
Analysing FIWARE’s Platform - Potential Improvements

Peter Detzner
Automation and Embedded Systems

Fraunhofer Institute for Material Flow and Logistics
Dortmund, Germany

peter.detzner@iml.fraunhofer.de

Peter Salhofer
Information Management

FH JOANNEUM
University of Applied Sciences

Graz, Austria
peter.salhofer@fh-joanneum.at

Abstract

The digitalization of the world proceeds continually.
As part of this, we are facing a smart digital future
where everything is connected and linked while we are
transforming big data into knowledge. The FIWARE
platform, which is the result of a series of EU funded
projects, supports this transformation. Developers,
integrators and end users are able to rapidly create
new applications, by using components provided by this
platform. We have analyzed central building blocks of
the FIWARE platform from different aspects and - based
on experiments and code reviews - like the need for a
multi-level role-based security or a caching mechanism
when it comes to querying data. Within this paper we
also provide further recommendations for the current
code base that can help to improve those FIWARE
components under investigation. In addition to that we
also suggest how to simplify a typical setup by extending
FIWARE’s core component using a Websocket-Port.

1. Introduction

The goal of FIWARE is to provide a standardized
platform for smart (city) application development. It
was initially started in the year 2011 and the entire
initiative was reasonably funded by a sequence of
EU projects[1, 2, 3, 4]. Its technical core is a
set of RESTful APIs[5] that come with reference
implementations and are all open-source. FIWARE
is currently intensively promoted by organizations like
the FIWARE Foundation[6]. The authors of this
paper worked independently of each other in different
FIWARE-based projects and have gained significant
practical experience. Although the FIWARE platform
provides lots of advantages (e.g it is open-source and its
components are usually well-integrated) we came across
several things that could or should be improved. Thus,
the goal of this paper is to point out these weaknesses
and also to suggest potential improvements to these
shortcomings.

The paper is structured the following way: We
will provide an overview of the core-components of
FIWARE and how these components are used in a
typical IoT scenario. This introduction will also
briefly describe the functionality of each of these
components. In the following chapters we will point out
our findings of potential weaknesses and how they could
be improved. Finally, we will summarize our results in
the conclusions chapter.

2. A FIWARE Primer

Figure 1 shows a simple IoT application built out
of FIWARE components which usually communicate
via HTTP REST[7]. A central building block is the
so-called context broker, represented by its reference
implementation called Orion[8]. Technically this is a
Mongo NoSQL database with a REST API based on
the Open Mobile Alliance‘s Next Generation Service
Interface (NGSI) protocol[9]. The context broker
represents a persistent storage that holds the current
state of the application. Besides storing data other
components can subscribe for change-events on certain
types or attributes of entities. All subscribers will be
notified by the context broker in case that a relevant
element got changed. Orion also provides the concept
of multi-tenancy. Different tenants or applications
can be separated by a custom HTTP header field
called Fiware-Service. As a result, the context
broker creates a separate MongoDB database for every
Fiware-Service name used.

Another important component in the FIWARE
platform is the IoT agent IDAS[10], which takes care
of the inbound traffic from sensor networks. Before a
sensor can send data to the application two things need
to be done upfront:

1. A so-called IDAS Service needs to be created that
logically represents a group of sensors and results
in a so-called API-key

2. Every sensor needs to be registered with IDAS,
resulting in a device id.

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6609
URI: https://hdl.handle.net/10125/64551
978-0-9981331-3-3
(CC BY-NC-ND 4.0)



IDAS Orion NGSI Proxy

Cygnus

Comet

Mongo
DB

Mongo
DB

Hadoop

IDM

AuthZForce

PEP PEP PEP

Wirecloud

PEP

EventSource

Temperature 
Sensor

Figure 1. A typical setup of FIWARE’s core

components. Grey: Generic Enabler in FIWARE

platform, white: Security components

The actual sensor needs to send the API-key and the
device id with every request. When registering a sensor,
it is necessary to define which data it transmits (e.g.
temperature, air-pressure and humidity) and to which
entity and which attribute(s) this data should be sent.
In case that no such entity exists in the context broker,
it will be created upon the first transmission of sensor
data.

Let’s use a simple example to illustrate this: We are
developing a smart living application for an apartment
building. Thus, our business model stored in the context
broker will hold data of all the apartments in the building
and the rooms that belong to an apartment. We can
now define temperature sensor T42 and declare that its
value should be stored as the temperature attribute of
the entity with id App13Room3. Consequently, every
time sensor T42 sends a new value, IDAS will create
an update request for the context broker in order to set
the temperature attribute of entity App13Room3 to this
value. This ensures that the context broker always holds
the latest sensor value. However, every time a value in
Orion gets changed, the old value will be overwritten.

If we are interested in keeping the historical data as
well, we need to use another component called Cygnus1.
This component is responsible for recording time series
data. Therefore, it uses Orion’s subscription mechanism.
As already pointed out previously, each subscription can
either be made for an entire category of entities or for
a specific one. It also has to include all attributes that
should be tracked for changes and transmitted to the
subscriber whenever a change occurs. Cygnus, which

1https://fiware-cygnus.readthedocs.io

is based on Apache Flume2 uses so called channels to
forward the data it receives to various data sinks. There
exists a great variety of channels (e.g. Mongo3, Hadoop
HDFS4, ...). It is possible to combine these channels so
that data is written to several sinks simultaneously.

In order to provide RESTful access to the historic
data, there exists a component called Comet5. Whereas
Cygnus is able to write data to various sinks, Comet
can only read them from a MongoDB data sink. The
Comet API allows for querying time series for a specific
attribute within a given period of time.

None of the components that have been presented
so far implement any security mechanisms. Thus,
once there exists access to any of them, there are no
restrictions on what could be done (including deleting
all entities for instance). Security in FIWARE is entirely
based on the OAuth2 protocol[11] and consists of three
different components that are orthogonal to all the other
ones. The central component is called Keyrock or
simply the identity manager (IdM)[12]. It plays the
role of an OAuth authorization server and provides user
accounts for all FIWARE based applications. These
applications can register with the IdM similarly to other
OAuth-based services like Github, Google or Facebook.
Once an application is registered with the IdM, roles
for these applications can be specified and assigned
to users. The second important component when it
comes to security is called the Policy Enforcement
Point (PEP) with its reference implementation called
WILMA[13]. The PEP acts as proxy server to the
resources it protects. Thus, instead of allowing users or
applications to directly access services like Orion, IDAS
or Comet, they only get access to the corresponding
proxy server. The PEP proxy checks every incoming
request for the existence of an authentication token. If
no such token exists, the user is redirected to the login
page of the IdM. In case that there is such a token, the
validity of this token is checked with the IdM. In order
to allow the PEP making such a request, each PEP has
to login into the IdM with its own credentials that have
to be setup upfront. Once verification of the token was
successful the PEP adds information about the current
user and assigned roles to the request.

What happens next, depends on the configuration
of the security infrastructure. In the simplest of all
cases verification stops after authentication without any
form of authorization. Consequently, once a user or
an application got successfully authenticated, there are
also no restrictions on what could be done. In this case

2https://flume.apache.org
3https://www.mongodb.com
4https://hadoop.apache.org/
5https://fiware-sth-comet.readthedocs.io

Page 6610



Figure 2. Wiring view of a simple dashboard

(Screenshot from one of our projects)

security has to be entirely implemented by a custom
application that needs to be put behind the PEP proxy
and decides internally on the given user and roles which
requests to permit.

In cases where also authorization is needed,
another component, called AuthZForce[14], becomes
important. When defining application specific roles
inside IdM, there exists the possibility to assign so
called permissions to each roles. A permission in its
simplest form consists of a HTTP method (e.g. GET,
POST, DELETE, . . . ) and an URI describing the
endpoint of this request. All requests covered by these
permission will be allowed. In a more complex scenario
these permissions can be expressed as XACML[15]
rules, which are saved and interpreted by AuthZForce.
Prior to version 7.x of IdM all authorization, including
simple rules, was using AuthZForce. Thus, as
soon as authorization was enabled, the PEP proxy
made an extra round-trip to the AuthZForce server
to determine whether a particular request is allowed.
Since IdM version 7.0.0, however, the evaluation of
simple authorization rules that do not necessarily require
XACML was integrated into the IdM, which avoids the
need of an extra round-trip to AuthZForce.

In order to visualize data stored in the system,
FIWARE provides a component called Wirecloud[16]. It
provides a simple mean to build individual dashboards
by wiring together different components as shown
in Figure 2. Wirecloud comes with a set of such
components that fall into two categories:

• Operators: These are used to read, process
and write data from and to the other FIWARE
components

• Widgets: Provide a graphical user interface that
can be used to present data or to interact with the
user

Additional components can be retrieved from the
online store that is tightly integrated into Wirecloud or
custom components can be programmed and integrated.

Figure 3. Screenshot of the visual representation of

the flow shown in Figure 2

Technically each component is a collection of JavaScript
files and assets along with metadata that is uploaded as
a zipped archive to the Wirecloud portal. An example
of how such a flow is translated into a dashboard can be
seen in Figure 3.

Wirecloud consists of a server application that is
used to interact with the rest of the FIWARE platform
and a JavaScript part that runs locally in the user’s
browser. In order to constantly receive the latest
value for relevant attributes, Wirecloud can register a
subscription with Orion. Since Orion cannot directly
notify the JavaScript application that runs somewhere
in a user’s browser, a component called NGSI Proxy is
used as the subscriber. Additionally Wirecloud registers
an EventSource with the NGSI Proxy to actually receive
notifications. This allows for user interfaces that are
automatically updated with every new sensor value.
This mechanism is also depicted in Figure 1.

3. FIWARE’S ORION CONTEXT
BROKER

As already mentioned the most important
component inside FIWARE’s platform is the so-called
context broker Orion. Orion allows with operations
like updates, queries, registrations and subscriptions
making other applications context aware and managing
the entire lifecycle. Publishers of an entity are called
Context Producers while subscribers of an entity are
called Context Consumers.

An entity represents a physical or virtual object,
like a sensor, a robot or a thing in general. Each
entity, as it is depicted in Figure 4, can be uniquely
identified by the two fields, the type and the id. An

Page 6611



En�ty

-id
-type

A�ributes

-name
-type
-value

Metadata

-name
-type
-value

1 n

has

1 n

has

Figure 4. Example of a NGSI v2 Entity

entity type represents the type of the thing, whereas the
id uniquely identifies the entity. Each entity has one
or more attributes identified by name, type and value.
The attribute value holds the actual data, while the type
represents the value’s data type, e.g. JSON datatypes
or NGSI types. Each entity attribute can have one or
more metadata attributes, also using a metadata name,
type and value. The metadata name describes the role
of this metadata, the type represents the value’s type and
the value contains the actual metadata.

3.1. HTTP Header Best Practices

Orion offers a HTTP RESTful API[7][17] for
managing context data, like entities. Each HTTP
Request has the structure as depicted in the Table 1,
where the Request Line and the Header Fields
are mandatory, while the Body is optional:

Table 1. HTTP Request

METHOD URI PROTOCOL VERSION Request Line

Request Modifiers
Client Information
Representation metadata

Header Fields

Body (Optional)

This section analyses the HTTP header fields
used, based on the best practices according to
[18, 19, 20, 21, 22, 23, 24]. Our presented improvement
suggestions for the HTTP headers should help to
simplify few aspects but also reduce the communication
bandwidth in general.

Deleting an Entity
When deleting an entity, Orion does not accept
any payload or even the Content-Type for the
HTTP header[25]. According to the set of rules
for a HTTP header[18], the Content-Type must
be used and the Content-Length should be
used. But since the Content-Length is 0 in the
request, it is questionable why the Content-Type is
analysed at all. [26] stated that some implementations
might reject payload, we propose only to analyse
the Content-Length and ignore the
Content-Type in case of deleting an entity which
would be also in favour of future developers.

If-Modified-Since inside a Request/ Last-Modified
should be used in response
The usage of the If-Modified-Since HTTP header could
also help to support conditional requests[27]. The
client, while sending a GET-request with a defined
If-Modified-Since attribute, can determine with this
field the actuality of its local copy, in case that a
subscription is not possible, not necessary or not even
needed. The response should be a HTTP status code
304 (Not Modified) [28] without any body but including
the Last-Modified time inside the Response
Header. In case a modification happened after the
If-Modified-Since date, the response would
have a HTTP status code 200 (Success) including
the response inside the body. Adding by default
the Last-Modified could also help to increase the
performance of Orion and reduce the network traffic but
also to alter the representational state of this entity. To
do so, developers have to make sure, that the evaluation
of the If-Modified-Since header is faster than retrieving
data from the database, processing and sending it over
the network to the destination. These timestamps,
to support these feature, are already foreseen in the
database model of Orion by using the modDate in
MongoDB for example.

ETag should be used in responses
Using Last-Modified and
If-Modified-Since headers in distributed
systems as it is foreseen in FIWARE’s platform, might
create some new problems. This requires that the
participants are having synchronized clocks and a
common understanding of time. Another challenge
might be the transport of data over large distances like
the WWW, which requires some time. Providing the
ETag, which “is an opaque string that identifies a
specific version of the representational state contained
in the response entity”[18]. This ETag can be reused
by clients for future requests, easily by adding this
opaque identifier to the If-None-Match field as
a part of the HTTP header. Orion would return, in
case nothing has changed according to this identifier,
the HTTP 304 (Not Modified). Orion has only to
check the internal ETag instead of querying the whole
entity, converting the document into a JSON object and
sending the data to the client. It would also preserve the
bandwidth and time by not sending the complete object.
This best practice could be supported by using the
already existing lastCorrelator of the MongoDBs
database model. This field is automatically created by
the database driver in Orion to represent a document
inside MongoDB, by using the built-in function of

Page 6612



Linux for creation of the universally unique identifier.
Combinations of the If-Modified-Since and the
If-None-Match header fields are also possible.

Versioning
Designing a good/clean/proper HTTP REST API
including a simple versioning is a very important
task, which effects developers of the server as well
as developers of client applications. REST has no
guidelines for versioning, as a consequence there
are many different approaches on how to address it.
Orion’s versioning is based on the NGSI implemented
version, which is represented in the Uniform Resource
Identifier (URI). This means sending a request towards
the NGSIv1 implementation, the client has to use
v1 in the URI, sending requests towards the NGSIv2
implementation must use v2 in the URI. One advantage
of having the version encoded in the URI for example
is that developers are aware of where they are looking
at, especially new developers. The downside of this
approach is that with every new version the URI
changes.

Another approach to avoid multiple URIs for
versioning could be using the Content-Type header.
This would increase the effort of mapping between one
or more APIs at the Orion developer side. Another
possible solution could be to create a new custom
header like “Version: 1”, but we are highly recommend
not to do this. We prefer to use already existing,
standard HTTP headers instead of introducing new ones
which are not specified in the standard. According to
[29], nine out of ten APIs are using the URI path for
versioning, a more detailed discussion about versioning
is covered in [30]. We would appreciate thinking here
in favour of the growing developer community.

Documentation
In the official FIWARE Data Models
Documentation[31] it is stated that it is recommended to
reuse schema.org data types. According to the provided
examples in the official documentation of Orion6, the
used data types are for example String, Integer
and Float. It would be more convenient to use the
proposed datatypes like Number, Text. New users
and/or developers might struggle with this kind of
inconsistency, therefore we recommend stick to the
suggested ones. Especially when the specified format
for the content has been decided to use JSON and the
Content-Type: application/json. Now it
is even more coherent to use the suggested JSON data
types in all examples as suggested. Besides this, we

6https://fiware-orion.readthedocs.io/en/
master/user/walkthrough_apiv2/index.html

think that providing a reference page with all the error
codes and the error-handling, what to expect and how to
deal with it, would be really helpful.

3.2. Feature Requests

In this section we describe some high level feature
requests which we think would improve Orion’s
functionality in a good way. This would increase
Orion’s usability but also help upcoming developers in
the near future once these features have been taken into
account.

Schema Validation
Nowadays every entity can be easily changed in
data-types and adding or removing attributes, no matter
who published this entity. There are some harmonized
data models[31] provided by FIWARE, but not all
applications have been covered yet. Hence, applications
might expect different data-types or key-value pairs than
they are actually going to receive since anyone could
update the existing entity. Therefore, we are describing
a feature request which can be realised in two different
ways to prevent overwriting entities with other values:

1. Centralized schema validation through Orion

2. Providing schemas for entity validation through
consumers

Centralized schema validation through Orion
Our first described approach, the centralized entity
validation, implements a data validation against a
schema by Orion. This mechanism is depicted in the
Figure 5.

The context producer publishes its entity to Orion
(Step 1). Based on this newly created entry, Orion
could create the schema for this entity (Step 2). The
consumer would subscribe to this entity as before (Step
3) and receives also the acknowledgment of the created
subscription (Step 4). Now, when the context producer
updates the entity (Step 5), Orion can check the received
update of the entity (Step 6). Since the data is valid,
all subscribers can be notified (Step 7). If the producer
provides another format for the entity (Step 8), Orion
would reject this update of an entity (Step 9) and notifies
the producer about the wrong format (Step 10) instead of
distributing the updated entity to the consumer.

We are aware that this feature of the data validation
through Orion might slowdown the data-distribution
but the subscribed consumers would benefit from it.
Currently anyone can overwrite an entity where the
subscribed consumers will receive then notifications.
Another variety of this approach could be that the

Page 6613



Context 
Producer

Orion
Context 

Consumer

1: PublishEn�ty(var:Number)

2: SchemaCrea�on

3: Subscribe(En�ty)

5: UpdateEn�ty(var:Number)

6: En�tyValida�on

7: No�fyConsumer(En�ty)

8: UpdateEn�ty(var:Text)

9: En�tyValida�on

10: No�fyProducer(Invalid)

4: Subscrip�onCreated(Id, En�ty)

alt

[Invalid]

[Valid]

Figure 5. Sequence Diagram of a centralized schema

validation through Orion

context producer provides next to the entity also the
required schema so that Orion does not have to create
its own schema for a new entity. Hence steps 1 and
2 would be becoming one. If the publisher does not
provide the required schema, Orion could create one
automatically based upon the received entity.

Providing schemas for entity validation through
consumers
To avoid the slowdown of Orion, we are also proposing
a second approach which is depicted in Figure 6. Based
on the first published entity (Step 1), Orion would
create an automatically JSON Schema (Step 2). After
a context consumer subscribes to an entity (Step 3),
Orion provides the created schema in the successful
created subscription (Step 4). This schema could be
used on the application side of the consumer to validate
data, independent of whether the data are valid (Steps
5-7) or invalid (Steps 8-10). This approach has the
advantage that Orion would not have to validate the
data, only to notify the consumers about the update of
an entity. Hence, the data-distribution would not lack
of any performance and the delay, for forwarding the
updated entity would be the same as before.

Providing a formal description through a schema
also helps to provide a list of elements and attributes in
a vocabulary and it also helps for documentation that is
readable, as well for humans as for machines.

Communication
From our perspective, it would be really helpful to offer
a new binding, like a WebSocket-Port. Nowadays, it
is not easily possible for an HTML5 application to
connect to a server which is not the deployment server
due to the CORS-problem[32]. In addition to that,
usually HTML applications are not offering a HTTP

Context 
Producer

Orion
Context 

Consumer

1: PublishEn�ty(var:Number)

2: SchemaCrea�on

3: Subscribe(En�ty)

5: UpdateEn�ty(var:Number)
6: No�fyConsumer(En�ty)

8: UpdateEn�ty(var:Text)

10: En�tyValida�on

9: No�fyConsumer(En�ty)

4: Subscrip�onCreated(Id, En�ty, Schema)

alt

[Invalid]

[Valid]

7: En�tyValida�on

Figure 6. Sequence Diagramm example of how

Orion could provide schemas for a entity validation

through context consumers

<<device>>

UserClient

<<device>>
Context Management 

Server

<<ar�fact>>
Orion Context 

Broker

<<ar�fact>>

MongoDB

<<execu�onEnvironment>>

: Browser

<<ar�fact>>

HTML 5

<<device>>

Nginx

<<device>>

Wirecloud

<<device>>

DB Server

<<ar�fact>>

Website

<<ar�fact>>

Postgres SQL DB

HTTP:80

HTTP:8000

TCP

WebSocket

:3000

Figure 7. FIWARE Orion offering a WebSocket-Port

to avoid the CORS problem

endpoint to receive the updates of an entity which is
published by Orion to a HTTP REST endpoint. To
connect a HTML based application it is required to
use a NGSI Proxy which is capable of receiving POST
notifications from Orion and forward this notification
through an EventSource connection. Our proposed
solution is depicted in Figure 7, where Orion offers
next to the common HTTP REST/NGSI-Port also a
WebSocket-Port. Incoming WebSocket connections
from a UserClient Browser, in fact by a browser
using JavaScript, could be handled by forwarding
the data to the NGSI-Endpoint inside the HTTP-Port
for a transparent way of using Orion’s API. Sending
data from the Orion to the HTML5-application could
be easily done by sending the data through the
WebSocket connection.

Of course, a WebSocket connection is a bit more
complicated to handle than a HTTP, but this depends

Page 6614



on the use case of the application. A WebSocket
approach could help improve the communication for
applications with a high frequency data rate. Instead of
establishing a HTTP connection for every data exchange
it might be easier and more efficient just by keeping an
open connection[33].

4. IMPROVING FIWARE’s Security

In this section we will discuss all issues that are
related to security, which are ranging from mere feature
request to severe vulnerabilities.

4.1. Authorizing Sensors

The southbound interface used by sensors is
particularly sensitive. Sensors need to be authenticated,
since - depending on the use case - it is important to
trust their identity and their values. However, sensors
are mounted out in the field, potentially anyone can
get access to them and revealing their credentials is
possible. By design, the potential damage that could
be caused by a sensor that was tampered with should
be minimized. Currently the IdM treats sensor accounts
differently from other user accounts. This is generally
a good idea, since, whenever a new user is created,
the account needs to be manually activated by clicking
an activation link that gets sent via email. This is
infeasible for sensors. Unfortunately, there is also no
possibility to define permissions for device accounts.
Consequently, FIWARE only supports authentication
but no authorization for sensors. When we look at our
smart living example again and assume that a tenant of
an apartment managed to get access to a temperature
sensor’s credential, these credentials could be used to
mimic any other sensor, since any API-key, device-id
and sensor data could be used without restrictions. Thus,
these credentials could for example be used to trigger a
fire alarm in a different building.

This example should make clear, that authorization
is required here as well, which would limit misusing
a sensor to only one case, which is sending fake
values for the tampered sensor itself. Implementing
this requirement would need a tighter integration of
IDAS and IdM and some minor changes to the protocol.
Currently, when a sensor submits data to IDAS, API-key
and sensor-id are sent in the query string of the
request[34]. However, the query string is entirely
ignored by the PEP-Proxy and by XACML. Thus, these
two parameters need to be part of the URL in order
to become part of a permission rule. By requiring the
device id to be identical to the sensor’s account name
and some similar constraint for the API-key, the IdM
could easily authorize such requests without a lot of

additional configuration or even the need of explicit
permissions.

4.2. Multi Tenancy

As already briefly pointed out in section
2, FIWARE supports multi tenancy via the
Fiware-Service HTTP header that needs to
be part of every request. For every tenant the context
broker creates a separate database with the name
orion-<FIWARE-Service>. This ensures that
data belonging to different tenants or applications is
strictly separated.

Security-wise this behavior currently seems to be
the most severe issue, since this header field – like
all headers in general – is ignored by FIWARE’s
security infrastructure. Thus, if you are having a valid
FIWARE account along with a set of permissions these
permissions allow you to perform the same set of actions
on any other tenant’s data as well, since the value of
the Fiware-Service header can be selected without
any constraints. If this header does not match any of the
existing databases, simply a new one is created.

To fix this issue, the PEP-Proxy needs to consider
the value of this header field. The authorization could
either be done by the PEP itself (e.g. by matching the
header to some value provided by the IdM) or by the
IdM, which requires the PEP to send the header field
with its authorization request. Since the IdM allows to
assign users to organizations, one solution could be to
enforce the Fiware-Service header being identical
to the name of a user’s organization.

5. Improving Comet

Comet is the component that provides unified
RESTful access to the historic context data (time series).
Before going into details of the shortcomings of this
component it needs to be stated that there are currently
two initiatives to replace Comet and Cygnus – which
are needed to create and to read time series data –
in the future. These initiatives are called Draco7

and Quantum Leap8. Since we haven’t used any of
these components yet, we cannot provide evaluation
results either, but can refer to the documentation of
these new FIWARE parts. Draco merely seems to be
a re-engineered version of Cygnus that uses Apache
NIFI9 instead of Apache Flume. Quantum Leap,
however, introduces a whole new technology platform
with lots of new possibilities and is most likely suited
to eliminate most of the problems we came across

7https://fiware-draco.readthedocs.io
8https://smartsdk.github.io/ngsi-timeseries-api
9https://nifi.apache.org

Page 6615



when working with Cygnus/Comet. It is basically an
NGSI interface to common time series database like
InfluxDB10, RethinkDB11 and Crate12, with currently
a clear emphasis on the later one. It subscribes for
change notifications with the context broker, transforms
the incoming messages and stores them in a time
series database. Consequently, time series data can
be visualized using popular open source solutions like
Grafana13. Both of these new components are in an early
stage and therefore still limited in their capabilities.
When getting back to Comet, we need to take a closer
look at the basic API functionality in order to understand
its current shortcomings. Every request to retrieve data
from comet has to include the type and id of the entity
and the name of the desired attribute. Thus, the response
contains a series of values for one attribute. This already
turned out to be problematic in one use case, where we
had to visualize values of mobile sensors, since getting
the location of a sample requires a second request to
Comet. Every request also requires a query parameter
that limits the size of the response. Options are:

• lastN: limits the result to the N most recent
samples. This value cannot exceed the configured
maximum result length, which is originally 100.

• hLimit/hOffset: returns at most hLimit samples
starting at hOffset, which allows for paginated
results

• dateFrom/dateTo: allows to restrict results to a
data range. This option has to be used with one of
the previous restrictions

There is also a way to query aggregated results.
In order to use this feature, a special Apache flume
connector (NGSISTHSink[35]) needs to be configured,
that stores min, max and sum values for all attributes and
predefined periods in separate MongoDB collections. If
this data sink is not used and therefore the collections
of aggregated results are not present, Comet will NOT
produce any error message, but returns empty results
instead. Analyses showed that the resulting collections
for aggregated information have at least the size of the
actual time series data, although it just represents data
that could be easily computed during a query. In fact, we
ran into the following problem: In one of our projects
we are running a sensor network, where every sensor
produces a new sample every 30 seconds, resulting in
2880 data points per day. We also wanted to visualize
these points over a user-defined period of time. Our

10https://www.influxdata.com/
11https://www.rethinkdb.com/
12https://crate.io/
13https://grafana.com/

Figure 8. Temperature time series visualization

using Comet (Screenshot from Wirecloud)

Figure 9. Using the refactored version of Comet

(Screenshot from Wirecloud)

first result looked like shown in Figure 8, which should
actually display all values for October 2018.

The hLimit parameter (and the maximum length
configuration parameter) were set to 3000, consequently
the data series stops after 3000 points, which covers
slightly more than one day. To cover the whole month
we would need a limit of about 90000 points, which does
not make sense for a graphic that is probably 1500 pixels
in width. What we actually wanted was a behaviour that
allows us to cover all points for the given time period but
automatically scales down values to a maximum of 3000
(or any other given value) points. This is a feature that is
not supported by Comet, so we ended up in cloning the
Comet repository and introducing the necessary changes
ourselves. The result can be seen in Figure 9, which
shows temperature in October 2018 reduced to 3000
points using the average of neighboring values.

We also implemented the functionality that was

Page 6616



Figure 10. Daily maximum temperature (Screenshot

from Wirecloud)

previously provided by the NGSISTHSink, however,
without the need of any additional collections. Figure
10 shows the daily maximum temperature for October
2018.

6. CONCLUSIONS

FIWARE’s platform is offering a wide range of tools
to create applications for (smart) cities. One of the
strengths of the FIWARE platform - apart from being
open source - is that its components are well integrated
and are working together with little configuration effort.
Since all of them also come as docker images its is
relatively straight forward to set up a basic environment
that can be used for example as an IoT platform.
Generally, using these tools should make life easier
for application developers, integrators and end users.
On the other hand, as we have figured out based on
our experiments and code analysis, the technological
and functional basis of most of the components we
have investigated so far, is far from perfect, which is
also partially reflected by FIWARE’s internal quality
metrics[36].

Although FIWARE’s context broker Orion is
considered to be one of the most mature and stable
elements within the platform, we have identified several
improvements when it comes down to the usage of the
HTTP header fields, like providing a more standardized
support for versioning. Another improvement could
be achieved by using an opaque string, like the ETag,
in the HTTP response header for a simple caching
mechanism. These two suggestions will greatly improve
the overall usability and performance without the need
of an in-depth re-factoring. Another useful feature for
Orion would be a schema validation or the additional

WebSocket-Port. When it comes to Comet - the
component used to access time series data - we have
pointed out some missing functionality, like a missing
error messages in case of an unused data sink. However,
we have also revealed some missing functionality within
FIWARE’s security stack, like the authorization of
sensors. This could be easily fixed without breaking any
of the existing protocols. We are also convinced that
users of the FIWARE platform will relatively quickly
come across the same issues. On the other side,
we see that currently a lot of development is going
on. Nevertheless, we are strictly convinced that before
new features and new components are about to be
incorporated into the FIWARE platform, the emphasis
should clearly be put on fixing issues and re-factoring
of the existing code base - like it was already done
with the IdM - in order to meet the need for a reliable,
performant, modular and open source IoT and smart
application infrastructure.
Our future work will involve monitoring of our
here presented improvements. In addition, we
are also planning to have a closer look at the
non-functional requirements like stability, response
times and performance based on automated testing.
Performance can be considered from different points,
like from the application side or from identifying
possible bottlenecks inside the source code. This could
also include verifying the readability of the source code.

Acknowledgment

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 767642 (L4MS).

References

[1] Publications Office of the European Union, “FI-WARE:
Future Internet Core Platform,” EU, Brussels, Belgium,
Tech. Rep., 2011.

[2] ——, “FI-GLOBAL: Building and supporting a global
open community of FIWARE innovators and users,” EU,
Brussels, Belgium, Tech. Rep., 2016.

[3] ——, “A FIWARE-based SDK for developing Smart
Applications,” EU, Brussels, Belgium, Tech. Rep., 2017.

[4] ——, “Bringing FIWARE to the NEXT step,” EU,
Brussels, Belgium, Tech. Rep., 2017.

[5] FIWARE Team. (2011) What is FIWARE?
[Online]. Available: https://www.fiware.org/2011/05/
17/what-is-fiware/

[6] FIWARE Foundation. (2018) FIWARE Foundation.
[Online]. Available: https://www.fiware.org/foundation/

[7] R. T. Fielding, “Architectural styles and the design
of network-based software architectures,” Ph.D.
dissertation, 2000, aAI9980887.

Page 6617



[8] FIWARE Orion Team. (2018) FIWARE-ORION
Documentation. [Online]. Available: https://
fiware-orion.readthedocs.io/en/master/index.html

[9] Open Mobile Alliance. (2018) NGSI
Context Management. [Online]. Available:
{http://www.openmobilealliance.org/release/NGSI/
V1 0-20120529-A/OMA-TS-NGSI Context
Management-V1 0-20120529-A.pdf}

[10] FIWARE IDAS Team. (2016) FIWARE
IDAS Backend Device Management. [Online].
Available: https://catalogue-server.fiware.org/enablers/
backend-device-management-idas

[11] D. Hardt. (2012) The OAuth 2.0 Authorization
Framework. RFC 6749. [Online]. Available: https:
//tools.ietf.org/html/rfc6749

[12] Álvaro Alonso, A. P. Huertas, and J. Fox. (2018)
Identity Management – KeyRock. [Online]. Available:
https://fiware-idm.readthedocs.io/en/7.0.0/

[13] Álvaro Alonso and J. Fox. (2018) Identity Management –
KeyRock. [Online]. Available: https://fiware-pep-proxy.
readthedocs.io/en/7.5.1/

[14] Cyril Dangerville and Jason Fox. (2018) FIWARE
Authzforce CE. [Online]. Available: https:
//authzforce-ce-fiware.readthedocs.io/en/latest/

[15] E. R. (Ed.). (2013) eXtensible Access Control
Markup Language (XACML) Version 3.0.
[Online]. Available: http://docs.oasis-open.org/xacml/
3.0/xacml-3.0-core-spec-os-en.html

[16] Álvaro Arranz and Jason Fox. (2018) FIWARE
Wirecloud. [Online]. Available: https://wirecloud.
readthedocs.io/en/stable/

[17] R. T. Fielding and J. Reschke, “Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing,”
RFC 7230, Jun. 2014. [Online]. Available: https:
//tools.ietf.org/html/rfc7230

[18] M. Masse, REST API Design Rulebook: Designing
Consistent RESTful Web Service Interfaces. O’Reilly
Media, Inc., 2011. [Online]. Available: https://books.
google.ch/books?id=eABpzyTcJNIC

[19] C. Rodrı́guez, M. Baez, F. Daniel, F. Casati, J. C.
Trabucco, L. Canali, and G. Percannella, “REST APIs: A
Large-Scale Analysis of Compliance with Principles and
Best Practices,” in Web Engineering - 16th International
Conference, ICWE 2016, Proceedings, ser. Lecture
Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9671. Germany: Springer Verlag,
2016, pp. 21–39.

[20] F. Palma, J. Dubois, N. Moha, and Y.-G. Guéhéneuc,
“Detection of REST Patterns and Antipatterns: A
Heuristics-Based Approach,” in Service-Oriented
Computing, X. Franch, A. K. Ghose, G. A. Lewis, and
S. Bhiri, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 230–244.

[21] F. Palma, J. Gonzalez-Huerta, N. Moha, Y.-G.
Guéhéneuc, and G. Tremblay, “Are RESTful APIs
Well-Designed? Detection of their Linguistic
(Anti)Patterns,” in Service-Oriented Computing,
A. Barros, D. Grigori, N. C. Narendra, and H. K. Dam,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2015, pp. 171–187.

[22] S. Vinoski, “RESTful Web Services Development
Checklist,” IEEE Internet Computing, vol. 12, no. 6, pp.
96–95, Nov 2008.

[23] M. Stowe, Undisturbed REST: A guide to designing
the perfect API. Mulesoft, 2015. [Online]. Available:
https://books.google.de/books?id=Gg0sCgAAQBAJ

[24] L. Richardson and S. Ruby, RESTful web services.
O’Reilly Media, Inc., 2008.

[25] FIWARE Orion Team. (2018) Fiware-Orion
Code. [Online]. Available: https:
//github.com/telefonicaid/fiware-orion/blob/
d6f308616795ed6cdaad86f739fd19717157def3/src/
lib/rest/rest.cpp#L1548

[26] R. T. Fielding and J. Reschke, “Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content,” RFC
7231, Jun. 2014. [Online]. Available: https://rfc-editor.
org/rfc/rfc7231.txt

[27] ——, “Hypertext Transfer Protocol (HTTP/1.1):
Conditional Requests,” RFC 7232, Jun. 2014. [Online].
Available: https://rfc-editor.org/rfc/rfc7232.txt

[28] H. F. Nielsen, J. Mogul, L. M. Masinter, R. T. Fielding,
J. Gettys, P. J. Leach, and T. Berners-Lee, “Hypertext
Transfer Protocol – HTTP/1.1,” RFC 2616, Jun. 1999.
[Online]. Available: https://rfc-editor.org/rfc/rfc2616.txt

[29] A. Neumann, N. Laranjeiro, and J. Bernardino, “An
analysis of public rest web service apis,” IEEE
Transactions on Services Computing, pp. 1–1, 2018.

[30] G. Levin. (2016) Restful apiversioning insights.
[Online]. Available: https://dzone.com/articles/
restful-api-versioning-insights-1

[31] FIWARE Foundation. (2016) FIWARE-DATAMODELS
- Data Models Guidelines. [Online].
Available: https://fiware-datamodels.readthedocs.io/en/
latest/guidelines/index.html/

[32] Mozilla Developer Team. (2018) MDN Web
Docs - Cross-Origin Resource Sharing. [Online].
Available: https://developer.mozilla.org/en-US/docs/
Web/HTTP/CORS

[33] V. Pimentel and B. G. Nickerson, “Communicating and
displaying real-time data with websocket,” IEEE Internet
Computing, vol. 16, no. 4, pp. 45–53, July 2012.

[34] FIWARE Team. (2019) FIWARE-IoT-Stack Device API.
[Online]. Available: https://thinking-cities.readthedocs.
io/en/master/device api/index.html

[35] F. G. Márquez. (2018) NGSISTHSINK. [Online].
Available: https://fiware-cygnus.readthedocs.io/
en/1.3.0/cygnus-ngsi/flume extensions catalogue/
ngsi sth sink/index.html

[36] J. J. Hierro. (2018) FIWARE GE QA labels. [Online].
Available: https://docs.google.com/spreadsheets/d/
1lXXp-BU14xAoB4b2OTbsdtWhmmEQStneZuJadRk
H6o/edit#gid=1326252107

Page 6618


