
A cloud-based Analytics-Platform for user-centric Internet of Things

domains – Prototype and Performance Evaluation

Theo Zschörnig

Institute for Applied

Informatics (InfAI),

Leipzig University

zschoernig@infai.org

Jonah Windolph

Institute for Applied

Informatics (InfAI),

Leipzig University

windolph@infai.org

Robert Wehlitz

Institute for Applied

Informatics (InfAI),

Leipzig University

wehlitz@infai.org

Bogdan Franczyk

Leipzig University,

Wrocław University

of Economics

franczyk@wifa.uni-

leipzig.de

Abstract

Data analytics have the potential to increase the

value of data emitted from smart devices in user-

centric Internet of Things environments, such as

smart home, drastically. In order to allow businesses

and end-consumers alike to tap into this potential,

appropriate analytics architectures must be present.

Current solutions in this field do not tackle all of the

diverse challenges and requirements, which were

identified in previous research. Specifically,

personalized, extensible analytics solutions, which

still offer the means to address big data problems are

scarce. In this paper, we therefore present an

architectural solution, which was specifically

designed to address the named challenges.

Furthermore, we offer insights into the prototypical

implementation of the proposed concept as well as an

evaluation of its performance against traditional big

data architectures.

1. Introduction

The growing importance and adaption of the

Internet of Things (IoT) in different domains is

tightly coupled to the emergence of improved and

new technologies. In this regard, it is estimated that

the size of the market for enabler solutions in the

European Union will grow to 15 billion Euros in

2025 [1]. This includes technological approaches to

provide analytical capabilities to businesses, industry

and end-consumers. Looking at the diverging

characteristics of different IoT domains, analytics

architectures need to be designed to handle a

multitude of analytical problems and scenarios,

which inherently differ from one another in terms of

data volume, velocity, variety etc. Besides the need to

employ big data technologies, the specifics of user-

centric domains, such as smart home, which are

characterized by their fast changing and highly

individual application scenarios, present additional

challenges and requirements for analytics

architectures. For instance, during our research in this

field, we found that there are no appropriate solutions

to provide the needed flexibility in data processing

orchestration and analytics scenario adaptation while

still being able to handle big data problems under

real-time requirements. Therefore, in this paper we

present an architectural solution, which aims to

overcome these shortcomings. Additionally, we

evaluate our solution in terms of performance

compared to a state of the art big data analytics

system.

In the following, we describe the motivation

behind conducting our research (Sect. 2). We further

present challenges for and requirements of analytics

architectures in user-centric IoT domains as well as

already existing solutions and their shortcomings

using the example of smart home (Sect. 3).

Continuing, we introduce our architectural concept

(Sect. 4) as well as its prototypical implementation

(Sect. 5). In Section 6, we describe the results of two

performance tests, which we conducted to evaluate

our approach. Finally, the paper concludes with a

summary of our findings and an outlook into

additional research (Sect. 7).

2. Motivation

The provision of suitable analytics architectures

for intelligent data analysis in the field of user-centric

IoT domains, such as smart home, is associated with

a multitude of challenges and requirements. Looking

at IoT analytics architecture research in general, there

are several studies and architectural proposals

naming these. In this regard, we conducted an

extensive literature review, following [2], to

comprise an overview of them.

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6599
URI: https://hdl.handle.net/10125/64550
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326835996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The key requirements for IoT analytics

architectures are the ability to handle big data

problems in terms of different ‘v’s such as velocity,

variety and volume [3, 4, 5, 6, 7] in real-time [3, 4, 6,

7, 8, 13]. While the precise definition of real-time

computing is rather subjective and varies depending

on the use case [16], we found that in terms of IoT

analytics it is closely linked to the value of the

information to be derived from data processing.

Therefore, analytics architectures need to enable

users to process and analyze data in a timeframe,

which is fitting for their respective application

scenario. Looking at smart home environments,

different use cases such as home security as well as

disaster detection and prevention require at least low

latency [17]. In this regard, time criticalness of

analytics scenarios and the need for low latency of

data processing in IoT environments was also

frequently named in previous research [3, 4, 6, 7].

Furthermore, the integration of the data from a

multitude of sources must be possible [3, 7, 18]. This

includes the integration of historical and real-time

data [6, 18]. Data transmission and processing must

be secure [3, 4, 6] and the privacy of users

concerning their data has to be considered at all times

[3, 4, 8]. Moreover, the data processing capabilities

must be scalable [9, 10, 11, 12] and handle input

from a multitude of sources [3, 6, 7]. This input data

may arrive asynchronously, e.g. because of

connectivity issues [3, 4, 6]. Besides, analytics

architectures also have to be energy efficient [9, 11]

and address high network usage [9, 13] created by the

increased number of data sources at the edge of the

network. In addition, all ingested data as well as the

analytics results need to be stored [15, 18] and made

available for other applications [6, 18]. Furthermore,

analytics architectures for IoT use cases need to offer

the tools to visualize data [7]. Ultimately, the ability

to flexibly extend and modify the data processing

capabilities of an IoT analytics architecture is

important [4, 6, 9]. In this regard, architectures have

to enable personalized analytics based on different

user needs [14, 15].

Various analytics architectures in different IoT

domains operate in similar framework conditions.

However, there are also important differences, which

make existing solutions insufficiently suitable. One

major difference is that analytics architectures for

user-centric IoT domains need to handle two different

types of analytics problems in terms of data set size

and velocity. On one side, regular big data problems

characterized by huge data volumes and high data

velocity have to be addressed. For example, the

training of machine learning algorithms for energy

consumption prediction. On the other side, analytics

scenarios also evolve around small data sets of only a

few sources, e.g. temperature tracking of a single

room in a smart home. Additionally, available data

sources at different smart homes as well as expected

insights into the data differ from user to user and may

change over time. Therefore, analytics architectures

need to enable its users to flexibly change analytics

scenarios while still offering advanced data

processing capabilities.

Current solutions in this field use lambda

architectures and specialized big data technologies,

such as Apache Spark or Apache Flink, for data

processing. While these approaches excel in terms of

velocity and volume of data processing [29], they

lack the described flexibility because of their steep

learning curves during the design and implementation

of data analytics pipelines. In contrast, current

systems, which are flexible to some extend, do not

offer the processing capabilities to tackle big data

problems, e.g. because they are not scalable. In order

to bridge the gap between the needed flexibility in

modeling and orchestrating analytics pipelines and

the requirements of big data processing in real-time

in user-centric IoT domains, we propose a new

architectural approach in this paper. The main goal of

the approach is to combine the ability to flexible

design, apply and change analytics scenarios with the

processing capabilities to tackle big data problems.

3. Related Research

While reviewing previous research, we found

nine architectural approaches for analytics solutions

in smart home environments. We evaluated all of

these proposals against the requirements and

challenges described in section 2. The results of this

evaluation can be found in table 1.

Most of the reviewed approaches use IoT

middleware solutions, such as NodeRED, for data

ingestion and designing their data processing and

storage capabilities around big data technologies and

the lambda architecture concept (see [4, 19]). There

are also approaches using only local data processing

(see [20]) providing high-energy efficiency and low

latency, but requiring extensive configuration,

therefore limiting their scalability.

It is noteworthy, that none of the evaluated

architectural proposals sufficiently met all

requirements and furthermore could not address all

the found challenges. Moreover, especially the

requirement for flexible data processing extension as

well as personalization of data analytics were only

partially tackled by two solutions. In this regard,

Fortino et al. propose an architecture for activity

Page 6600

recognition in smart home environments [21]. While

they describe their solution as a platform- and

software-as-a-service solution, the amount of

configuration needed and individualization remains

nebulous. Hasan et al. propose a cloud-based

architecture, which exposes its analytics capabilities

as services [4]. Although, these services may be

reconfigured, it is along the boundaries of their

functionalities, therefore only offering limited

extension potential.

Regarding the need for personalized, flexible

analytics, this highlights the urgency for an

architectural approach, which offers scalability and

the tools to handle big data as well as the named real-

time requirements while still being flexible in terms

of analytics capabilities extension and personalization

of analytics scenarios. In the following, we present

our architectural approach, which aims to address

these issues.

4. Architectural Concept

In order to solve the challenges mentioned before

we present the architectural concept as seen in figure

1. The central concept behind it is the kappa

architecture. Derived from the more commonly

utilized lambda architecture, the main goal behind it

is to treat all data as streams therefore omitting the

need for a dedicated batch layer for data processing

[27].

In the proposed approach, so-called analytics

operators do all data processing of data streams. An

analytics operator describes a single data processing

task. For example, the application of an arithmetic or

statistical method to the input data stream. After

successful processing, the results are written to an

output data stream on the streaming platform.

Analytics operators have inputs, outputs and

configuration values. Inputs can be both, primitive

and complex data types. The number of inputs is

variable and depends on the data processing

performed. For example, the addition of two values

from one or two input data streams requires the

definition of two inputs in the corresponding

analytics operator. In addition, the outputs of an

analytics operator are derived from the implemented

method of data processing and may be primitive as

well as complex data types. An analytics operator

has at least one input and one output. In contrast, the

definition of configuration values is optional. These

can also have different data types and enable the

context-dependent use of analytics operators. For

example, in an analytics operator that enables the

conversion of temperature values, a configuration

value can be used to determine the temperature scale

into which the input value is to be converted. At

runtime, analytics operators are usually encapsulated

programmatically or using virtualization

technologies.

At design-time, various analytics operators are

composed into analytics flows, which additionally

describe the data flow in between analytics

operators. Hence, analytics flows are designed by

users to engage different analytics scenarios and

provide a structured description of all the tasks and

the data flow.

Since all data in the proposed architecture is

handled as a stream, a streaming platform, including

a log data store and a framework to enable data

processing on the data, is a main component of the

architecture. We suppose that data from IoT devices

is ingested using IoT-middleware solutions and then

pushed into the log data store. From there, analytics

operators may access the streaming data, process and

write it back to the log data store. The main

advantage over lambda architectural approaches

using the proposed concept is that changing

requirements in analytics scenarios need to be only

reflected at one data processing pipeline (job version

n). In this regard, it is possible to either create a new

analytics pipeline with changed parameters and

configurations of the involved analytics operators

(job version n + 1) or to use a different analytics flow

altogether (job version m).

Access to all data and analytics results is possible

via a serving database, which ingests data streams

when requested by applications or users, allowing

further aggregation of the data as well as the usage of

appropriate database technologies for different types

of data. In addition, applications may directly access

the log data store to pull streaming data.

Table 1: Overview of existing smart home

architectural proposals with regard to challenges

to be solved and non-functional requirements.

Source In
tg

r.
 d

at
a

fr
o
m

 d
if

fe
re

n
t
so

u
rc

es

In
tg

r.
 h

is
to

ri
c

an
d
 r

ea
l-

ti
m

e
d
at

a

F
le

x
.
ex

t.
 o

f
d
at

a
p
ro

ce
ss

in
g

S
h
ar

e
ca

p
ab

il
it
ie

s
an

d
 d

at
a

(n
ea

r)
 R

ea
l
ti
m

e
an

al
y
ti
cs

D
at

a
v
is

u
al

iz
at

io
n

D
at

a
st

o
ra

g
e

B
ig

 D
at

a

A
sy

n
ch

ro
n
o
u
s

d
at

a
in

p
u
t

D
is

tr
ib

u
te

d
 d

at
a

in
p
u
t

S
ec

u
ri

ty

P
ri

v
ac

y

P
er

so
n
al

iz
at

io
n
 o

f
an

al
y
ti
cs

S
ca

la
b
le

 d
at

a
p
ro

ce
ss

in
g

H
ig

h
 n

et
w

o
rk

 u
sa

g
e

E
n
er

g
y
 e

ff
ie

n
cy

T
im

e
cr

it
ic

al
n
es

s

[22] P P P P

[23] P P P P P P P

[24] P P P

[21] P P (P) P P P P (P) P P P

[20] P P P P P P P P P

[25] P P P P P P P P P

[4] P P (P) P P P P P P P P P

[19] P P P P P P P P P P

[26] P P P P P P P P P

Page 6601

In order to enable flexible analytics operator

deployment and management, we further introduced

an orchestration platform. The main purpose of the

orchestration platform is to hide the complexity of

the underlying big data technologies. This shifts the

focus of the entire analytics platform to a modular

approach concerning analytics flow design,

promoting reusability of analytics operators across

analytics flows and deployment environments.

Additionally, we found that while it is possible to

implement analytics scenarios manually in user-

centric IoT domains, this is rather cumbersome and,

especially regarding smart home platform providers,

economically unwise.

By decoupling the orchestration of analytics

operators from the actual streaming platform, the

proposed architecture promotes its own reusability

because it is independent from any specific streaming

platform. The orchestration platform contains several

components, which we describe in the following.

4.1. Flow engine

The flow engine controls the execution and

orchestration of analytics flows. It uses an interface to

start analytics flows, which are instantiated as

analytics pipelines, and to stop the analytics pipelines

that it started on the streaming platform. As soon as

the flow engine receives a message to start an

analytics flow, it accesses the interface of the flow

parser and requests an execution list of analytics

operators of the corresponding analytics flow. This

list contains the analytics operators to be started as

well as the mapping of the input and output data

streams in-between them. Since analytics flows are

not assigned to predefined data sources, the user does

the assignment to source data streams, e.g. from IoT

devices, dynamically.

Individual analytics operators are started by

calling an interface of the underlying streaming

platform. Analytics flows can be infinitely

instantiated with different input data streams. The

resulting analytics pipelines are registered in the

pipeline registry and are removed by the flow engine

after termination.

4.2. Flow parser

The flow parser provides the execution list of

analytics operators to the flow engine. The main task

of the component is to transform the saved

representation of analytics flows from the flow

repository into an execution list of analytics

operators. This is done by applying predefined

conversion rules. Subsequently, further information

regarding analytics operators, e.g. metadata, is

loaded from the operator repository. The decoupling

of this component from the flow engine makes it

possible to adjust the parsing logic of analytics flow

from the flow repository. As a result, there is no need

to commit to a specific analytics flow metamodel.

Figure 1: Overview of the proposed architectural approach.

Orchestration platform

Application
IoT device

Streaming platform

Log Data Store

job version
n+1

(operator)

job
version n

(operator)

streaming
data

Pipeline RegistryFlow Engine

Operator
Repository

Request operator deployment

IoT Service

IoT Service

IoT
data

job version
m

(operator)

Flow
Repository

register
pipeline

Request parsed flow data

request flow
metadata

data stream
Serving

database
Applicationdata

query dataprocessed
data

streaming data

stream data

subscribe

request operator
metadata

data stream

data stream

Flow Parser

Page 6602

4.3. Flow repository

The flow repository serves as a storage location

for analytics flows, thus enabling their reusability.

Analytics flows are usually stored using graph-based

metamodels. The creation and update of analytics

flows, but also the access to them and their metadata

is possible via an interface that is available for all

components of the overall architecture. In this

respect, it is possible to create and change analytics

flows without using dedicated graph designer

components.

4.4. Operator repository

The operator repository stores the metadata of all

analytics operators that implement methods for

processing data streams, therefore enabling their

reusability across different analytics flows. The

operator repository enables the creation, retrieval and

deletion of metadata for the analytics operators via

an interface. This metadata is used by other services

to control and manage data processing logic.

4.5. Pipeline registry

The pipeline registry stores information regarding

all active analytics pipelines. Via an interface, it is

possible to register new and modify existing analytics

pipelines as well as to delete them. In the presented

architecture, analytics pipelines are registered and

edited by the flow engine.

5. Prototype

During our research, we implemented the

proposed architectural approach to provide a proof of

concept and to allow for performance testing. Our

solution specifically aims to provide more flexibility

in terms of the adaption of changed requirements of

analytics scenarios as well as reusability of analytics

operators. In this regard, we found that current state

of the art software engineering practices, namely the

microservice paradigm together with container

virtualization offer sufficient properties in order to

tackle these goals.

Another priority of our research was to provide a

reproducible architecture, which is why we choose

scalable open source components, whenever possible.

Subsequently, we choose Apache Kafka as the

central streaming platform. Rather than being only a

distributed publish-subscribe message queue, using

its peripheral libraries, namely Kafka Streams, it

offers data stream processing capabilities comparable

to other state of the art solutions such as Apache

Spark or Flink.

We deployed our prototype using Kubernetes as

container orchestration and management platform,

which is the de-facto industry standard in this regard.

Kubernetes in conjunction with container-based

Kafka Streams analytics operators offers start up

times of only seconds [28], hence supporting the

flexible and low-latency (re)deployment of analytics

pipelines.

The prototypical implementations of all its

components, introduced in section 4, also rely on the

microservice paradigm and are described in the

following.

5.1. Flow engine

The flow engine controls the instantiation of

analytics flows and manages analytics pipelines.

Implemented in the programming language Golang, it

provides a set of management operations for

analytics pipelines via a REST interface. The

endpoints allow the instantiation of analytics flows

and stopping of analytics pipelines. Because the

analytics flows contain no information about the data

sources that provide input for the first analytics

operators of an analytics flow, this information needs

to be communicated to the flow engine when starting

an analytics pipeline. This is done by a POST request

when calling the flow engine. Accordingly, the

request must contain a JSON object with the required

information about the data sources.

In order to start an analytics operator, the flow

engine uses the API of the underlying container

orchestration solution Kubernetes and starts new

Docker containers, which are an instance of the

corresponding Docker image of an analytics

operator. These containers are configured via

environment variables and allow for flexible,

multiple instantiations of an analytics operator. The

resulting analytics pipeline metadata is then stored in

the pipeline registry. The termination of analytics

pipelines is also controlled via the flow engine. In this

case, it deletes all the Docker containers belonging to

an analytics pipeline via the container orchestration

solution API and deregisters it in the pipeline

registry. The flow engine uses drivers to access APIs

of different container orchestration solutions. These

can be exchanged as needed. A combination of

different solutions is also possible.

5.2. Analytics operator library

In order to interface seamlessly with the flow

engine, we developed an analytics operator library

Page 6603

around Kafka Streams. Using this library, it is

possible for data scientists to easily implement

analytics operators. The library acts as a wrapper in

this regard, hiding the complexity of Kafka Streams

while still allowing for merging, filtering, etc. of data

streams. Additionally, the library parses the

configuration supplied by the flow engine to an

analytics operator instance and accesses Kafka topics

of data streams as defined by the user.

5.3. Flow parser

We implemented the flow parser using the

programming language Golang. It offers

functionalities that enable the data structure of the

analytics flows to be converted into execution lists of

analytics operators. It provides these methods via a

REST interface.

The flow parser is able to retrieve all required

data for a transformation from the flow repository

based on the unique identifier of the analytics flow. It

creates the execution list of analytics operators from

the flow model data of the analytics flow.

Furthermore, the flow parser creates an array,

which contains information about all input data

sources of an analytics operator.

5.4. Flow repository

The flow repository stores metadata about

analytics flows. In the implemented prototype, the

flow repository is written using the Python scripting

language. It provides a REST interface, which

provides CRUD endpoints. The persistence of the

data is guaranteed by a MongoDB, which saves all

data records in JSON format. This includes the

information necessary to generate the actual flow

chart, containing nodes, edges and additional

information.

5.5. Operator repository

The operator repository stores metadata about

existing analytics operators. In the developed

prototype, the repository is implemented using the

Python scripting language. It provides a REST

interface exposing CRUD endpoints. An analytics

operator record is stored as a JSON document in a

MongoDB. Analytics operators are instantiated in the

developed prototype as Docker containers. An

analytics operator data set consists of the reference

to its corresponding Docker image, two lists (inputs

and outputs) in which the inputs and outputs of an

analytics operator are defined as well as additional

metadata. As of now, about 20 analytics operators,

offering different data manipulation and analytics

capabilities, are available.

5.6. Pipeline registry

The pipeline registry is implemented using the

programming language Golang. Different REST

endpoints make it possible to register new analytics

pipelines, retrieve information about them and delete

them, if needed. In the implemented prototype,

analytics pipelines are typically registered and

managed by the flow engine. A MongoDB is used as

the persistence layer. The retrieval of metadata of an

analytics pipeline provides accurate information

about the contained analytics operators and the data

flows in-between them.

5.7. Frontend application

In order to ease usability of the orchestration

platform, we implemented a frontend application

written in Angular 6. Using this application, users

can access all REST APIs of the involved services

using input masks. This includes a graphical flow

chart modeler, which was implemented using JointJS.

Additionally, the creation of custom graphs and

visualizations is possible.

6. Experimental Evaluation

In this section, we present a quantitative

evaluation of the performance of the proposed

architecture using detailed simulations based on real-

world datasets. More specific, the feasibility of the

proposed architecture to handle big data problems in

real-time is evaluated. In this regard, we designed

two experiments to compare the performance of

analytics operators as an implementation of the

kappa architecture against the de-facto standard

implementation of a lambda architecture Apache

Spark [29] in terms of operator and CPU core

parallelism.

6.1. System Setup and Deployment

The proposed architecture, as well as the Spark

cluster, were deployed at a private cloud service

using Rancher version 2.2.3 as a frontend and

Kubernetes version 1.13.5 as the engine for container

orchestration. All Kubernetes cluster nodes were

virtual machines running on hypervisors using the

kernel-based virtual machine (KVM) module of Suse

Linux Enterprise Server 12 SP4. The KVM

Page 6604

hypervisors provided an Intel XEON E5 CPU core,

512 GB RAM and SSD as well as Infiniband storage

solutions. The actual Kubernetes cluster comprised

16 virtualized nodes, having 8 CPU kernels, 64 GB

RAM and 256 GB SSD storage, each.

Apache Kafka was used as the central log data

store and ran on version 2.0.1 in the cluster, being

deployed as a replica set on Kubernetes. Apache

Spark was deployed in the cluster as well using

version 2.4.1. The Spark cluster used the Kubernetes

scheduler for executor deployment and the Structured

Stream API for stream processing. All components of

the proposed architecture, as described in section 4

and 5, were deployed in the Kubernetes cluster as

well.

6.2. Metrics

We measured message throughput as well as

adjusted message throughput. In our evaluation, we

defined message throughput as incoming messages

per second. The basis of this calculation is the overall

number of measurements in our test data set, divided

by the execution time of an experiment in a given

configuration.

During testing, we observed that scaling out

Apache Spark executors and analytics operators

from our architecture requires the partitioning of the

Kafka topic, which holds the input data. This was

necessary, so that measurements, which are logically

linked, are placed on the same partition and therefore

consumed in the right order and by the same

analytics operator. Because of this, the resulting

partitions were uneven in terms of data set size

leading to distorted metrics measurements. The

reason for this was that some of the scaled-out

analytics operators stopped processing data before

the entire data set had ended. Moreover, we

witnessed an extended startup phase of the Spark

cluster as compared to our proposed solution.

Therefore, we introduced an additional metric, which

we called adjusted message throughput. This metric

ignores all data processing from the startup phase and

during the period, when at least one partition has run

out of data. Since it is plausible that analytics

pipelines are running continuously in real-word

scenarios, the omission of these two phases gives a

more realistic insight into the message throughput.

6.3. Methodology

All experiments ran in changed configurations

consecutively on the Kubernetes cluster to avoid side

effects. In order to capture the metrics described

before, we accessed the monitoring data of Apache

Spark executors and the analytics operators of our

solution. Runtime metrics of Spark executors were

accessed using the Spark-native history server. In

contrast, the runtime metrics of the analytics

operators of the proposed architecture were exposed

at the JMX port of the underlying Java Virtual

Machine and written to an instance of InfluxDB

using jmxtrans.

Additionally, CPU and RAM metrics were

captured using the Rancher-native cluster monitoring,

which allows for monitoring individual containers.

6.4. Experiments

We conducted two experiments to evaluate our

proposed architecture in a real-world scenario. In this

regard, we used real-world data, which was compiled

in past research projects. The used data set contains

36,147,070 measurements of energy consumption

data of about 1,000 smart meters over a timeframe of

about 5 months. The entire data set was pushed into a

Kafka topic to mitigate effects from slow data

emission at the source of the data and directly access

it from Kafka. The topic was partitioned with respect

to the different experiments to allow analytics

operator/executor parallelism.

6.4.1 Experiment 1: Outlier detection

Using averaging and standard deviation, the

system had to detect outliers in the consumption data.

The input was the entire data set and all data was

grouped by meter identification.

In order to enable the experiment in the proposed

architecture, we implemented an analytics operator,

which was able to group the input data by meter

identification, calculate the rolling average and

standard deviation of the data and then tag outliers in

the data. In Apache Spark, we implemented an

appropriate processing logic.

This experiment allowed to utilize the entire test

data set, thus creating meaningful runtimes of the

experiment in both systems. Yet, it still has real

world-relevance, as evidenced by similar experiments

in [4] and [19].

6.4.2 Experiment 2: Timeslot

The system did the same tasks as in experiment 1.

In addition, all outliers were grouped by the time

period in which they occurred (grouping by hour).

This experiment was designed in order to

simulate an analytics pipeline in our proposed

architecture, which requires two analytics operators.

The results of this experiment were supposed to

Page 6605

provide insights into how the performance of the

proposed solution is impacted by multiple writes and

reads to and from the log data store by analytics

operators. In this regard, we used the analytics

operator described in experiment 1 and added an

additional analytics operator, which did the grouping

by timeframe. It is noteworthy, that the second

analytics operator only received the measurements,

which were outliers. The Spark processing logic was

extended according to changed requirements as well.

6.5. Experimental Results

Regarding the validity of the results, we

conducted both experiments using different

configurations in terms of analytics

operator/executor scale and CPU core assignment to

single analytics operators/executors. In addition, we

conducted a pre-test to determine the optimal values

for the maximum batch size (1,000,000

measurements) and shuffle partitions (32) in the

deployed Apache Spark cluster. During our

experiments, we changed the configurations of used

analytics operators/executors and utilized CPU

cores. For example, the configuration “1-1” stands

for the usage of one analytics operator/executor with

one CPU core assigned for the entire run of the

experiment. In contrast, the configuration “8-4”

means that eight analytics operators/executors were

used and each of them got four CPU cores assigned.

Looking at the results of both experiments, as

seen in figures 2 and 3, we observed, that the Apache

Spark cluster (spark) achieved a higher message

throughput than our proposed solution (proposal) in

every configuration but one (8-4 in experiment 2).

When comparing adjusted message throughput

(spark-A and proposal-A), the spark cluster achieved

higher rates in every configuration of both

experiments. Notably, the difference in message

throughput between the proposed solution and the

Spark cluster decreased in experiment 1 from a factor

of 6.32 when comparing 8 parallel analytics

operators/executors with only one CPU core

assigned to 1.74 when 8 analytics

operators/executors with 4 CPU cores each were

used. Using this configuration, the proposed

architecture was able to process around 540.000

messages per second compared to around 840.000 of

the Spark cluster.

The results of experiment 2 suggest that the

difference in message throughput of the proposed

architecture compared to the Spark cluster is even

lower than in experiment 1 (with the exception of

configuration 1-8). Especially the results of

configuration 8-4 are interesting, since our proposed

solution achieved a higher message throughput of

about 178.000 messages per second than the Spark

cluster with about 160.000 messages per second. This

indicates, that the lightweight approach of our

proposed solution could indeed add flexibility to

analytics pipeline deployment, when used in

environments in which startup times of analytics

operators/executors play a key role.

6.5. Discussion

The findings of the conducted experiments

indicate that the performance of our approach, in

Figure 3: Results of experiment “Time slot”.

Figure 2: Results of experiment “Outlier

detection”.

Page 6606

terms of message throughput, is not as good as

specialized big data technologies used in lambda

architectures, namely Apache Spark. Still, both

systems provide good scalability with respect to

analytics operator/executor parallelism. In contrast,

the proposed solution seems to be better when scaling

vertically, e.g. when offering more CPU cores to

individual analytics operators. Other research in this

field presents similar results and suggests that the

difference could be even lower using other big data

systems such as Apache Storm [29]. While this seems

promising in reducing the discrepancy in message

throughput between both systems, the added

flexibility of our approach regarding analytics

pipeline adaptation stems from the use of lightweight

libraries, which is also reflected in the lower startup

time of analytics operators. Moreover, the reusability

of analytics operators and flows adds to the

flexibility of the overall architecture.

In addition, with increasing complexity of the

analytics pipelines, the difference in message

throughput between both systems decreases. This

indicates that the usage of specialized single task

analytics operators is advantageous as compared to

designing heavyweight all-purpose analytics

operators. Further investigation is needed as to why

message throughput of the proposed solution dropped

at all in experiment 2. Since the first analytics

operator did the same task as in experiment 1 and the

second analytics operator had to process only

thousands of messages, the difference in message

throughput should have been marginal.

Finally, the experiments showed that the

implemented prototype is able to handle the

considered real-world data set and application.

7. Conclusions & Outlook

In this paper, we have presented an approach to

address important requirements and challenges of

analytics architectures in user-centric IoT domains,

such as smart home. In this regard, we reviewed past

research and compared existing architectural

approaches against the identified challenges and

requirements. Since none of the investigated

solutions could sufficiently address key requirements,

namely the ability to provide tools to handle real-time

big data problems, while still being able to cater to

small, flexible analytics scenarios, we presented our

own architectural approach. This approach evolves

around the kappa architecture concept and uses

microservices to provide an orchestration engine for

analytics operator deployment. Therefore, it tries to

address the aforementioned problem and was

prototypically implemented and evaluated in regards

of its performance. The results of this evaluation

suggest, that the proposed architecture is able to fill

the gap between big data processing and flexibility in

terms of small data analytics scenarios. Besides, this

paper analyzes the performance of two state of the art

data processing architectures, providing insights to

practitioners and researchers alike.

Additional research in this field needs to assess

the proposed architecture qualitatively in terms of its

functional properties. In this regard, the proposed

architecture has already been extended in [30] to

address the found requirements and challenges of

user-centric IoT domain analytics architectures,

which were not investigated in this paper, e.g.

privacy or high network usage.

Furthermore, in terms of usability, a comparison

with similar solutions, which offer interactive data

analytics capabilities, e.g. Apache Zeppelin, is

needed.

8. Acknowledgements

The work presented in this paper is partly funded

by the European Regional Development Fund

(ERDF) and the Free State of Saxony (Sächsische

Aufbaubank - SAB).

9. References

[1] https://www.statista.com/statistics/686198/iot-solutions-

market-in-the-european-union-eu/, accessed 5-13-2019.

[2] Vom Brocke, J., A. Simons, K. Riemer, B. Niehaves, R.

Plattfaut, and A. Cleven, "Standing on the Shoulders of

Giants: Challenges and Recommendations of Literature

Search in Information Systems Research",

Communications of the Association for Information

Systems, 37(1), 2015.

[3] Stolpe, M., "The Internet of Things: Opportunities and

Challenges for Distributed Data Analysis", ACM SIGKDD

Explorations Newsletter, 18(1), 2016, pp. 15–34.

[4] Hasan, T., P. Kikiras, A. Leonardi, H. Ziekow, and J.

Daubert, "Cloud-based IoT Analytics for the Smart Grid:

Experiences from a 3-year Pilot", in Proceedings of the

10th International Conference on Testbeds and Research

Infrastructures for the Development of Networks &

Communities (TRIDENTCOM). 2015.

[5] Sun, Y., H. Schengong, A.J. Jara, and R. Bie, "Internet

of Things and Big Data Analytics for Smart and Connected

Communities", IEEE Access, 4, 2016, pp. 766–773.

[6] Cheng, B., S. Longo, F. Cirillo, M. Bauer, and E.

Kovacs, "Building a Big Data Platform for Smart Cities:

Experience and Lessons from Santander", in 2015 IEEE

International Congress on Big Data (BigData Congress),

New York, New York, USA. 2015.

Page 6607

[7] Rozik, A.S., A.S. Tolba, and M.A. El-Dosuky, "Design

and Implementation of the Sense Egypt Platform for Real-

Time Analysis of IoT Data Streams", Advances in Internet

of Things, 06(04), 2016, pp. 65–91.

[8] Rehman, M.H.u., E. Ahmed, I. Yaqoob, I.A.T. Hashem,

M. Imran, and S. Ahmad, "Big Data Analytics in Industrial

IoT Using a Concentric Computing Model", IEEE

Communications Magazine, 56(2), 2018, pp. 37–43.

[9] Schooler, E.M., D. Zage, J. Sedayao, H. Moustafa, A.

Brown, and M. Ambrosin, "An Architectural Vision for a

Data-Centric IoT: Rethinking Things, Trust and Clouds", in

2017 IEEE 37th International Conference on Distributed

Computing Systems (ICDCS), Atlanta, GA, USA,

05.06.2017 - 08.06.2017. 2017. IEEE.

[10] Siow, E., T. Tiropanis, and W. Hall, "Analytics for the

Internet of Things", ACM Computing Surveys, 51(4),

2018, pp. 1–36.

[11] Wich, M. and T. Kramer, "Enrichment of Smart Home

Services by Integrating Social Network Services and Big

Data Analytics", in Proceedings of the 49th Annual Hawaii

International Conference on System Sciences (HICSS),

Koloa, HI, USA. 2016.

[12] Yasumoto, K., H. Yamaguchi, and H. Shigeno,

"Survey of Real-time Processing Technologies of IoT Data

Streams", Journal of Information Processing, 24(2), 2016,

pp. 195–202.

[13] Sharma, S.K. and X. Wang, "Live Data Analytics

With Collaborative Edge and Cloud Processing in Wireless

IoT Networks", IEEE Access, 5, 2017, pp. 4621–4635.

[14] Auger, A., E. Exposito, and E. Lochin, "Sensor

observation streams within cloud-based IoT platforms:

Challenges and directions", in 2017 20th Conference on

Innovations in Clouds, Internet and Networks, Paris. 2017.

[15] Biswas, A.R. and R. Giaffreda, "IoT and cloud

convergence: Opportunities and challenges", in 2014 IEEE

World Forum on Internet of Things (WF-IoT), Seoul,

Korea (South), 06.03.2014 - 08.03.2014. 2014. IEEE.

[16] Stankovic, J.A., "Misconceptions about real-time

computing: a serious problem for next-generation systems",

Computer, 21(10), 1988, pp. 10–19.

[17] Brush, A.J., M. Hazas, and J. Albrecht, "Smart Homes:

Undeniable Reality or Always Just around the Corner?",

IEEE Pervasive Computing, 17(1), 2018, pp. 82–86.

[18] Marjani, M., F. Nasaruddin, and A. Gani, "Big IoT

Data Analytics: Architecture, Opportunities, and Open

Research Challenges", IEEE Access, 5, 2017, pp. 5247–

5261.

[19] Pham, L.M., "A Big Data Analytics Framework for

IoT Applications in the Cloud", VNU Journal of Science:

Computer Science and Communication Engineering, 31(2),

2016.

[20] Lin, Y.‐H., "Novel smart home system architecture

facilitated with distributed and embedded flexible edge

analytics in demand‐side management", International

Transactions on Electrical Energy Systems, 17(7), 2019,

e12014.

[21] Fortino, G., A. Giordano, A. Guerrieri, G. Spezzano,

and A. Vinci, "A Data Analytics Schema for Activity

Recognition in Smart Home Environments", in Ubiquitous

Computing and Ambient Intelligence. Sensing, Processing,

and Using Environmental Information. 2015.

[22] Bhole, M., K. Phull, A. Jose, and V. Lakkundi,

"Delivering analytics services for smart homes", in 2015

IEEE Conference on Wireless Sensors (ICWiSe), Melaka,

Malaysia. 2015.

[23] Chakravorty, A., T. Wlodarczyk, and C. Rong,

"Privacy Preserving Data Analytics for Smart Homes", in

2013 IEEE Security and Privacy Workshops, San

Francisco, CA. 2013.

[24] Constant, N., D. Borthakur, M. Abtahi, H. Dubey, and

K. Mankodiya, Fog-Assisted wIoT: A Smart Fog Gateway

for End-to-End Analytics in Wearable Internet of Things,

25.01.2017.

[25] Yassine, A., S. Singh, M.S. Hossain, and G.

Muhammad, "IoT big data analytics for smart homes with

fog and cloud computing", Future Generation Computer

Systems, 91, 2019, pp. 563–573.

[26] Ta-Shma, P., A. Akbar, G. Gerson-Golan, G. Hadash,

F. Carrez, and K. Moessner, "An Ingestion and Analytics

Architecture for IoT Applied to Smart City Use Cases",

IEEE Internet of Things Journal, 5(2), 2018, pp. 765–774.

[27] https://www.oreilly.com/ideas/questioning-the-

lambda-architecture, accessed 1-5-2017.

[28] Medel, V., R. Tolosana-Calasanz, J.Á. Bañares, U.

Arronategui, and O.F. Rana, "Characterising resource

management performance in Kubernetes", Computers &

Electrical Engineering, 68, 2018, pp. 286–297.

[29] Persico, V., A. Pescapé, A. Picariello, and G. Sperlí,

"Benchmarking big data architectures for social networks

data processing using public cloud platforms", Future

Generation Computer Systems, 89, 2018, pp. 98–109.

[30] Zschörnig, T., R. Wehlitz, and B. Franczyk, "A Fog-

enabled Smart Home Analytics Platform", in Proceedings

of the 21st International Conference on Enterprise

Information Systems, 21st International Conference on

Enterprise Information Systems, Heraklion, Crete, Greece,

5/3/2019 - 5/5/2019.

Page 6608

