View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by AIS Electronic Library (AlSeL)

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Architectural Principles for Autonomous Microservices

Anders Mikkelsen Tor-Morten Grgnli
Systek Kristiania University College
Oslo, Norway Mobile Technology Lab

anders.mikkelsen @systek.no Department of Technology

Oslo, Norway

tor-morten.gronli @kristiania.no

Abstract

In the last decade architectural patterns like
microservices and event-driven architectures have
emerged to meet the challenges of distributed
computing. This paper explores recent practices and
research in microservice- and event-driven architectures
to identify the challenges in architecting such systems.
With a proof-of-concept study approach, we distilled
a set of design principles to address these challenges,
creating asynchronous and agnostic microservice
architectures. Further, we provide a generic toolkit
for implementing such architectures. An example of
this architecture was implemented in the company
TechnipFMC. Concurrently, an architecture trade-off
analysis was performed using a utility-tree based
approach, highlighting the impact and importance of
our proposed principles and their generalizability. The
evaluation provides evidence for the viability of the
proposed design principles.

1. Introduction

System and software architectures distributed across
multiple machines are difficult to design and create
[1, 2]. The most common reasons for implementing a
distributed architecture are for scaling, either vertically
or horizontally [1]. This strategy is employed for
managing architectures [3] and separating concerns,
and becomes clear with Microservices Architectures
(MSAs) [4, 5, 6]. But what exactly is a MSA?
Definitions are lacking but opinions and proposed
implementations are not. In this paper, we survey
the research on MSAs and describe a set of derived
design principles and a reference implementation, in
the form of a toolkit. Furthermore, we present our
results on the realization of this toolkit for an industry
partner—TechnipFMP. We also present a trade-off
analysis featuring a utility tree extracted as part of the
Architecture Tradeoff Analysis Method (ATAM) [7], [8]
in the context of 6 industrial case-studies. Through

URI: https://hdl.handle.net/10125/64546
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

H{CSS

Damian A. Tamburri Rick Kazman

Jheronimus Academy of Data Science University of Hawaii

Technical University of Eindhoven Schidler College of Business
Netherlands The United States of America

d.a.tamburri @tue.nl kazman @hawaii.edu

an analysis of these experiences, we highlight how
adherence to the design principles can increase the
quality of MSAs. Finally, we conclude the paper by
giving recommendations for future work.

2. Background

In a monolithic approach to software architecture
every piece of business logic exists within a single
process, often a single application. Even though the
internal workings of the monolith might be service
oriented it is not separated by process, so scaling is
performed by starting additional instances of the entire
application [9, 1]. Service orientation in the context of
a monolith means that you can logically separate the
monolith into several modules that have high cohesion
and low coupling, without splitting it up into multiple
separate services. Usually these end up being highly
coupled because of the nature of the monolith, as shown
by Gouigoux et al. [10].

As businesses have become more agile in delivering
functionality, and as the number of users consuming web
services has exploded recently, more scalable solutions
were highly sought after. One of the approaches that
grew organically from industrial practice has become
known as Microservices Architecture [5, 6, 11]. As
understood by practitioners and academics the three
main pillars of MSA are those of: improving speed of
change, having small cohesive units of functionality, and
supporting scalability [12, 9, 5, 11].

Whether MSA is a separate style or a variant of
Service Oriented Architecture (SOA) is contested [9, 4].
Some say MSA is a best-practices approach to SOA,
while others [9] say it is a separate paradigm [5, 6, 13, 4].
There are also positions that embrace both ends of
this spectrum, by defining multiple implementations of
MSA; some closely resemble SOA in a fine-grained
form; others, like Mulesoft, do not [12]. Thus there
is no broadly accepted definition of MSA or even
microservices themselves [13, 9, 5, 6]. However there
appear to be some universals concerning microservices

Page 6569

https://core.ac.uk/display/326835993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that practitioners do agree upon: microservices should
be small with high cohesion [9, 11], each should run in
its own process [11] and they communicate with each
other via a lightweight interface, often a REST API
[5, 6].

High cohesion in microservices takes the Domain
model of SOA a step further. In many ways MSA
is all about separating processes into as small services
as possible—small not in the context of storage space
or computational power but that of domain [9, 4, 14].
An MSA might, for example, separate an end-to-end
process of placing orders into a shopping cart service,
a line item service, an order service, and a check
out service. This allows it to scale at a much more
fine-grained level than a classical SOA. The importance
put upon cohesion varies with implementation—maybe
more than any other tenet of MSA—as shown by Shadija
et al [9]. Even though they vary, all definitions speak
of encapsulation, low coupling, autonomy and similar
terms [11].

Although internal communication between services
is normally performed with HTTP REST API’s
in SOA and MSA, other options are available,
like message-based communication. Message-based
communication can be synchronous or asynchronous
variations, realized in three different implementations:
Remote Procedure Calls (RPC), Object Request Broker
(ORB), and Message oriented Middleware (MOM).
These are explained in detail by Mahmoud [15]. RPC
and ORB implementations are typically synchronous,
meaning that when a procedure on one node calls
another it must await the response before doing anything
else. This is opaque to the programmer but does not
scale well.

With the asynchronous variant of MOM there is
generally an external broker passing messages around
and the details of this is implemented by programmers.
Asynchrony enables individual processes to continue
working without waiting for a response, but it loses
the simplicity of RPC or ORB [15]. For external
communication with clients a typical pattern in a
distributed architecture is running a Gateway that acts
as a bridge. This was as true in the 70’s when Farber
was investigating Distributed Architectures [2], as it is
today with companies like Netflix adopting this pattern
[16]. Implementations vary but examples range from
HTTP load balancers, with the chief objective being
to forward requests to appropriate microservices, to a
service (or collection of microservices) concatenating
results from multiple microservices and returning the
aggregated result to the client, as is the case with the
Netflix API gateway [16]. Both of these approaches
create an implicit coupling between a service and its

gateway in terms of communicating with a client. In
other words, any change in communication between a
service and its clients usually creates a change in the
gateway.

A MSA, operating with message-based
communication, is at its core an Event-Based/Driven
Architecture (EBA) [17]. EBAs are architectures where
interactions are asynchronous and handled by a discrete
data object known as an Event. This discrete data
object is a representation of something that happened
in the past, with a description of what happened and a
timestamp. The state of any element of the architecture,
like a model, is the aggregated result of all events
pertaining to that element. An easy way to imagine
this is to think of a bank account. The balance is the
accumulation of all previous deposits and withdrawals
[17]. A typical implementation of an EBA uses an
external broker to route events to wherever they need to
go [12]. This is similar to the Enterprise Service Bus of
a SOA, although constrained to event management.

An EBA might only use these events as state updates
that services use to modify their own state according to
business rules, or it might employ what is known as
Event Sourcing (ES) to structure the state of all data
as aggregates of events [18]. ES is not new and is not
necessarily tied to EBA’s but plays well with them as
discussed by Fowler [19]. The idea of ES is that every
change in application state is represented by an event
object and stored in timestamped order. This creates a
log of everything that has happened in the application
over its lifetime, which facilitates several operations.
For example, you could discard the application state
and completely rebuild it by replaying all events, and
you can examine the application state in any point in
time by replaying events up to a certain time. You can
also remove incorrect events, then rebuild the state by
replaying all events after the corrected one, as outlined
by Fowler [19], and explained in detail by Overeem et
al. [18]. It is important in this context to distinguish
events that operate as commands in an EBA from
events that describe a mutation of the application state.
One service telling another service to perform some
operation periodically might be a command event, but
not necessarily an application mutation that warrants
storage [12]. This is shown as a detailed flow by Yang
for a data analysis task. The system receives an event
that is interpreted as a command by the server which
then performs the analysis and returns an aggregated
data event [20].

ES has its own challenges not observed in traditional
stateful data stores, mostly tied to faulty events and
changes to the data models represented by the events
[19, 18]. As is mentioned by Overeem et al. events

Page 6570

are stored as schemaless entities but in reality, they
have an implicit schema. The application assumes a
schema when reading the events. This means that the
store holding the events cannot supply tools for updating
the schema as it is not aware of any schema, thus
pushing the responsibility of schema changes to the
application [18]. Fowler explains that ES obviously
applies some constraints on your architecture which
demand a different approach and mindset [19]. There
appears to be consensus on this, but with a warning that
this style of state management might seem alien to those
who have not implemented it before [12, 19, 18].

EBAs are not new [2], and applying their principles
to software architectures is gaining momentum [17,
21, 22]. An industrial study examines the challenges
faced by LinkedIn when scaling up [23], and makes
the case that events are essential building blocks of
microservices. This mostly comes from the problem of
managing state in large-scale distributed architectures.
The foundation of an event-based architecture is to
encapsulate a unit of change in the architecture as
a standardized event abstraction [12]. A primary
challenge of EBAs is that of ensuring event consistency:
what happens when an event either is not sent correctly,
or disappears due to hardware issues? The original
sender service won’t know that anything is wrong when
the event is on the queue. So what can the service, which
is ultimately responsible for the event, do about that?

3. Architectural Principles for
Autonomous Microservices

Based on the Background described above,
in this section we now outline the reasoning
behind the four design principles for Autonomous
Microservices (AM) architectures: Communication
Independence, Organizational Agnosticism, Scalability,
and Independence. These four principles define the
core of what it means to be an AM architecture.
Subsequently, this section describes our open-source
toolkit, which serves as the reference implementation of
AM, and realizes the four principles in production-ready
code.

3.1. Communication Independence

The Communication Independence principle
constrains inter- and intra-service communication as
well as how the architecture should communicate with
external clients.

1. All inter-service communication must, in
all cases, communicate on non-blocking
technologies. HTTP is an example of a blocking

technology. Asynchronous TCP messages are
an example of non-blocking technologies. At
some point all traffic may be blocking, of course,
but we are concerned with the architectural
abstraction, not its infrastructural realization.

2. All inter-service communication is point-to-point
and not reliant on external load balancers.

3. Services contact other registered handlers, e.g.,
other services or external clients, in a round
robin fashion, to balance load and ensure access
to all handlers in the event of retries or other
communication issues.

4. All external communication negotiates its initial
connection through a gateway, for unified access
control, and all subsequent communications are
performed point-to-point, in both client-to-server
and client-to-client communication.

3.2. Organizational Agnosticism

Agnosticism dictates what should be provided by
an architecture for AM, so that service creation and
interaction is opaque to any developer team working
on it. A developer should be able to confer with
the consumer of their service to determine what the
contract should be and deploy it with no architecture
configuration required, and with no concept on where
or how their service is run.

1. All message brokering is performed by a service
and its recipient, dependent on whether it is
important for it. For example, if a service is
reliant on a response to a request, it must employ
techniques such as circuit breakers, queues, retries
etc. itself.

2. There are no masters controlling internal or
external traffic, apart from regex filtering in the
gateway for external clients. The filtering is a
comprise for creating a demarcation line between
external and internal consumers. This allows
services to stay agnostic in their communication
while having confidence that any information they
send is not published outside the architecture
unless they explicitly allow it.

3.3. Scalability

The scalability principle governs rules for service
configuration and implementation to ensure that the
architecture is as decentralized as possible, and to ensure
linear scalability. No service knows anything above its
own and its sibling’s existence. This means that any
coordination of communication cannot be controlled
above the service scope. Scaled instances know of

Page 6571

each other and may coordinate, as long as they do
not employ distributed data structures that might block
execution across instances. In our previous work
on immutable architectures we see that in modern
implementations scalability on an infrastructural level
is enabled by the use of containerization, which in turn
helps achieve portability [24]. Although portability
through containerization is not a key architectural
concern for autonomous microservices and in extension
the scalability principle, it is a clear enabler.

1. Low resource consumption is key to scalability,
and as such services should do the most amount
of work on the least amount of kernel threads.

2. Treat termination and removal of any
infrastructural components used by the
application e.g., file shares or databases as
normal occurrences, do not rely on graceful
shutdown.

3. All operations not relying on third party
technology restricted to another paradigm shall be
asynchronous and non-blocking.

4. Any coordination is only permitted in the scope
of a service, and the scaled out instances of said
service. Direct message replies, in the form of
asynchronous events within a service scope to
coordinate incoming events that are published to
all instances is fine, as there is always at least one
instance available, even if it is the sender itself.

3.4. Independence

Independence dictates the life cycle of an AM. In
this lies the parameters for scaling in and out, which is
managed within the service scope, and the life time of
the service. All services must be based upon acting on
incoming data, and then responding to that by producing
and publishing their own data. All communication
is directed at addresses pointing to a single recipient.
Such addresses can be TCP ports, bus addresses, HTTP
endpoints etc. Services shall not call other services
directly as part of their operations, but simply be content
that any number of services might, or might not, be
listening to their broadcasts.

1. Services are equal: there are no masters and no
slaves.

2. Services are not terminated externally; they
terminate themselves upon receiving information
about scaling properties, either from another
service, or from an orchestration system.

3. Services react to incoming data and produce their
own outgoing data. They do not call other
services directly, apart from acquiring outgoing
data addresses.

4. Periodic tasks and time-based actions are
performed and managed by the service itself.

3.5. Toolkit

The open source toolkit is meant as a reference
implementation for the AM Design principles !, but
this toolkit is not required to produce AM-compliant
architectures. An overview of the architectural elements
of the toolkit is sketched in Figure 1, in the region under
the Client/Internal Event Barrier. It is separated into
three logical layers. In addition, we will refer to two
zones, an external and internal. Internal is defined as
any services running on the architecture, while external
is defined as any other actor that can interact with the
eventbus.

3.6. Layers

The gateway layer is distributed across all nodes
in the autonomous microservices architecture. The
gateway provides two-way communication between the
external clients and the eventbus. Incoming traffic is
handled by separate services as splitters, and outgoing
traffic is handled by separate services as combiners.
The gateway provides a regex-based approach for what
base addresses are allowed from external clients but
is otherwise agnostic to their interaction with internal
services. This enables the addition and removal of
services on the clustered architecture to expand features
for existing or new users (internal services, customer
systems etc.), without the need to reconfigure the
architecture. This means we treat every microservice as
a completely separate entity.

Furthermore, we can easily expose the addresses
of a service to the public without any architectural
configuration. The only entities that are aware of this
implementation are the team responsible for creating
and maintaining it, and the consuming client.

The data splitters and combiners are plugins that
exist in this layer because they don’t do direct
computation on data. Their function is to take incoming
data and split it into whatever components a particular
splitter is designed for. This enables us to easily
add representations of incoming data for some kind of
data processing down the line. The data combiners
are used for aggregating different data and creating
complex objects based on it. This enables us to easily
expand the API with functionality without changing the
architecture, in a similar way to the architectural adapter
pattern [25] by having the new combiners “implement”
several other data services or combiners. This means a

'https://github.com/mikand13/
autonomous-services

Page 6572

EveniBus Communication

H PSS Communcation

Clients

Client / Internal Event Barrier
—————————————

Gateway Laver

—————————————————————

,,,,,,,,,,,,,,,,,,

w

Toolkit

,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,

Data Combiner

Gateway

Data Layer

| Data Services |

Storage Layer

=

Storage Services

Figure 1. Autonomous Microservices: a Reference Architecture

particular development team could expand functionality
for a particular use case autonomously. Splitters and
combiners can be set up for both external and internal
traffic. In the case where the input is similar but can be
produced both externally and internally, you should take
care to ensure there is no implicit coupling by handling
both in the same splitter or combiner.

Behind the gateway layer is the data services
layer. This layer comprises all data processing and
computational services. These services accept data on
a specific address, subscribe to any applicable splitter
addresses, and report any results to specific addresses,
both as publication (to any actor interested) and as a
direct send to a storage address, when applicable. The
data service itself does not concern itself with the result
of this send operation. If it does it should implement
logic for persisting the message and retrying it with an
exponential backoff, like a normal microservice would.
Data Services publish relevant results of data processing
to external services, e.g. representations for customers,
management etc. This allows the addition of processing
services, without manipulating the API.

At the end of the chain we have the storage services
layer. This layer comprises all services directly related
to data at rest. These services accept data on specific
addresses, like splitter/data service addresses, and store
that data in whatever way they see fit. This also enables
us to receive data across multiple services using a single
address to store that data in different ways. This isolates
the storage specifics of the data the service handles,
and enables fine-grained storage control. Addresses are
exposed for fetching this data directly by data combiners

in the gateway layer, and combining it with other data
before producing a final result.

Whenever data is changed in a storage service this
information is published to addresses to notify any
actors that require real-time information about that data.
An example of this would be one data service doing
some computation, which results in data being stored in
a storage service. Upon publication of that information
another data service might start computations on this
new data, as well as a customer system responding to
said information and performing some external work.

4. Results

Describing the entirety of the concrete solution
produced for TechnipFMC would take up too much
space and divert attention from the primary focus of
the paper. Instead, we focus on a Trade-off analysis
presented in section 4.2

4.1. TechnipFMC Architecture

The architecture produced for TechnipFMC employs
the same technologies as the toolkit, namely Vert.x
and nannog-tools, and it is hosted on Amazon Web
Services (AWS). The architectural diagram used for
TechnipFMC is shown in Figure 2. Within the internal
zone it bears close resemblance to the toolkit diagram
seen in Figure 1, but it is more fine-grained in its
representation of the outer zone. This is to contextualize
what kind of traffic is expected in the short term and the
disparity of data and clients to be expected in the future.

Page 6573

EwventBus Communication

HTTPS Communcation Customer Systems

Client / Internal Event Barrier

Technip Global Systems

DSl Systems

Downloads |

CRUD

Autonomous Sensor Information

Gateway

Daily Report Communication

Data Combiner

Data Splitter ’_\L

F F t-

Vessel
Uploads

Y

Data Transfer to Subscribing Services

|

CRUD

Third Party Services with
Relevant Metrics

——]=

3 1

Data Transfer from
Producing Services

Data Services ‘

¥ ¥

Il
]

Storage Services

Figure 2. TechnipFMC Autonomous Microservices Architecture

The architecture is based on a large set of splitters
for a wide range of incoming data, and combiners
for a myriad of different visualizations. With every
added splitter or combiner another node, and in effect
gateway, is added to the cluster. This, combined
with the Claimer/Collector patterns with point-to-point
communication to coordinate within the service scope
we will not impact the rest of the cluster. This gives
us near-linear scalability without needing to configure
external brokers to meet the increased traffic.

4.2. Architecture-Based Trade-Off Analysis
and Evaluation

To evaluate the extent to which the aforementioned
design principles and practices are generalisable, we
evaluated them in the context of the utility trees
extracted from 6 industrial case-studies we conducted
in previous work [26]. On the one hand, a utility
tree [27] is a stakeholder-friendly way to organize
software architecture quality principles and attributes
and is used in the context of the Architecture
Tradeoff Analysis Method (ATAM), a workshop based
stakeholder-engagement activity aimed at eliciting and
reasoning about the tradeoffs among quality attributes
characteristics. ~ On the other hand, in the scope
of our evaluation, utility trees serve the purpose of
understanding the extent to which the aforementioned

ID Segment #Stakeholders | #Services
1 Avionics 7 44
2 Automotive 5 31
3 Construction 4 23
4 | Data-Processing 3 11
5 Resource-Mgt 5 18
6 Tourism 6 22

Table 1. An overview of the cases evaluated in our
study; domains range from avionics to tourism.

design principles and practices were already used in
these 6 industrial cases, where legacy assets were
migrated to a cloud-native solution.

For the sake of space, we cannot fully flesh out the
details pertaining to each case but briefly describe the
market segment and number of stakeholders engaged in
each, as well as the size of the architecture in question.
This information is summarized in Table 1.

The table highlights the variety of architectures
targeted in our evaluation as well as the different sizes
of the ATAM workshops we instrumented as part of
our study. This sample allows us to control for size of
the architecture, providing for small (10-19) to medium
(20-29) as well as larger architecture sizes, in terms of
the number of services.

Our research conjecture is that in every one of these
cases there exists evidence for the application of the

Page 6574

aforementioned principles and practices for the purpose
of structuring the refactored architectures.

4.2.1. Research Approach

The research approach consisted of a comprehensive
literature review highlighting the research domain
and providing the foundation upon which we
built the architectural principles. After distilling
these architectural principles we proceeded to an
implementation together with our industrial partner
TechnipFMC. To elicit the aforementioned evidence
of application of the proposed design principles in the
target case-studies, we did a thematic coding [28] of
the ATAM utility trees generated in 12 workshops. The
utility tree is an elicitation device that helps to elicit and
prioritize the quality attribute requirements for a system.
Our aim was to associate one (or more) of the proposed
design principles to the quality attributes in the utility
trees elicited for the 6 case-studies. Subsequently, we
operated content and frequency analysis to distill the
quantities in question.

4.2.2. [Evaluation Results

Figure 3 outlines our results from the ATAM-based
evaluation. The tree in the figure is a collapsed version
of the 6 utility trees that emerged from two ATAM
workshop rounds conducted for each case study. This
tree collapses together all of the major concerns reported
as part of each of the workshops (the leaves of the tree)
as well as the architectural quality attribute to which
the concerns relate to (intermediate level of the tree).
Finally, the tree is tagged with the frequencies of each
of the concerns.

The tree shows (see the dotted boxes in Fig. 3) that
several dimensions emerged from our case-studies,
namely system security, its observability and
security—where indications of the impact of the
independence principle occur 22 and 17 times,
respectively—as well as scalability (where indications
of the impact from the scalability principle occur 16
times) and organizational structure (where indications
of the impact from the agnosticism principle occur 18
times). These concerns are addressed by the four AM
design principles proposed in the article. Furthermore,
the frequency of these concerns accounts for 32% of all
coded concerns throughout the 6 case studies—namely,
we summed and ratioed the recurrence of concerns as
shown in Fig. 3. This frequency highlights the impact
and importance of the proposed principles and suggests
that they are generalisable outside of the scope of the
industrial environment in which the AM principles were

6x software-defined
infrastructure failure
11x infrastructure
provisioning failures
node overload

Performance

5x

18x CD/CI

Pipeline burdening
- 7
— Observability - Passive Monitoring
22x Blocking Intercom. K
Independence |

--=

16X policy restrictions

impede data processing
UTILITY —|— Security«E impossible RBAC

LA7x Blocking Intercom. |
i

1 Independence

,,,,,,,,,,,,,,,,,,,,,,

24x €lasticity requirements

too costly
——— Scalability
,,,,,,,,,,,,,,,,,,,, N
16x stateful computing

! forces synch i
9x continuous concurrent
- architecting ___
A8x_ ALM Complexity with |
1 distributed development:
i

Org. Structure

Figure 3. A blended ATAM-based utility tree from
all 6 case studies. Dotted boxes reflect shortcomings
aligned with the AM design principles.

originally incepted.
S. Discussion

We have identified key challenges in the way
microservices are viewed and employed today. These
are mainly: HTTP as a synchronous request/response
technology, load distribution and connection saturation,
and external brokers, such as Kafka (a message
queuing middleware [29]) that create strong coupling
and establish a sort of master-slave relationship, which
is counter to microservice principles. Coupled with
this, we have identified shortcomings in real-world
architectures, from the tradeoff analysis, and we now
apply this understanding as a basis for our discussion.

As described by Mulesoft and other practitioners
in an IEEE panel, there are quite a few challenges
with microservices [12, 5, 6]. If you think that
these challenges won’t apply to you if you just “do
it right”, you will pay dearly. For example, our
evaluation shows that 32% of the total concerns in our
showcased examples can be linked back to our design
principles, as outlined in Sec. 3. An example of
how existing SOA principles do not scale up can be
found in fine-grained SOA. This implementation is, in
their words, the “big band” of MSA and was born out
of the acknowledgement that traditional SOA which
are relatively coarse-grained services are too difficult
to meaningfully change without side-effects. That
approach is holding development teams back. Their

Page 6575

solution seems simple: break all the services up into
finer-grained services with a single purpose. However,
this introduces several impacts on your system [12, 5],
such as increased traffic, a large number of services
to manage and automatic orchestration for integration,
testing and deployment. So in general you can say that
while the initial ambition of MSA was to reduce the size
of services, eventually it became clear that that in itself
was not enough to fulfill the ambition of MSA.

Furthermore, from an infrastructure perspective,
HTTP appears to be the main source of communication
for microservice architectures (MSA) [5, 9, 4, 30, 11,
12]. That makes a lot of sense considering it is extremely
well documented and tested. Through the DNS system
of the Internet, URLs are very easy to reason with
and most hosting providers operate on HTTP based
load-balancers. While we did manage to identify a
few methods of communication that differ from HTTP,
like Gossip-Based communication, this approach has
challenges. For example, monitoring the actual flow of
execution is difficult.

Finally, Message-Based communication, which can
be seen as the precursor for EBAs is interesting. There
have been many implementations of this in the last
15 years, usually revolving around external brokers
[12]. We view this as an anti-pattern for MSA as it
undermines the foundation of SOA. All services should
be able to communicate even if another external service
has a catastrophic breakdown. In the scenario of an
external broker, like the message queues and event
queues of Mulesoft [12] and as described by Newman
[30] and Shadija et al [9], they are “communication
services” because at the instant they go down, the entire
architecture breaks. This has motivated Newman’s
“Decentralize all the things” principle [30]. This single
point of failure is a central problem, and addressing it is
fundamental to the AM principles.

5.1. Revisiting the problem

By strictly enforcing asynchronous communication
between services, as shown in the reference
implementation, and removing the need for a master
configuration by implementing new patterns like
Claimer and Collector in the toolkit we achieve fully
decentralized coordination. This in itself however
is not necessarily enough to prevent the bottlenecks
inherent in Master-Slave patterns. As stipulated in
the Communication Independence principle we must
also ensure that communication is point-to-point
between services so that our coordination scales with
the architecture. This is resolved by employing the
Vert.x technology, and refraining from using any of the

distributed data structures which are based on Hazelcast
and concurrency locks across nodes.

The primary focus of the Agnosticism and
Independence principles lies in increasing development
speed, and reducing architectural complexity. Because
of the decoupled nature of AM, a skilled team always
knows the answer to questions such as the ones
emerging in our case-studies, such as: “Where should
we schedule batch tasks?”, “Where should we configure
the API to allow access to our service?” etc. Regarding
questions of centralized control structures the answer
is “just don’t do it”; it must be managed within the
service scope, preferably event-based without the use
of permanent storage unless explicitly required. API
access is always handled automatically by the Gateway
layer at runtime by registering and unregistering
services, so that no further configuration is needed.
HTTP obviously breaks this contract because you
must be able to route to an instance, and in real world
applications you need to support this protocol, as
discussed by the IEEE panel on typical implementations
of microservice architectures [5, 6]. However, our
principles are intended as a solution going forward,
and do not take responsibility for being backwards
compatible with everything that came before.

As a result of these technical challenges in
contemporary architectures and varying opinions on
exactly what a microservice is, we chose to contribute
a concrete architecture embodying our four design
principles for asynchronous and agnostic microservices.
These principles are meant to be concrete in their
representation, so as not to provide yet another vague
definition of exactly what a microservice is. What
these design principles do is define the architectural
style of AM’s in such a way that they can be reasoned
about as concrete microservices and not as merely vague
concepts. We now discuss how we make each of these
principles concrete.

5.2. Adherence to the Communication
Independence Design Principle in the
Toolkit

For non-blocking communication we achieve this
with point-to-point TCP messages sent asynchronously
between instances of a service over the distributed
eventbus. HTTP is only used for those services that
have a client that demands it or when we are transferring
files across the network. It would be an unnecessarily
complicated operation to transfer large binaries over the
eventbus, and would add unnecessary overhead. In these
scenarios an initial request is sent over the eventbus to
request an up- or down-load URL.

Page 6576

5.3. Adherence to the Organizational
Agnosticism Design Principle in the
Toolkit

Cohesion is key to adhering to this principle and
agnosticism has been a primary concern in constructing
the interfaces and classes used by the entirety of the
Toolkit. All the services have been designed for, and
been tested in, Docker containers. This gives easy
encapsulation across different environments. This is
explained in detail by Gouigoux et al. [10]. It allows
us to deploy the service with all dependencies included
directly, regardless of the host configuration. In addition
they have been designed to be inward-looking, and
only require the access address to any service that has
information they need. With the Claimer and Collector
patterns for communication all instances of services can
coordinate between each other and interact with other
services without breaking the Agnosticism principle,
nor the Scalability principle.

It would be natural to construe the Gateway
layer as a new Master-Slave configuration as
discussed by Pautasso et al [5], and thus invalidating
Autonomous Microservices as “just another
Microservices approach”, but it is in fact a logical
Gateway which is distributed across all nodes
in the reference implementation, by use of the
BackgroundGatewayLauncher in the gateway module.
This way the capacity for throughput in and out of the
gateway scales with the architecture and is not reliant
on a dedicated scaling of a “Gateway service”, most
commonly known as an API Gateway.

5.4. Adherence to the Scalability Design
Principle in the Toolkit

Low resource consumption is a key element of
scaling, especially when implementing fine-grained
microservice architectures, as we do not want to
pay for more hardware than necessary. As shown
by Francesco [4] we gain a finer ability to scale
our resources with this separation. But as detailed
by Shadija et al [9] we also increase overhead
for monitoring and distribution. ~ For that reason
we needed to investigate lightweight technologies
for the reference implementation that provided both
asynchrony and non-blocking technologies to maximize
available performance. Due to extensive experience
with it and the added bonus of the asynchronous and
non-blocking nature of Vert.x, that is the technology we
ended up using. One could argue that there are more
tried and tested technologies out there, and while we
agree, they are usually in the form of large frameworks
or otherwise heavyweight enterprise platforms that are

not natural to microservice based architectures. So
even though Vert.x is not an absolute requirement for
establishing low resource consumption for AM, it is the
“weapon of choice” for our reference implementation.
The way low resource consumption is achieved is with
the multi-reactor pattern at the heart of Vert.x. In
essence this means that all available kernel threads
are utilized, and at the same time this constrains the
application from threading above that count. This means
we will not bloat memory with threads or experience
thread starvation. We can then reserve more memory
for application concerns and more realistically calculate
the memory and CPU needs of a single service.

5.5. Adherence to the Independence Design
Principle in the Toolkit

There are no concrete examples of the
self-management of the lifecycle of a service in
this principle in the toolkit, because that would inflate
the scope a tremendous amount. We could have
produced a notification based interface integrated with
AWS but for this paper we choose to focus on the
architectural elements of Autonomous Microservices
and not those that border on infrastructural concerns.
However, we did not think it would be correct to remove
it from the principle because it is an integral part of the
idea of AM. So it remains, not currently handled in the
toolkit because of scope and resource limitations, but as
an inspiration for future work.

5.6. Limitations

We acknowledge there are some non-trivial
limitations to this work, in particular concerning its
generalisability. Our research has introduced and
elaborated on our 4 design principles and showcased
them through an industrial implementation. Given space
limitations in this article we could extensively elaborate
on the implementation and acknowledge that doing so
could have paved the way for an even higher degree of
transparency, insight into the enforceability and general
applicability of our design principles. We acknowledge
that more research and more company implementations
must be conducted to claim that our principles constitute
a true design pattern or architectural style. However, we
do think the results extensively point in this direction
and the concepts presented are all worthy of further
pursuit.

6. Conclusion

This paper set out to describe approaches for
achieving linear scalability in MSAs, by eliminating

Page 6577

centralized communication brokers, as presented in
Section 1. This paper has produced two concrete
contributions: 1) a set of AM design principles
along with an open source toolkit as a reference
implementation and 2) a trade-off analysis, employing a
utility tree, highlighting impacts of AMs in several case
studies. The four design principles presented in Section
3 and discussed in Section 5 specify the constraints that
should be enforced on an AM architecture.

The toolkit was successfully expanded upon to create
a proof of concept architecture for data collection
at TechnipFMC. In this system we were able to
demonstrate how an AM architecture diverges from the
typical reliance on centralized coordination to facilitate
near-linear scalability. As we have observed, the use
of these AM principles leads to a dramatically less
complex environment into which teams can introduce
new services. The results of the implementation
for TechnipFMC demonstrates the viability of the
AM principles in a real project, and showcases the
decentralized nature of the communication. The
point-to-point nature of communication and adherence
to the AM design principles resulted in near-linear
scalability.

References

[1] M. P. Papazoglou and W.-J. van den Heuvel, “Service
oriented architectures: approaches, technologies and
research issues,” The VLDB Journal, 2007.

[2] D. J. Farber, “Software considerations in distributed
architectures,” Computer, vol. 7, 1973.

[3] J. Soldani, D. A. Tamburri, and W.-J. van den Heuvel,
“The pains and gains of microservices: A systematic
grey literature review.,” Journal of Systems and Software,
vol. 146, pp. 215-232, 2018.

[4] P. D. Francesco, “Architecting microservices,” [EEE
International Conference on Software Architecture
Workshops, 2007.

[5] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis,
and N. Josuttis, “Microservices in practice, part 1 :
Reality check and service design,” IEEE Software, 2017.

[6] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis,
and N. Josuttis, “Microservices in practice, part 2 :
Service integration and sustainability,” IEEE Software,
2017.

[7]1 P. Clements, R. Kazman, and M. Klein, Evaluating
Software Architectures: Methods and Case Studies.
Addison Wesley, 2001.

[8] S. Bellomo, I. Gorton, and R. Kazman, “Toward agile
architecture: Insights from 15 years of ATAM data.,”
IEEE Software, vol. 32, no. 5, pp. 38-45, 2015.

[9] D. Shadija, M. Rezai, and R. Hill, “Towards an
understanding of microservices,” 23rd International
Conference on Automation and Computing, University
of Huddersfield, Huddersfield, 2017.

[10] J.-P. Gouigoux and D. Tamzalit, “From monolith
to microservices - lessons learned on an industrial

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]
[24]

[25]

(26]

(27]

(28]

(29]
(30]

migration to a web oriented architecture,” IEEE
International Conference on Software Architecture
Workshops, 2017.

J. Lewis and M. Fowler, “Microservices: A definition of
this new architectural term,” 2014. Online; accessed 9
Nov. 2017.

Mulesoft, “The top 6 microservices patterns,”
Mulesoft, 2017.

S. Hassan and R. Bahsoon, “Microservices and their
design trade-offs: A self-adaptive roadmap,” in IEEE
International Conference on Services Computing, 2016.

A. Sill, “The design and architecture of microservices,”
IEEE Cloud Computing, vol. 3, 2016.

Q. H. Mahmoud, Middleware for Communications. The
Atrium, Southern Gate, Chichester, West Sussex PO19
8SQ, England: John Wiley and Sons Ltd., 2004.

B. Christensen, “Optimizing the netflix api,” 2013.
Online; accessed 1 Nov. 2017.

P. Pietzuch, G. Mhl, and L. Fiege, “Distributed
event-based systems: An emerging community,” /IEEE
Distributed Systems, vol. 8, 2017.

M. Overeem, M. Spoor, and S. Jansen, “The dark side
of event sourcing: Managing data conversion,” in /[EEE
24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2017.

M. Fowler, “Event sourcing,” 2005. Online; accessed 14
Nov. 2017.

D. Yang and J. Cao, “A scalable data warehouse
model based on complex semantic event processing
in distributed systems,” [EEE 28th International
Conference on Data Engineering Workshops, 2012.

R. Manifesto, “Reactive manifesto v2.0,” 2014. Online;
accessed 14 Nov. 2017.

A. Debski, B. Szczepanik, and M. Malawski, “In search
for a scalable and reactive architecture of a cloud
application: Cqrs and event sourcing case study,” IEEE
Software (Not yet published 13.11.17), 2017.

J. V. Vasques. Online; accessed 27 Aug. 2019.

A. Mikkelsen, T.-M. Grgnli, and R. Kazman,
“Immutable infrastructure calls for immutable
architecture,” in 52nd Hawaii International Conference
on System Sciences, 2019.

E. Gamma, J. Vlissides, R. Helm, and R. Johnson,
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A.
Tamburri, and T. Lynn, “Microservices migration
patterns.,” Softw., Pract. Exper, vol. 48, no. 11,
pp- 2019-2042, 2018.

R. Kazman, M. Klein, and P. Clements, ‘“Atam:
Method for architecture evaluation,” Tech. Rep.
CMU/SEI-2000-TR-004, Carnegie Mellon Uiversity,
Software Engineering Institute, 2000.

K. Krippendorff, Content Analysis: An Introduction to
Its Methodology (second edition). Sage Publications,
2004.

Apache, “Kafka,” 2017. Online; accessed 16 Nov. 2017.

S. Newman, “Building microservices,” O’Reilly Media,
2015.

Page 6578

