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Abstract 
 

Data analytics have the potential to increase the 

value of data emitted from smart devices in user-

centric Internet of Things environments, such as 

smart home, drastically. In order to allow businesses 

and end-consumers alike to tap into this potential, 

appropriate analytics architectures must be present. 

Current solutions in this field do not tackle all of the 

diverse challenges and requirements, which were 

identified in previous research. Specifically, 

personalized, extensible analytics solutions, which 

still offer the means to address big data problems are 

scarce. In this paper, we therefore present an 

architectural solution, which was specifically 

designed to address the named challenges. 

Furthermore, we offer insights into the prototypical 

implementation of the proposed concept as well as an 

evaluation of its performance against traditional big 

data architectures. 

1. Introduction 

 

The growing importance and adaption of the 

Internet of Things (IoT) in different domains is 

tightly coupled to the emergence of improved and 

new technologies. In this regard, it is estimated that 

the size of the market for enabler solutions in the 

European Union will grow to 15 billion Euros in 

2025 [1]. This includes technological approaches to 

provide analytical capabilities to businesses, industry 

and end-consumers. Looking at the diverging 

characteristics of different IoT domains, analytics 

architectures need to be designed to handle a 

multitude of analytical problems and scenarios, 

which inherently differ from one another in terms of 

data volume, velocity, variety etc. Besides the need to 

employ big data technologies, the specifics of user-

centric domains, such as smart home, which are 

characterized by their fast changing and highly 

individual application scenarios, present additional 

challenges and requirements for analytics 

architectures. For instance, during our research in this 

field, we found that there are no appropriate solutions 

to provide the needed flexibility in data processing 

orchestration and analytics scenario adaptation while 

still being able to handle big data problems under 

real-time requirements. Therefore, in this paper we 

present an architectural solution, which aims to 

overcome these shortcomings. Additionally, we 

evaluate our solution in terms of performance 

compared to a state of the art big data analytics 

system. 

In the following, we describe the motivation 

behind conducting our research (Sect. 2). We further 

present challenges for and requirements of analytics 

architectures in user-centric IoT domains as well as 

already existing solutions and their shortcomings 

using the example of smart home (Sect. 3). 

Continuing, we introduce our architectural concept 

(Sect. 4) as well as its prototypical implementation 

(Sect. 5). In Section 6, we describe the results of two 

performance tests, which we conducted to evaluate 

our approach. Finally, the paper concludes with a 

summary of our findings and an outlook into 

additional research (Sect. 7). 

2. Motivation 

 

The provision of suitable analytics architectures 

for intelligent data analysis in the field of user-centric 

IoT domains, such as smart home, is associated with 

a multitude of challenges and requirements. Looking 

at IoT analytics architecture research in general, there 

are several studies and architectural proposals 

naming these. In this regard, we conducted an 

extensive literature review, following [2], to 

comprise an overview of them.  

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6599
URI: https://hdl.handle.net/10125/64550
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326835996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The key requirements for IoT analytics 

architectures are the ability to handle big data 

problems in terms of different ‘v’s such as velocity, 

variety and volume [3, 4, 5, 6, 7] in real-time [3, 4, 6, 

7, 8, 13]. While the precise definition of real-time 

computing is rather subjective and varies depending 

on the use case [16], we found that in terms of IoT 

analytics it is closely linked to the value of the 

information to be derived from data processing. 

Therefore, analytics architectures need to enable 

users to process and analyze data in a timeframe, 

which is fitting for their respective application 

scenario. Looking at smart home environments, 

different use cases such as home security as well as 

disaster detection and prevention require at least low 

latency [17]. In this regard, time criticalness of 

analytics scenarios and the need for low latency of 

data processing in IoT environments was also 

frequently named in previous research [3, 4, 6, 7]. 

Furthermore, the integration of the data from a 

multitude of sources must be possible [3, 7, 18]. This 

includes the integration of historical and real-time 

data [6, 18]. Data transmission and processing must 

be secure [3, 4, 6] and the privacy of users 

concerning their data has to be considered at all times 

[3, 4, 8].  Moreover, the data processing capabilities 

must be scalable [9, 10, 11, 12] and handle input 

from a multitude of sources [3, 6, 7]. This input data 

may arrive asynchronously, e.g. because of 

connectivity issues [3, 4, 6]. Besides, analytics 

architectures also have to be energy efficient [9, 11] 

and address high network usage [9, 13] created by the 

increased number of data sources at the edge of the 

network.  In addition, all ingested data as well as the 

analytics results need to be stored [15, 18] and made 

available for other applications [6, 18]. Furthermore, 

analytics architectures for IoT use cases need to offer 

the tools to visualize data [7]. Ultimately, the ability 

to flexibly extend and modify the data processing 

capabilities of an IoT analytics architecture is 

important [4, 6, 9]. In this regard, architectures have 

to enable personalized analytics based on different 

user needs [14, 15].  

Various analytics architectures in different IoT 

domains operate in similar framework conditions. 

However, there are also important differences, which 

make existing solutions insufficiently suitable. One 

major difference is that analytics architectures for 

user-centric IoT domains need to handle two different 

types of analytics problems in terms of data set size 

and velocity. On one side, regular big data problems 

characterized by huge data volumes and high data 

velocity have to be addressed. For example, the 

training of machine learning algorithms for energy 

consumption prediction. On the other side, analytics 

scenarios also evolve around small data sets of only a 

few sources, e.g. temperature tracking of a single 

room in a smart home. Additionally, available data 

sources at different smart homes as well as expected 

insights into the data differ from user to user and may 

change over time. Therefore, analytics architectures 

need to enable its users to flexibly change analytics 

scenarios while still offering advanced data 

processing capabilities.  

Current solutions in this field use lambda 

architectures and specialized big data technologies, 

such as Apache Spark or Apache Flink, for data 

processing. While these approaches excel in terms of 

velocity and volume of data processing [29], they 

lack the described flexibility because of their steep 

learning curves during the design and implementation 

of data analytics pipelines. In contrast, current 

systems, which are flexible to some extend, do not 

offer the processing capabilities to tackle big data 

problems, e.g. because they are not scalable. In order 

to bridge the gap between the needed flexibility in 

modeling and orchestrating analytics pipelines and 

the requirements of big data processing in real-time 

in user-centric IoT domains, we propose a new 

architectural approach in this paper. The main goal of 

the approach is to combine the ability to flexible 

design, apply and change analytics scenarios with the 

processing capabilities to tackle big data problems. 

3. Related Research  

 

While reviewing previous research, we found 

nine architectural approaches for analytics solutions 

in smart home environments. We evaluated all of 

these proposals against the requirements and 

challenges described in section 2. The results of this 

evaluation can be found in table 1.  

Most of the reviewed approaches use IoT 

middleware solutions, such as NodeRED, for data 

ingestion and designing their data processing and 

storage capabilities around big data technologies and 

the lambda architecture concept (see [4, 19]). There 

are also approaches using only local data processing 

(see [20]) providing high-energy efficiency and low 

latency, but requiring extensive configuration, 

therefore limiting their scalability.  

It is noteworthy, that none of the evaluated 

architectural proposals sufficiently met all 

requirements and furthermore could not address all 

the found challenges. Moreover, especially the 

requirement for flexible data processing extension as 

well as personalization of data analytics were only 

partially tackled by two solutions. In this regard, 

Fortino et al. propose an architecture for activity 
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recognition in smart home environments [21]. While 

they describe their solution as a platform- and 

software-as-a-service solution, the amount of 

configuration needed and individualization remains 

nebulous. Hasan et al. propose a cloud-based 

architecture, which exposes its analytics capabilities 

as services [4]. Although, these services may be 

reconfigured, it is along the boundaries of their 

functionalities, therefore only offering limited 

extension potential.  

Regarding the need for personalized, flexible 

analytics, this highlights the urgency for an 

architectural approach, which offers scalability and 

the tools to handle big data as well as the named real-

time requirements while still being flexible in terms 

of analytics capabilities extension and personalization 

of analytics scenarios. In the following, we present 

our architectural approach, which aims to address 

these issues. 

4. Architectural Concept  

 

In order to solve the challenges mentioned before 

we present the architectural concept as seen in figure 

1. The central concept behind it is the kappa 

architecture. Derived from the more commonly 

utilized lambda architecture, the main goal behind it 

is to treat all data as streams therefore omitting the 

need for a dedicated batch layer for data processing 

[27].  

In the proposed approach, so-called analytics 

operators do all data processing of data streams. An 

analytics operator describes a single data processing 

task. For example, the application of an arithmetic or 

statistical method to the input data stream. After 

successful processing, the results are written to an 

output data stream on the streaming platform. 

Analytics operators have inputs, outputs and 

configuration values. Inputs can be both, primitive 

and complex data types. The number of inputs is 

variable and depends on the data processing 

performed. For example, the addition of two values 

from one or two input data streams requires the 

definition of two inputs in the corresponding 

analytics operator. In addition, the outputs of an 

analytics operator are derived from the implemented 

method of data processing and may be primitive as 

well as complex data types. An analytics operator 

has at least one input and one output. In contrast, the 

definition of configuration values is optional. These 

can also have different data types and enable the 

context-dependent use of analytics operators. For 

example, in an analytics operator that enables the 

conversion of temperature values, a configuration 

value can be used to determine the temperature scale 

into which the input value is to be converted. At 

runtime, analytics operators are usually encapsulated 

programmatically or using virtualization 

technologies. 

At design-time, various analytics operators are 

composed into analytics flows, which additionally 

describe the data flow in between analytics 

operators. Hence, analytics flows are designed by 

users to engage different analytics scenarios and 

provide a structured description of all the tasks and 

the data flow.  

Since all data in the proposed architecture is 

handled as a stream, a streaming platform, including 

a log data store and a framework to enable data 

processing on the data, is a main component of the 

architecture. We suppose that data from IoT devices 

is ingested using IoT-middleware solutions and then 

pushed into the log data store. From there, analytics 

operators may access the streaming data, process and 

write it back to the log data store. The main 

advantage over lambda architectural approaches 

using the proposed concept is that changing 

requirements in analytics scenarios need to be only 

reflected at one data processing pipeline (job version 

n). In this regard, it is possible to either create a new 

analytics pipeline with changed parameters and 

configurations of the involved analytics operators 

(job version n + 1) or to use a different analytics flow 

altogether (job version m). 

Access to all data and analytics results is possible 

via a serving database, which ingests data streams 

when requested by applications or users, allowing 

further aggregation of the data as well as the usage of 

appropriate database technologies for different types 

of data. In addition, applications may directly access 

the log data store to pull streaming data.  

Table 1: Overview of existing smart home 

architectural proposals with regard to challenges 

to be solved and non-functional requirements. 
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In order to enable flexible analytics operator 

deployment and management, we further introduced 

an orchestration platform. The main purpose of the 

orchestration platform is to hide the complexity of 

the underlying big data technologies. This shifts the 

focus of the entire analytics platform to a modular 

approach concerning analytics flow design, 

promoting reusability of analytics operators across 

analytics flows and deployment environments. 

Additionally, we found that while it is possible to 

implement analytics scenarios manually in user-

centric IoT domains, this is rather cumbersome and, 

especially regarding smart home platform providers, 

economically unwise.   

By decoupling the orchestration of analytics 

operators from the actual streaming platform, the 

proposed architecture promotes its own reusability 

because it is independent from any specific streaming 

platform. The orchestration platform contains several 

components, which we describe in the following. 

 

4.1. Flow engine 

 
The flow engine controls the execution and 

orchestration of analytics flows. It uses an interface to 

start analytics flows, which are instantiated as 

analytics pipelines, and to stop the analytics pipelines 

that it started on the streaming platform. As soon as 

the flow engine receives a message to start an 

analytics flow, it accesses the interface of the flow 

parser and requests an execution list of analytics 

operators of the corresponding analytics flow. This 

list contains the analytics operators to be started as 

well as the mapping of the input and output data 

streams in-between them. Since analytics flows are 

not assigned to predefined data sources, the user does 

the assignment to source data streams, e.g. from IoT 

devices, dynamically.  

Individual analytics operators are started by 

calling an interface of the underlying streaming 

platform. Analytics flows can be infinitely 

instantiated with different input data streams. The 

resulting analytics pipelines are registered in the 

pipeline registry and are removed by the flow engine 

after termination. 

 

4.2. Flow parser 

 
The flow parser provides the execution list of 

analytics operators to the flow engine. The main task 

of the component is to transform the saved 

representation of analytics flows from the flow 

repository into an execution list of analytics 

operators. This is done by applying predefined 

conversion rules. Subsequently, further information 

regarding analytics operators, e.g. metadata, is 

loaded from the operator repository. The decoupling 

of this component from the flow engine makes it 

possible to adjust the parsing logic of analytics flow 

from the flow repository. As a result, there is no need 

to commit to a specific analytics flow metamodel. 

 

 

Figure 1: Overview of the proposed architectural approach. 
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4.3. Flow repository 
 

The flow repository serves as a storage location 

for analytics flows, thus enabling their reusability. 

Analytics flows are usually stored using graph-based 

metamodels. The creation and update of analytics 

flows, but also the access to them and their metadata 

is possible via an interface that is available for all 

components of the overall architecture. In this 

respect, it is possible to create and change analytics 

flows without using dedicated graph designer 

components. 

 

4.4. Operator repository 
 

The operator repository stores the metadata of all 

analytics operators that implement methods for 

processing data streams, therefore enabling their 

reusability across different analytics flows. The 

operator repository enables the creation, retrieval and 

deletion of metadata for the analytics operators via 

an interface. This metadata is used by other services 

to control and manage data processing logic.  

 

4.5. Pipeline registry 

 
The pipeline registry stores information regarding 

all active analytics pipelines. Via an interface, it is 

possible to register new and modify existing analytics 

pipelines as well as to delete them. In the presented 

architecture, analytics pipelines are registered and 

edited by the flow engine. 

5. Prototype  

 

During our research, we implemented the 

proposed architectural approach to provide a proof of 

concept and to allow for performance testing. Our 

solution specifically aims to provide more flexibility 

in terms of the adaption of changed requirements of 

analytics scenarios as well as reusability of analytics 

operators. In this regard, we found that current state 

of the art software engineering practices, namely the 

microservice paradigm together with container 

virtualization offer sufficient properties in order to 

tackle these goals.  

Another priority of our research was to provide a 

reproducible architecture, which is why we choose 

scalable open source components, whenever possible. 

Subsequently, we choose Apache Kafka as the 

central streaming platform. Rather than being only a 

distributed publish-subscribe message queue, using 

its peripheral libraries, namely Kafka Streams, it 

offers data stream processing capabilities comparable 

to other state of the art solutions such as Apache 

Spark or Flink.  

We deployed our prototype using Kubernetes as 

container orchestration and management platform, 

which is the de-facto industry standard in this regard. 

Kubernetes in conjunction with container-based 

Kafka Streams analytics operators offers start up 

times of only seconds [28], hence supporting the 

flexible and low-latency (re)deployment of analytics 

pipelines. 

The prototypical implementations of all its 

components, introduced in section 4, also rely on the 

microservice paradigm and are described in the 

following.  

 

5.1. Flow engine 

 
The flow engine controls the instantiation of 

analytics flows and manages analytics pipelines. 

Implemented in the programming language Golang, it 

provides a set of management operations for 

analytics pipelines via a REST interface. The 

endpoints allow the instantiation of analytics flows 

and stopping of analytics pipelines. Because the 

analytics flows contain no information about the data 

sources that provide input for the first analytics 

operators of an analytics flow, this information needs 

to be communicated to the flow engine when starting 

an analytics pipeline. This is done by a POST request 

when calling the flow engine. Accordingly, the 

request must contain a JSON object with the required 

information about the data sources. 

In order to start an analytics operator, the flow 

engine uses the API of the underlying container 

orchestration solution Kubernetes and starts new 

Docker containers, which are an instance of the 

corresponding Docker image of an analytics 

operator. These containers are configured via 

environment variables and allow for flexible, 

multiple instantiations of an analytics operator. The 

resulting analytics pipeline metadata is then stored in 

the pipeline registry. The termination of analytics 

pipelines is also controlled via the flow engine. In this 

case, it deletes all the Docker containers belonging to 

an analytics pipeline via the container orchestration 

solution API and deregisters it in the pipeline 

registry. The flow engine uses drivers to access APIs 

of different container orchestration solutions. These 

can be exchanged as needed. A combination of 

different solutions is also possible. 

 

5.2. Analytics operator library 

 
In order to interface seamlessly with the flow 

engine, we developed an analytics operator library 
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around Kafka Streams. Using this library, it is 

possible for data scientists to easily implement 

analytics operators. The library acts as a wrapper in 

this regard, hiding the complexity of Kafka Streams 

while still allowing for merging, filtering, etc. of data 

streams. Additionally, the library parses the 

configuration supplied by the flow engine to an 

analytics operator instance and accesses Kafka topics 

of data streams as defined by the user. 

 

5.3. Flow parser 

 
We implemented the flow parser using the 

programming language Golang. It offers 

functionalities that enable the data structure of the 

analytics flows to be converted into execution lists of 

analytics operators. It provides these methods via a 

REST interface. 

The flow parser is able to retrieve all required 

data for a transformation from the flow repository 

based on the unique identifier of the analytics flow. It 

creates the execution list of analytics operators from 

the flow model data of the analytics flow. 

Furthermore, the flow parser creates an array, 

which contains information about all input data 

sources of an analytics operator.  

 

5.4. Flow repository 

 
The flow repository stores metadata about 

analytics flows. In the implemented prototype, the 

flow repository is written using the Python scripting 

language. It provides a REST interface, which 

provides CRUD endpoints. The persistence of the 

data is guaranteed by a MongoDB, which saves all 

data records in JSON format. This includes the 

information necessary to generate the actual flow 

chart, containing nodes, edges and additional 

information. 

 

5.5. Operator repository 

 
The operator repository stores metadata about 

existing analytics operators. In the developed 

prototype, the repository is implemented using the 

Python scripting language. It provides a REST 

interface exposing CRUD endpoints. An analytics 

operator record is stored as a JSON document in a 

MongoDB. Analytics operators are instantiated in the 

developed prototype as Docker containers. An 

analytics operator data set consists of the reference 

to its corresponding Docker image, two lists (inputs 

and outputs) in which the inputs and outputs of an 

analytics operator are defined as well as additional 

metadata. As of now, about 20 analytics operators, 

offering different data manipulation and analytics 

capabilities, are available. 

 

5.6. Pipeline registry 

 
The pipeline registry is implemented using the 

programming language Golang. Different REST 

endpoints make it possible to register new analytics 

pipelines, retrieve information about them and delete 

them, if needed. In the implemented prototype, 

analytics pipelines are typically registered and 

managed by the flow engine. A MongoDB is used as 

the persistence layer. The retrieval of metadata of an 

analytics pipeline provides accurate information 

about the contained analytics operators and the data 

flows in-between them. 

 

5.7. Frontend application 
 

In order to ease usability of the orchestration 

platform, we implemented a frontend application 

written in Angular 6. Using this application, users 

can access all REST APIs of the involved services 

using input masks. This includes a graphical flow 

chart modeler, which was implemented using JointJS. 

Additionally, the creation of custom graphs and 

visualizations is possible.  

6. Experimental Evaluation 

 

In this section, we present a quantitative 

evaluation of the performance of the proposed 

architecture using detailed simulations based on real-

world datasets. More specific, the feasibility of the 

proposed architecture to handle big data problems in 

real-time is evaluated. In this regard, we designed 

two experiments to compare the performance of 

analytics operators as an implementation of the 

kappa architecture against the de-facto standard 

implementation of a lambda architecture Apache 

Spark [29] in terms of operator and CPU core 

parallelism. 

 

6.1. System Setup and Deployment 
 

The proposed architecture, as well as the Spark 

cluster, were deployed at a private cloud service 

using Rancher version 2.2.3 as a frontend and 

Kubernetes version 1.13.5 as the engine for container 

orchestration. All Kubernetes cluster nodes were 

virtual machines running on hypervisors using the 

kernel-based virtual machine (KVM) module of Suse 

Linux Enterprise Server 12 SP4. The KVM 
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hypervisors provided an Intel XEON E5 CPU core, 

512 GB RAM and SSD as well as Infiniband storage 

solutions. The actual Kubernetes cluster comprised 

16 virtualized nodes, having 8 CPU kernels, 64 GB 

RAM and 256 GB SSD storage, each.  

Apache Kafka was used as the central log data 

store and ran on version 2.0.1 in the cluster, being 

deployed as a replica set on Kubernetes. Apache 

Spark was deployed in the cluster as well using 

version 2.4.1. The Spark cluster used the Kubernetes 

scheduler for executor deployment and the Structured 

Stream API for stream processing. All components of 

the proposed architecture, as described in section 4 

and 5, were deployed in the Kubernetes cluster as 

well. 

 

6.2. Metrics 
 

We measured message throughput as well as 

adjusted message throughput. In our evaluation, we 

defined message throughput as incoming messages 

per second. The basis of this calculation is the overall 

number of measurements in our test data set, divided 

by the execution time of an experiment in a given 

configuration. 

During testing, we observed that scaling out 

Apache Spark executors and analytics operators 

from our architecture requires the partitioning of the 

Kafka topic, which holds the input data. This was 

necessary, so that measurements, which are logically 

linked, are placed on the same partition and therefore 

consumed in the right order and by the same 

analytics operator. Because of this, the resulting 

partitions were uneven in terms of data set size 

leading to distorted metrics measurements. The 

reason for this was that some of the scaled-out 

analytics operators stopped processing data before 

the entire data set had ended. Moreover, we 

witnessed an extended startup phase of the Spark 

cluster as compared to our proposed solution.  

Therefore, we introduced an additional metric, which 

we called adjusted message throughput. This metric 

ignores all data processing from the startup phase and 

during the period, when at least one partition has run 

out of data. Since it is plausible that analytics 

pipelines are running continuously in real-word 

scenarios, the omission of these two phases gives a 

more realistic insight into the message throughput. 

 

6.3. Methodology 
 

All experiments ran in changed configurations 

consecutively on the Kubernetes cluster to avoid side 

effects. In order to capture the metrics described 

before, we accessed the monitoring data of Apache 

Spark executors and the analytics operators of our 

solution. Runtime metrics of Spark executors were 

accessed using the Spark-native history server. In 

contrast, the runtime metrics of the analytics 

operators of the proposed architecture were exposed 

at the JMX port of the underlying Java Virtual 

Machine and written to an instance of InfluxDB 

using jmxtrans. 

Additionally, CPU and RAM metrics were 

captured using the Rancher-native cluster monitoring, 

which allows for monitoring individual containers. 

 

6.4. Experiments 

 
We conducted two experiments to evaluate our 

proposed architecture in a real-world scenario. In this 

regard, we used real-world data, which was compiled 

in past research projects. The used data set contains 

36,147,070 measurements of energy consumption 

data of about 1,000 smart meters over a timeframe of 

about 5 months. The entire data set was pushed into a 

Kafka topic to mitigate effects from slow data 

emission at the source of the data and directly access 

it from Kafka. The topic was partitioned with respect 

to the different experiments to allow analytics 

operator/executor parallelism. 

 

6.4.1 Experiment 1: Outlier detection 

 

Using averaging and standard deviation, the 

system had to detect outliers in the consumption data. 

The input was the entire data set and all data was 

grouped by meter identification.  

In order to enable the experiment in the proposed 

architecture, we implemented an analytics operator, 

which was able to group the input data by meter 

identification, calculate the rolling average and 

standard deviation of the data and then tag outliers in 

the data. In Apache Spark, we implemented an 

appropriate processing logic. 

This experiment allowed to utilize the entire test 

data set, thus creating meaningful runtimes of the 

experiment in both systems. Yet, it still has real 

world-relevance, as evidenced by similar experiments 

in [4] and [19].  

 

6.4.2 Experiment 2: Timeslot 

 

The system did the same tasks as in experiment 1. 

In addition, all outliers were grouped by the time 

period in which they occurred (grouping by hour).  

This experiment was designed in order to 

simulate an analytics pipeline in our proposed 

architecture, which requires two analytics operators. 

The results of this experiment were supposed to 
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provide insights into how the performance of the 

proposed solution is impacted by multiple writes and 

reads to and from the log data store by analytics 

operators. In this regard, we used the analytics 

operator described in experiment 1 and added an 

additional analytics operator, which did the grouping 

by timeframe. It is noteworthy, that the second 

analytics operator only received the measurements, 

which were outliers. The Spark processing logic was 

extended according to changed requirements as well. 

 

6.5. Experimental Results 

 
Regarding the validity of the results, we 

conducted both experiments using different 

configurations in terms of analytics 

operator/executor scale and CPU core assignment to 

single analytics operators/executors. In addition, we 

conducted a pre-test to determine the optimal values 

for the maximum batch size (1,000,000 

measurements) and shuffle partitions (32) in the 

deployed Apache Spark cluster. During our 

experiments, we changed the configurations of used 

analytics operators/executors and utilized CPU 

cores. For example, the configuration “1-1” stands 

for the usage of one analytics operator/executor with 

one CPU core assigned for the entire run of the 

experiment. In contrast, the configuration “8-4” 

means that eight analytics operators/executors were 

used and each of them got four CPU cores assigned. 

Looking at the results of both experiments, as 

seen in figures 2 and 3, we observed, that the Apache 

Spark cluster (spark) achieved a higher message 

throughput than our proposed solution (proposal) in 

every configuration but one (8-4 in experiment 2). 

When comparing adjusted message throughput 

(spark-A and proposal-A), the spark cluster achieved 

higher rates in every configuration of both 

experiments. Notably, the difference in message 

throughput between the proposed solution and the 

Spark cluster decreased in experiment 1 from a factor 

of 6.32 when comparing 8 parallel analytics 

operators/executors with only one CPU core 

assigned to 1.74 when 8 analytics 

operators/executors with 4 CPU cores each were 

used. Using this configuration, the proposed 

architecture was able to process around 540.000 

messages per second compared to around 840.000 of 

the Spark cluster. 

The results of experiment 2 suggest that the 

difference in message throughput of the proposed 

architecture compared to the Spark cluster is even 

lower than in experiment 1 (with the exception of 

configuration 1-8). Especially the results of 

configuration 8-4 are interesting, since our proposed 

solution achieved a higher message throughput of 

about 178.000 messages per second than the Spark 

cluster with about 160.000 messages per second. This 

indicates, that the lightweight approach of our 

proposed solution could indeed add flexibility to 

analytics pipeline deployment, when used in 

environments in which startup times of analytics 

operators/executors play a key role. 

 

6.5. Discussion 
 

The findings of the conducted experiments 

indicate that the performance of our approach, in 

Figure 3: Results of experiment “Time slot”. 

 

Figure 2: Results of experiment “Outlier 

detection”. 
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terms of message throughput, is not as good as 

specialized big data technologies used in lambda 

architectures, namely Apache Spark. Still, both 

systems provide good scalability with respect to 

analytics operator/executor parallelism. In contrast, 

the proposed solution seems to be better when scaling 

vertically, e.g. when offering more CPU cores to 

individual analytics operators. Other research in this 

field presents similar results and suggests that the 

difference could be even lower using other big data 

systems such as Apache Storm [29]. While this seems 

promising in reducing the discrepancy in message 

throughput between both systems, the added 

flexibility of our approach regarding analytics 

pipeline adaptation stems from the use of lightweight 

libraries, which is also reflected in the lower startup 

time of analytics operators. Moreover, the reusability 

of analytics operators and flows adds to the 

flexibility of the overall architecture.  

In addition, with increasing complexity of the 

analytics pipelines, the difference in message 

throughput between both systems decreases. This 

indicates that the usage of specialized single task 

analytics operators is advantageous as compared to 

designing heavyweight all-purpose analytics 

operators. Further investigation is needed as to why 

message throughput of the proposed solution dropped 

at all in experiment 2. Since the first analytics 

operator did the same task as in experiment 1 and the 

second analytics operator had to process only 

thousands of messages, the difference in message 

throughput should have been marginal. 

Finally, the experiments showed that the 

implemented prototype is able to handle the 

considered real-world data set and application. 

7. Conclusions & Outlook 

In this paper, we have presented an approach to 

address important requirements and challenges of 

analytics architectures in user-centric IoT domains, 

such as smart home. In this regard, we reviewed past 

research and compared existing architectural 

approaches against the identified challenges and 

requirements. Since none of the investigated 

solutions could sufficiently address key requirements, 

namely the ability to provide tools to handle real-time 

big data problems, while still being able to cater to 

small, flexible analytics scenarios, we presented our 

own architectural approach. This approach evolves 

around the kappa architecture concept and uses 

microservices to provide an orchestration engine for 

analytics operator deployment. Therefore, it tries to 

address the aforementioned problem and was 

prototypically implemented and evaluated in regards 

of its performance. The results of this evaluation 

suggest, that the proposed architecture is able to fill 

the gap between big data processing and flexibility in 

terms of small data analytics scenarios. Besides, this 

paper analyzes the performance of two state of the art 

data processing architectures, providing insights to 

practitioners and researchers alike. 

Additional research in this field needs to assess 

the proposed architecture qualitatively in terms of its 

functional properties. In this regard, the proposed 

architecture has already been extended in [30] to 

address the found requirements and challenges of 

user-centric IoT domain analytics architectures, 

which were not investigated in this paper, e.g. 

privacy or high network usage.  

Furthermore, in terms of usability, a comparison 

with similar solutions, which offer interactive data 

analytics capabilities, e.g. Apache Zeppelin, is 

needed.  
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