.com/articles/software-development-metrics, accessed April 28, 2019).

Debois, P. 2011. “Opening Statement,” Cutter IT Journal (24:12), p. 3.
Forsgren, N., and Humble, J. 2016. “DevOps: Profiles in ITSM Performance and Contributing Factors,” in

Western Decision Sciences Institute Annual Meeting, Las Vegas, NV, pp. 234–259.
Hair, J. F., Black, B., Babin, B., Anderson, R. E., and Tatham, R. L. 2006. Multivariate Data Analysis, (6th

ed.), New Jersey: Pearson.
Harris, F. W. 1913. “How Many Parts to Make at Once,” Factory, The Magazine of Management (10), pp.

135–136.
Humble, J., and Molesky, J. 2011. “Why Enterprises Must Adopt Devops to Enable Continuous Delivery,”

Cutter IT Journal (24:8), pp. 6–12.
Humble, J., Read, C., and North, D. 2006. “The Deployment Production Line,” Agile Conference, IEEE.
Karlsson, C., and Ahlstrom, P. 1996. “Assessing Changes towards Lean Production,” International Journal

of Operations & Production Management (16:2), pp. 24–41.
Khan, L. R., and Sarker, R. A. 2002. “An Optimal Batch Size for a JIT Manufacturing System,” Computers

& Industrial Engineering (42:2), pp. 127–136.
Khomh, F., Dhaliwal, T., Zou, Y., and Adams, B. 2012. “Do Faster Releases Improve Software Quality? An

Empirical Case Study of Mozilla Firefox,” in IEEE International Working Conference on Mining
Software Repositories, pp. 179–188.

Kilpatrick, J. 2003. “Lean Principles,” Utah Manufacturing Extension Partnership.
Kullstam, P. A. 1981. “Availability, MTBF and MTTR for Repairable M out of N System,” IEEE Transactions

on Reliability (30:4), pp. 393–394.
Leite, L., Rocha, C., Kon, F., Milojicic, D., and Meirelles, P. 2019. “A Survey of DevOpsConcepts and

Challenges,” ACM Computing Surveys Surveys (52:6), 127:1-127:35.
Lindell, M. K., and Whitney, D. J. 2001. “Accounting for Common Method Variance in Cross-Sectional

Research Designs,” Journal of Applied Psychology (86:1), pp. 114–121.
MacKenzie, S. B., and Podsakoff, P. M. 2012. “Common Method Bias in Marketing: Causes, Mechanisms,

and Procedural Remedies,” Journal of Retailing (88:4), pp. 542–555.
Radigan, D. 2015. “Five Agile Metrics You Won’t Hate,” Atlassian Agile Coach.

(https://www.atlassian.com/agile/project-management/metrics, accessed April 28, 2019).
Reinertsen, D. G. 2009. The Principles of Product Development Flow: Second Generation Lean Product

Development, Redondo Beach, CA: Celeritas.
Rother, M., and Shook, J. 2003. Learning to See:Value Stream Mapping to Add Value and Eliminate

Muda, Lean Enterprise Institute.
Tang, O., and Musa, S. N. 2011. “Identifying Risk Issues and Research Advancements in Supply Chain Risk

Management,” International Journal of Production Economics (133:1), pp. 25–34.
Ulrich, D., and McKelvey, B. 1990. “General Organizational Classification: An Empirical Test Using the

United States and Japanese Electronic Industry,” Organization Science (1:1), pp. 99–118.
Wang, X., Conboy, K., and Cawley, O. 2012. “‘Leagile’ Software Development: An Experience Report

Analysis of the Application of Lean Approaches in Agile Software Development,” Journal of Systems
and Software (85:6), pp. 1287–1299.

Ward, J. H. 1963. “Hierarchical Grouping to Optimize an Objective Function,” Journal of the American
Statistical Association (58), pp. 236–244.

Wiedemann, A., Forsgren, N., Wiesche, M., Gewald, H., and Krcmar, H. 2019. “Research for Practice: The
DevOps Phenomenon,” Communications of the ACM (62:8), pp. 44–49.

	A Taxonomy of Software Delivery Performance Profiles: Investigating the Effects of DevOps Practices
	

	AMCIS 2018 Template

