
Vega: A Computer Vision Processing Enhancement Framework with
Graph-based Acceleration

Julian Gutierrez
Northeastern University

gutierrez.jul@husky.neu.edu

Shi Dong
Northeastern University
shidong@ece.neu.edu

David Kaeli
Northeastern University

kaeli@ece.neu.edu

Abstract

The popularity of Computer Vision (CV) algorithms
has been on the rise given their growing dependence
on machine learning and deep neural networks.
The resulting improvement in inference accuracy has
revolutionized a number of fields. However, given
that CV algorithms consist of many different stages,
each having different computing characteristics, their
execution is frequently irregular and inefficient, unable
to leverage the full potential of the computing platform.
Presently, supporting real-time video processing for
high resolution images on edge systems involves
a significant amount of programming effort and
performance tuning.

To overcome this challenge, we present Vega, a
parallel graph-based framework that enables better
utilization of multi-core edge computing platforms. Vega
provides a highly flexible and user-friendly interface to
execute a range of CV algorithms efficiently, leveraging
multiple external libraries for performance. First, Vega
maps independent stages of a CV algorithm to nodes in
a pipeline graph. Next, it dynamically schedules nodes
on a multi-core CPU using multi-threading.

From our experimental results, our framework
improves performance of all selected algorithms by at
least 1.75x and up to 4.82x on the same platform. We
analyze the impact of using our framework in terms
of hardware utilization, frame processing latency and
throughput.

1. Introduction

Computer Vision (CV) and Image Processing (IP)
are both active research fields in both academia
and industry. While they have been studied
extensively in the past, they enjoy renewed interest
thanks to emerging applications including the Internet
of Things (IoT) [1], self-driving vehicles [2] and
virtual/augmented reality [3]. Each application domain
leverages tools from a rich collection of CV algorithms,

focusing on a specific area (e.g., face detection, image
segmentation, image classification, object recognition
and etc.). The goal in most algorithms is to extract
useful information from an image with high accuracy.
With advances in machine learning algorithms, and deep
learning in particular, CV researchers are able to achieve
new levels of accuracy using smart CV algorithms,
outperforming conventional approaches [4].

Most CV algorithms consist of multiple stages, steps
that form a image/frame processing pipeline. A typical
CV pipeline includes stages for signal reconstruction,
feature extraction and contextual understanding [5],
processing a given image or video input. Each stage
may perform one or more image processing tasks,
transforming an input into the desired format that
is fed to the next stage. To shorten the time to
build multi-staged CV applications, computer vision
libraries, e.g., OpenCV [6] and VLFeat[7] have been
developed, providing a rich collection of algorithms
with user-friendly programming interface.

To accelerate CV algorithms, previous studies
have focused on accelerating stages that are highly
data-parallel and compute intensive, mapping execution
to multi-core processors [8, 9, 10]. However, these
approaches have two limitations when processing a
corpus of images (i.e., a video). First, the class
of algorithms used typically involve stages that are
I/O intensive versus compute intensive. When we
execute multiple stages in sequence, some stages may
suffer low utilization on a given platform, leading
to imbalanced in resource utilization across stages.
Second, accelerating compute-intensive stages can only
shorten the processing latency of a single image, and
can limit our ability to improve the throughput when
processing a continuous stream of frames.

In this paper, we propose Vega, a computer vision
processing framework equipped with graph-based
acceleration. The proposed framework addresses the
above limitations by leveraging a graph-based scheme to
parallelize the processing of a video, while in addition,
accelerating individual compute-intensive stages. By

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6683
URI: https://hdl.handle.net/10125/64560
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

decomposing an application into clearly defined set of
stages, we are able to generate a graph, with stages as
nodes and data flow dependencies as edges. Independent
nodes can be executed in parallel for different frames,
effectively leveraging thread-level parallelism available
on a multi-core processor.

Our framework provides a set of user-friendly
APIs, allowing CV applications to be mapped to
parallel threads. This framework can be applied to
image processing algorithms such as face detection,
object detection and face recognition, or could be
generally applied to other multi-staged algorithms. To
demonstrate the framework, we present a case study
focusing on face detection on a streaming video. To
evaluate our proposed framework, we conduct a series
of experiments across 6 CV algorithms, including face
detection and object detection, run on a multi-core CPU.
The results show that our framework can achieve up
to 4.82x speedup and 3.03x speedup on average over
a single-threaded baseline. We characterize utilization
and develop a new scoring scheme that balances latency
with throughput. We also discuss a number of trade-offs
to consider when faced with hardware constraints when
using our framework.

2. Related Work

The graph-based data flow processing frameworks
are not new. Spark [11], a Big Data processing
framework, generates acyclic data flow graphs
which can later be analyzed for operator execution.
Tensorflow [12] adopts a very similar approach as that
in Spark, creating an acyclic graph based on the defined
data flow, and then executing the graph using a session
manager. The former is aimed at parallel processing on
a distributed system for Big Data, and the latter mainly
focuses on Deep Learning algorithms. OpenCV [6]
also supports a graph-based implementation (G-API),
which was added in version 4.0 to achieve better device
utilization for a single algorithm, without the added
benefits of a parallelized pipeline. Huang et al. propose
a general approach to schedule multiple tasks in parallel
by analyzing a task dependency graph [13]. Their
work proposed an efficient parallelization method, but
requires significant effort from the programmer in order
to implement CV algorithms. Our framework simplifies
the final implementation, making it easier for a user to
implement their own CV algorithms.

Acceleration for computer vision algorithms is an
active area of work in both academia and industry.
OpenVX [14] is a computer vision library providing
accelerated algorithms; VisionWorks [15] provides
tools developed based on the OpenVX standard for

computer vision (CV) on NVIDIA GPUs; OpenVINO
[16], developed by Intel, maximizes performance of
deep learning inference on multiple Intel platforms.

These frameworks focus on optimization of Deep
Learning models, which translates to better overall
performance of computer vision applications. Gutierrez
proposed a parallel processing mechanism for real-time
face detection leveraging both CPU and GPU [17];
Teichmann et al. propose a unified architecture,
in which encoders are shared by different tasks to
shorten inference time for autonomous driving [18];
Amamra et al. take advantage of the power of a
GPU to enable real-time RGBD (red, green, blue and
depth) data filtering [10]. All of these frameworks
provide improvements in performance, but they do
not implement user-friendly interfaces that increase
portability of CV applications.

Scanner [19] focuses on processing video collections
on cloud computing platforms and providing a robust set
of tools. Their main focus is to parallelize data mining
and video processing across multiple compute nodes.
In contrast, our framework is tailored towards real-time
performance of CV algorithms on edge computing
platforms. We also focus on programmability, providing
a user-friendly and high performance framework to
deploy CV algorithms using multi-core CPUs.

3. Framework

Computer Vision algorithms have a common pattern:
they are composed of a set of stages that execute in
sequence to process a given image. Figure 1 shows an
example of a sequence of high-level operations required
to run a deep learning face detection algorithm on an
input frame.

The first stage reads the input frame from a video
file or camera. The second stage transforms the input
frame into the data format compatible with a selected
deep learning model. The third stage performs inference
using the model. The fourth stage reads the output from
the model and updates the final image with the bounding
boxes of the detected faces. Finally, the fifth stage
displays the final results in a window.

This is a common approach for many face detection
applications, and our primary target in this paper.
We reduce the complexity of the implementation by
constructing the graph in the same order as stages are
added in the pipeline. This removes the requirement
for the user to explicitly add edges between the nodes
in the graph. We additionally exploit the shared
memory model provided by the C++ thread library.
This model facilitates data access across threads. Our
framework was developed with edge computing systems

Page 6684

in mind, and does not provide cluster level support.
Our graph-based approach is lightweight and easy to
incorporate into existing projects.

Figure 1: General high-level pipeline for a face detection
algorithm.

3.1. Graph Definitions

We construct a directed acyclic graph to represent
the connections between different stages in the CV
algorithm. The pipeline allows us to process different
stages for different frames concurrently. Figure 2
shows the structure of the face detector application,
including all the stages and queues in the framework.
The implementation of the input stage and output stage
are embedded into the framework in order to provide
flexibility for generating customized nodes on the user
plane, as presented in Figure 2. The framework provides
an API to launch the execution of the graph using
multi-threading, while managing the completion of each
node.

Figure 2: High-level pipeline for a face detection
algorithm using the Vega framework.

3.1.1. Nodes Each node in the graph represents one
stage, and each edge between two stages is represented
by a lock-based queue. The node contains information

such as the input and output queues, stage name, the
node id and the number of instances. Depending on the
specific task, one stage/node can contain more than one
instance, which can be scheduled to run concurrently,
improving performance for a single stage.

3.1.2. Queue A queuing mechanism is used to
manage coherency and synchronization between stages.
Synchronization for insertions and deletions in queues
is done through mutex locks and conditional variables.
For example, if a stage tries to retrieve data from its
input queue and the data is not ready, the execution
of this stage will suspend until data has been inserted
into the queue by the previous stage. Each stage,
other than first and last stage, in the pipeline is
equipped with an input queue and an output queue.
The implementation follows a producer-consumer
pattern, supporting multiple producers and consumers
associated with different stages. We avoid data transfers
between threads by simply manipulating pointers.

3.2. Stage Instances

The stage object contains information similar to that
of the node, with the difference that the stage is in
charge of the parallel execution of the work. For every
stage instance, a thread is launched to execute the main
function of the stage. Different stages can inherit the
properties of the base stage in order to execute different
functionality. Each stage has an initialization phase,
allowing the user to define any pre-stage requirements
(e.g., loading the deep learning model weights) before
the start of the execution.

The framework provides all the necessary I/O
functionality by using predefined stages. The input
stage provided by the framework is designed to read
the input data and process any user input during
execution. The framework also provides the output
stage to display general information of the execution,
display the output frames, store log files with the results,
and take snapshots during the execution. Additional
stages are provided for simplicity for the user, such as
pre-processing and post-processing stages, where the
user is only required to specify the execution function,
without the need to create a new object.

3.3. Data Packet

The data packet contains all the necessary
information for the execution of the algorithm on
every frame. It contains the input frame in an OpenCV
Mat object, a Mat object for the processed frame, and
a Mat object for the output frame. All Mat objects

Page 6685

Figure 3: Timeline of the framework for the face
detector algorithm, where all stages execute faster than
the FPS requirement.

are highly efficient, and if they are not used, the data
required to store them is minimal.

A package type is used to define which type of input
is being processed. IMG, VID and CAM are used to
indicate the type of the package being processed, an
image, video or a video from a camera, respectively.
Timing variables are used to monitor the execution time
for each stage and the total execution time for each
frame.

3.4. FPS and Latency Constraints

Figure 3 shows an example of how the framework
executes on a stream from a video camera, where the
FPS is limited by the hardware. In this example,
all stages execute under the frames per second (FPS)
quality of service limit (FPS limit). The FPS limit given
by a video is equal to 1000/FPS (in ms.). For example, a
30 FPS input video sets the maximum execution time for
a stage to 33 ms. If all stages take less time than the FPS
limit, the application is capable of running in real-time.
If the input video is a file, the framework is capable of
running faster than the input video rate, as long as the
previous constraint is met.

If one of the stages is slightly over the FPS limit,
this will impact the FPS of the entire application. For
example, if a single stage takes 50 ms, the maximum
FPS achievable by the application is 20 FPS. Figure 4
shows an example when this occurs in the third stage of
the compute pipeline. Therefore, it is important that our
application is capable of handling all the stages while
maintaining this throughput rate. If hardware resources
are underutilized, we can reduce the impact of slow
stages in the pipeline by instantiating multiple copies of
a stage. This gives the user the flexibility to improve
the FPS rate of an implementation without having to
compromise in terms of accuracy of the algorithm.

On the other hand, latency is another concern for real
time processing. In a real-time scenario, the human eye
is incapable of identifying delays in videos under 100
ms [17], which means, the total execution time should
remain under this limit. Adding more instances can
adversely affect the latency to process a single frame.

Figure 4: Timeline of the framework for the face
detector algorithm, where one of the stages violates
the FPS limit, causing a delay in the processing of
subsequent frames.

This effect will be studied in Section 6.

3.5. Terminal Interface

The input stage is in charge of handling the terminal
interface. It uses the nCurses library to easily process
inputs provided by the user during the execution of
the program. nCurses is a commonly used library
for graphical interfaces, but minimizing the cost of
displaying information was key to reduce the overhead
of the framework. The interface displays general
information about the execution, including the frame
size, the frame rate and the current run-time.

This terminal also displays the data for the execution
times of each stage if debug or verbose options were
in the initial command. The framework additionally
supports taking snapshots, recording video at any
instance, and displaying the input and/or output video
using an OpenCV window instance.

3.6. Additional Features

With the addition of multiple instances for a given
stage, a reorder buffer was added to a quality of
service (QoS) post processing stage. The reorder buffer
guarantees the order of frames in the output will be
the same as the input. This is necessary due to the
non-deterministic behavior of threaded applications on
a CPU. The program is unable to determine precisely
when a thread has finished processing a frame. Multiple
instances of the same stage can process frames with
highly variable execution times, impacting the order of
data packets in the output node.

The framework also provides support for CPU
utilization measurements (supported on Linux) in order
to provide an estimate of the hardware utilization and
effectiveness of the framework. Fully utilizing the CPU
hardware should not be a measure of efficiency, as it is
better if we are able to process the video in real time
without exhausting all the available hardware resources.

Page 6686

4. Case Study: Face Detection
Implementation

Next, we discuss the implementation for our
case study face detection algorithm. This algorithm
uses the Caffe version of the SSD deep learning
model described by Liu et al [20], running on the
optimized OpenCV Deep Learning framework [21] for
inference. The OpenCV Deep Learning framework
uses a multi-threaded implementation, allowing the user
to define the number of threads the framework can
instantiate.

This case study demonstrates how we can use the
proposed framework efficiently, as well as how easy it
is to port an existing algorithm into the framework. The
steps shown with this case study are representative of the
general steps required to port other algorithms.

The first step required in the implementation of the
algorithm using Vega is to expand the Data object with
the data we will use to store the bounding boxes, as
shown in the code snippet below.

class FaceDetectorData : public Data{
public:

vector<vector<int>> bboxes;
};

Next, we need to define what each stage in the
algorithm will execute. The pre-processing stage for this
algorithm executes normalization, and shifting by the
mean value of the training dataset on the input frame.
The output will be stored on the processed frame, which
will be the input to the next stage. This behavior can
be defined in the execute function of the pre-processing
stage instance using the OpenCV contrib DNN API.

template <class Data>
void Preprocessing<Data>:: execute(Data*

Packet){↪→
double inScaleFactor = 1.0;

cv::Size size =
cv::Size(Packet->frame.cols,
Packet->frame.rows);

↪→
↪→

cv::Scalar meanVal = cv::Scalar
(104, 177, 123);↪→

Packet->processed_frame =
cv::dnn::blobFromImage(

Packet->frame, inScaleFactor,
size, meanVal, false, false);

↪→
↪→

}

The Detector stage is the most complex stage, as
we need to create a new stage object that inherits the
properties of the Stage base class. We define the
new class in the following snippet. We provide all

the new variables and objects the stage requires to
execute, as well as define the behavior for the initialize
function (load Caffe model) and execute function (i.e.,
run inference). All of the data that the algorithm will
require is in the data object, which can be accessed using
the Packet pointer. Note that the Caffe model used in
this case study was trained using 300x300 images, but
we use a 1080p input frame to expose the algorithm’s
efficiency when processing full HD resolution images.

template <class Data>
class Detector : public Stage<Data>{
public:
const int num_threads =

cv::getNumberOfCPUs();↪→
const std::string caffeConfig =

"./models/deploy.prototxt";↪→
const std::string caffeWeight =

"./models/res10.caffemodel";↪→
double conf_threshold = 0.7;
cv::dnn::Net net;

void initialize(){
net = cv::dnn::readNetFromCaffe

(caffeConfig, caffeWeight);↪→
net.setPreferableBackend

(cv::dnn::DNN_BACKEND_OPENCV);↪→
net.setPreferableTarget

(cv::dnn::DNN_TARGET_CPU);↪→
cv::setNumThreads (num_threads);

}
void execute(Data* Packet){
net.setInput

(Packet->processed_frame,
"data");

↪→
↪→

cv::Mat detection =
net.forward("detection_out");↪→

cv::Mat detectionMat
(detection.size[2],
detection.size[3], CV_32F,
detection.ptr<float>());

↪→
↪→
↪→

for(int i = 0; i <
detectionMat.rows; i++) {↪→

float confidence =
detectionMat.at<float>(i, 2);↪→

if(confidence > conf_threshold) {
int x1 = static_cast<int>

(detectionMat.at<float>(i,
3) * Packet->frame.cols);

↪→
↪→

int y1 = static_cast<int>
(detectionMat.at<float>(i,
4) * Packet->frame.rows);

↪→
↪→

int x2 = static_cast<int>
(detectionMat.at<float>(i,
5) * Packet->frame.cols);

↪→
↪→

int y2 = static_cast<int>
(detectionMat.at<float>(i,
6) * Packet->frame.rows);

↪→
↪→

vector<int> box={x1,y1,x2,y2};
Packet->bboxes.push_back(box);

}
}

}
};

Page 6687

The post-processing stage of this algorithm adds the
bounding boxes created in the previous stage to the
output image. This can be observed in the following
code snippet.

template <class Data>
void Postprocessing<Data>::

execute(Data* Packet){↪→
Packet->output_frame =

Packet->frame.clone();↪→

for (int i = 0; i <
Packet->bboxes.size(); i++){↪→

cv::rectangle
(Packet->output_frame,
cv::Point
(Packet->bboxes[i][0],
Packet->bboxes[i][1]),
cv::Point
(Packet->bboxes[i][2],
Packet->bboxes[i][3]),
cv::Scalar (0, 255, 0),2,
4);

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

}
}

Finally, we can define the graph in the main function,
as shown in the following code snippet. It should
be clear that constructing the graph from the user’s
perspective requires minimum complexity. The Face
Detector Data object created at the beginning is used in
the instantiation of the Graph, indicating the data type
used. The nodes added to the graph are the nodes we
have previously defined.

int main(int argc, char* argv[]) {

Graph<FaceDetectorData>
pipeline(argc, argv);↪→

// Define Pipeline
pipeline.add_node<Preprocessing>

("Preprocessing", 1);↪→
pipeline.add_node<Detector>

("Face Detector", 1);↪→
pipeline.add_node<Postprocessing>

("Postprocessing", 1);↪→

pipeline.initialize_graph();
pipeline.run_graph();
pipeline.wait_graph();

return 0;
}

5. Experimental Setup

All experiments were conducted on a single system
on the Discovery Cluster hosted at the Massachusetts
Green High Performance Computing Center [22, 23].
The computing system used has an Intel Xeon CPU
E5-2680v4 at 2.40 GHz, 512 GB of RAM, 28 physical

cores (56 logical cores), with NVIDIA GPUs which
were not used during this study. The software used to
produce our results for the framework are: GCC version
5.5.0, with NCurses, Threads, and OpenCV 3.4.3 with
the contrib libraries.

The algorithms chosen represent a wide range of
computer vision applications. They range from a
simple black and white converter, to a deep learning
object detection algorithm. All of the deep learning
baseline codes were obtained from the LearnOpenCV’s
database [24] and then implemented using Vega.
The following list of algorithms where used in our
performance analysis:

• baw: A 1-stage black and white image
conversion.

• ipa: A 3-stage image processing algorithm that
applies a 11x11 Gaussian blur, a 75x75 bilateral
filter, and a BGR to HSV conversion.

• fd-caffe: A 3-stage face detection algorithm using
the SSD Caffe model.

• fd-tensorflow: A 3-stage face detection algorithm
using the SSD 8-bit quantized Tensorflow model.

• fd-haar: A 3-stage face detection algorithm
using the Stump-based 24x24 discrete Adaboost
frontal face detector, based on the Haar Cascade
model [25].

• od-yolov3: A 3-stage object detection algorithm
using the YoloV3 model [26].

To quantify and evaluate the effectiveness of the
framework, we leverage two metrics: i) the throughput
(FPS), computed from the total execution time divided
by the total number of processed frames, and ii) the
average frame latency, computed from the average frame
processing time (sum of all stage execution times) to
process one frame.

In addition, we propose a new score S to
quantitatively measure the overall performance of the
algorithms. The score described below leverages
the FPS and frame latency measured for a specific
algorithm, considering the FPS of the input video
and the human tolerable latency in real time video
processing (100 ms). This score can be derived by the
following formula:

FS =
1

(1 + 0.5e−3(2α/β−1))2

LS =
1

(1 + 0.5e−5(γ/ρ))3

S = FS(δ) + LS(1− δ)

Page 6688

Where,

• FS = The score leveraging FPS (FPS score),

• LS = The score leveraging latency (Latency
score),

• δ = Weight of the FPS score,

• α = Observed FPS,

• β = Input Video FPS (24 FPS),

• γ = Maximum allowed latency (100 ms for
real-time), and

• ρ = Observed latency for a single frame.

The equations above are logistic functions,
leveraging FPS and frame latency as parameters.
The initial parameter values were chosen to help
normalize the differences across different scales used
for the input parameters, and the impact on the output
video under different scenarios (e.g., high latency
compared to lower FPS). The logistic function can
output a score between 0 and 1. High FPS and low
latency will lead to high FPS and frame latency scores,
respectively. The final score is a sum of weighted FPS
and frame latency scores. δ allows us to prioritize
between the two scores, depending on the objectives of
the implementation.

Given δ of 0.5, the highest score will be achieved
when both FS and LS are approaching 1.0. This occurs
when the FPS of the algorithm is higher than the input
videos FPS and the frame latency is lower than 100 ms.

6. Performance Evaluation

Next, we discuss the experimental results of our
Vega framework on two fronts: 1) an analysis on
our case study and 2) an analysis of the real-world
applications mentioned in Section 5. Working with
deep learning frameworks, the accuracy of the model
is paramount. We do not consider the accuracy of the
deep learning models in this analysis, as Vega does not
modify them. The baseline and Vega provide the same
output across all tests.

The following results were obtained using the same
input video. The video has a 1080p resolution, with a
29.3 s duration at 24 FPS. The video is a recording of a
crowd walking on a sidewalk, providing multiple facial
detections in each frame. The results show the average
metrics across the duration of the video.

6.1. Case Study: Face Detection

We use Vega to speed up the inference time for the
Caffe face detection implementation. Considering the

(a) Latency

(b) Utilization
Figure 5: Results for the Caffe face detection algorithm
using 1 instance for the detection stage and varying the
number of OpenCV threads.

popularity of face detection algorithms, and their role in
a large number of computer vision algorithms, we chose
this implementation as our primary case study.

6.1.1. OpenCV Threads As stated in Section 4,
OpenCV’s DNN framework is multi-threaded. We use
Vega to study the effects of parallelizing the DNN
inference used in one detection stage. As Figure 5.a
suggests, increasing the number of threads leads to a
reduction in the frame latency until we surpass the
number of logical cores in the CPU. This over-allocation
of threads degrades performance due to the increased
context switching required by the OS.

The lowest frame latency achieved is 301 ms at
64 threads, which translates to a latency over the
100 ms limit. Figure 5.b shows the CPU utilization
behavior for the same test. Utilization increases
with the number of threads allocated to the OpenCV
DNN framework, despite no correlation being observed
between utilization and performance due to the higher
utilization achieved with 128 threads (while achieving
lower throughput). This is a result of intensive context

Page 6689

Figure 6: Face detection latency and throughput results
from changing the number of instances for the detection
stage with 1 thread per instance.

switching, which in turn translates to wasteful compute
time.

6.1.2. Instances Vega provides the functionality to
add more instances per stage, processing different
frames concurrently and improving the FPS of the
application when a stage is unable to execute under the
FPS limit of the video. Figure 6 demonstrates this effect
when each instance uses 1 thread for the DNN forward
propagation.

These results show that the addition of more
instances translates to an increase in frame latency and
improvement in FPS, until the number of instances
surpasses the number of physical cores in the system.
A 4.54x improvement in throughput is achieved when
the number of instances is 32, despite obtaining a 5.6x
degradation in latency compared to 1 instance using all
threads.

Results are worse when each instance schedules a
larger number of threads, resulting in added delay due
to excessive context switching, sharing resources across
multiple threads, and the larger synchronization cost
due to the reorder buffer in the post-processing stage.
Additionally, the latency per frame produces an unstable
behavior, fluctuating drastically between frames. Frame
latency is only a concern when real-time feeds are used
(e.g., the live input stream from a camera). When the
goal is to achieve the fastest processing of a video,
throughput (FPS) is the metric to focus on.

Figure 7 shows the CPU utilization provided by the
same configurations. Single-thread instances produce
a similar pattern to the 1 instance test, changing the
number of threads. A higher number of instances results
in higher utilization, despite the best performance was
achieved at a lower utilization.

Figure 7: Face detection utilization and throughput
results from changing the number of instances for the
detection stage with 1 thread per instance.

Table 1: Score comparison with different δ for different
input video resolution scales.
δ Framework 100%

Scale
75%
Scale

50%
Scale

0.0 Base 0.781 0.916 0.987
Vega 0.771

(1i)1
0.914
(1i)

0.996
(1i)

0.5 Base 0.409 0.500 0.629
Vega 0.445

(32i)
0.687
(16i)

0.950
(4i)

1.0 Base 0.038 0.084 0.270
Vega 0.530

(32i)
0.952
(64i)

0.994
(16i)

6.1.3. Performance Metrics Figure 8 shows the
scoring results for the face detection algorithm on
the Vega framework, while changing the number of
instances in the detector stage for different input
resolutions (lower resolution, less computation). We
address different input resolutions as a way to mitigate
the lower scores due to the complexity of the model. The
best overall score is given by the configuration closest to
the top right corner. δ provides the flexibility to choose
which metric to prioritize. These results can be observed
in Table 1, where Vega achieves a better score for any
delta except 0.0 for larger input resolutions. The input
resolution has a larger impact on the score. For example,
at a 1080p resolution image, no configuration is capable
of achieving a balanced score above 0.5.

6.2. Speed-Up

Figure 9 shows the performance achieved by all
the algorithms described in Section 5 on Vega when
using a δ of 1.0 for scoring. We compare the average
FPS across different configurations and display the

1Indicates the number of instances used for the best result.

Page 6690

(a) 100% Scale (b) 75% Scale (c) 50% Scale
Figure 8: Scores for the face detection algorithm in Vega, while increasing the number of instances at different input
video resolutions.

best one for each algorithm. Converting the baseline
implementations into the Vega framework provided
immediate speed-up for 4 out of 6 implementations
due to the concurrent execution of stages. The ipa
algorithm suffered from poor performance when using
our framework due to two compute intensive stages
battling for the same hardware resources, and ob-yolov3
performance degraded marginally (by less than 2%).

Once we removed the conflict in ipa by reducing
the number of threads OpenCV was allowed to use per
stage, we were able to improve the performance. This
better performance was achieved using 3 instances of the
Gaussian blur stage using 4 threads each, and 32 stages,
with up to 16 threads each, for the bilateral filter stage.

Figure 9: Speed-up achieved by using our framework in
terms of total processing time.

For baw, the improvement gained by adding more
instances was minimal due to the low complexity of the
algorithm. Higher speed-up cannot be achieved because
the algorithm is limited by the time to read the input
video from the file system, the video decoding done
in the input stage, and the overhead of synchronization
in the framework (which is non-negligible for this
algorithm). This limits the performance to 165 FPS with
the best configuration.

For the remaining DNN models, we achieved the
best performance by using 32 instances with 1 thread

each. The performance improvement varies depending
on the complexity of the model at hand. ob-yolov3
improved the least due to the highly complex network
structure. It is important to note that ob-yolov3 is
the only implementation where the input image was
resized to fit the trained model structure due to incorrect
results when testing using the full HD resolution input.
Despite using lower resolution, this model is complex
and requires a lot of computational power. ob-yolov3
was only able to achieve 13.06 FPS with the best
configuration, while the face detection models achieved
17.01, 16.79 and 15.03 FPS respectively. All Vega
implementations achieved at least a 22% increase in
CPU utilization, showing a more efficient usage of the
available computing resources.

7. Conclusions and Future Work

In this paper we have presented Vega, a new
C++ framework to help computer vision developers
implement their algorithms using a user-friendly
graph-based interface. Vega leverages an efficient
parallel implementation in order to achieve better
performance across a wide range of computer vision
applications on edge computing systems.

We have evaluated Vega thoroughly using a case
study of a face detection deep learning inference
algorithm, and real-world applications where we
achieved better performance across all applications
using similar code complexity to that of the baseline,
with added functionality. This allowed better hardware
utilization for all configurations and increased the FPS,
despite having a negative impact in terms of frame
latency. To improve both FPS and frame latency
together, the input resolution needs to be analyzed, as
some algorithms are incapable of achieving a lower
frame latency without additional resources.

Vega was created with flexibility in mind, allowing
it to integrate different algorithms easily. Vega can be
used for a wide range of CV applications, especially

Page 6691

when working on performance-sensitive applications
that process high-resolution resolution video streams
(e.g., 1080p) on edge computers. In the future, this
framework could be incorporated into existing libraries
(e.g. OpenCV) to facilitate access to more users.

To further expand the portability of this framework,
one direction is to leverage the power of a GPU, and to
combine this power with the flexibility of a multi-core
CPU, arriving at a heterogeneous solution. We leave this
as future work.

References

[1] D. Singh, G. Tripathi, and A. J. Jara, “A survey
of internet-of-things: Future vision, architecture,
challenges and services,” in 2014 IEEE World Forum on
Internet of Things (WF-IoT), pp. 287–292, March 2014.

[2] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held,
S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt,
M. Sokolsky, G. Stanek, D. Stavens, A. Teichman,
M. Werling, and S. Thrun, “Towards fully autonomous
driving: Systems and algorithms,” in 2011 IEEE
Intelligent Vehicles Symposium (IV), pp. 163–168, June
2011.

[3] Y. Ohta and H. Tamura, Mixed Reality: Merging Real
and Virtual Worlds. Springer Publishing Company,
Incorporated, 1 ed., 2014.

[4] A. Voulodimos, N. Doulamis, A. Doulamis, and
E. Protopapadakis, “Deep learning for computer vision:
A brief review,” in Computational Intelligence and
Neuroscience, 2018.

[5] J. Clemons, C.-C. Cheng, I. Frosio, D. Johnson,
and S. W. Keckler, “A patch memory system for
image processing and computer vision,” in The
49th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-49, (Piscataway, NJ, USA),
pp. 51:1–51:13, IEEE Press, 2016.

[6] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov,
“Real-time computer vision with opencv,” Commun.
ACM, vol. 55, pp. 61–69, June 2012.

[7] A. Vedaldi and B. Fulkerson, “Vlfeat: An open and
portable library of computer vision algorithms,”
in Proceedings of the 18th ACM International
Conference on Multimedia (MM), (New York, NY,
USA), pp. 1469–1472, ACM, 2010.

[8] T. P. Chen, D. Budnikov, C. J. Hughes, and Y. Chen,
“Computer vision on multi-core processors: Articulated
body tracking,” in 2007 IEEE International Conference
on Multimedia and Expo, pp. 1862–1865, July 2007.

[9] J. Fung and S. Mann, “Openvidia: Parallel gpu
computer vision,” in Proceedings of the 13th Annual
ACM International Conference on Multimedia,
MULTIMEDIA ’05, (New York, NY, USA),
pp. 849–852, ACM, 2005.

[10] A. Amamra and N. Aouf, “Gpu-based real-time rgbd
data filtering,” Journal of Real-Time Image Processing,
vol. 14, pp. 323–340, Feb 2018.

[11] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica, “Spark: Cluster computing with working
sets,” in Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing, HotCloud’10,
(Berkeley, CA, USA), pp. 10–10, USENIX Association,
2010.

[12] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,
Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning
on heterogeneous systems,” 2015. Software available
from tensorflow.org.

[13] T. W. Huang, C. X. Lin, G. Guo, and D. F. Wang,
“Cpp-taskflow: Fast task-based parallel programming
using modern c++,” in IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2019.

[14] K. Group, “OpenVX,” 2019. Online Source.

[15] NVIDIA, “VisionWorks,” 2019. Online Source.

[16] Intel, “Intel distribution of openvino toolkit.” Online
Source.

[17] J. Gutierrez, “Exploring the benefits of heterogeneous
computing to accelerate face detection deep learning
inference,” 2017.

[18] M. Teichmann, M. Weber, M. Zllner, R. Cipolla,
and R. Urtasun, “Multinet: Real-time joint semantic
reasoning for autonomous driving,” in 2018 IEEE
Intelligent Vehicles Symposium (IV), pp. 1013–1020,
June 2018.

[19] A. Poms, W. Crichton, P. Hanrahan, and K. Fatahalian,
“Scanner: Efficient video analysis at scale,” ACM
Transactions on Graphics (TOG), vol. 37, no. 4, p. 138,
2018.

[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,
C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox
detector,” in European conference on computer vision,
pp. 21–37, Springer, 2016.

[21] S. Mallick, “Cpu performance comparison of opencv and
other deep learning frameworks,” Dec 2018. Online
Source.

[22] “The massachusetts green high performance computing
center.” Available at: http://www.mghpcc.org/.

[23] “Research computing.” Northeastern Information
Technology Services. Online Source.

[24] V. Gupta, “Face detection opencv, dlib and deep learning
(c++ / python),” Oct 2018. Online Source.

[25] R. Lienhart, A. Kuranov, and V. Pisarevsky, “Empirical
analysis of detection cascades of boosted classifiers for
rapid object detection,” in Joint Pattern Recognition
Symposium, pp. 297–304, Springer, 2003.

[26] J. Redmon and A. Farhadi, “Yolov3: An incremental
improvement,” arXiv preprint arXiv:1804.02767, 2018.

Page 6692

