
Container and VM Visualization for Rapid Incident Response

Dr. Jordan Shropshire

Information Systems Department

University of South Alabama

jshropshire@southalabama.edu

Dr. Ryan Benton

Computer Science Department

University of South Alabama

rbenton@southalabama.edu

Abstract

Most cloud security incidents are initially detected

by automated monitoring tools. Because they are tuned

to minimize the risk of false-negative errors, these tools

cast a wide net of suspicion. Depending on the scale of

the incident, the automated tools may implicate rather

long lists of VMs and containers. Hence, this study

proposes a new intermediate step aimed at reducing

the number of VMs and containers awaiting forensic

investigation.

The proposed method renders two-dimensional

visualizations of container contents and virtual

machine disk images. The visualizations can be used to

fingerprint container / VM contents, pinpoint instances

of embedded malware, and find modified code. The

proof of concept is evaluated in a pilot study. The

results indicate that it shows promise. Implications and

future research directions are also described.

1. Introduction

Containers and virtual machines are the building

blocks of cloud computer systems. They host the

applications and data which collectively provide

scalable, on-demand services to users on a global basis.

The integrity of containers and virtual machines (VM)

is paramount. If the containers and VMs providing a

service are not trustworthy, then the cloud is irrelevant.

Because of their pivotal role in cloud computing,

containers and VMs are frequently targeted for attack

[1]. Attackers may attempt an infiltration in order to

steal or corrupt data, install rootkits, or deploy

malware. If successful, they can use the container as a

springboard for data exfiltration, disrupting hosted

services, or launching attacks against other cloud

resources [2].

A large number of VMs, containers, and other

resources could be implicated in a cloud security event.

Automated monitoring systems cast a wide net when it

comes to identifying assets which could be involved in

an incident. Cloud operations team often end up

placing long lists of VMs and containers in quarantine

until they can be cleared [3]. The cloud hosting

provider has to perform a forensic investigation on

every implicated asset. This is often costly and time-

consuming. They may even be forced to ask clients

resolve the security issues on their own (see Figure 1).

Figure 1. Limits of public cloud forensics

Neither solution is desirable. Cloud clients may not

have the ability to perform their own investigation.

Furthermore, cloud client still have to pay for hosting

but do not enjoy the full use of their quarantined VMs

and containers.

Hence, this research proposes a new intermediate

step between automated analysis and digital forensic

investigation. This step would allow cloud operations

teams to perform rapid analysis and adjudication of

VMs and containers. This would reduce the number of

assets which require forensic analysis.

The proposed new step introduces a new method

for out-of-band investigation of containers and VMs.

Out-of-band inspection is the process of collecting data

from outside of the element being investigated. This

reduces the possibility of perturbations of potential

evidence. It uses a novel approach for directly

accessing the container file or VM disk image and

interpreting the contents.

The proposed method renders two-dimensional,

colorized visualizations of the bytes contained in the

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6397
URI: https://hdl.handle.net/10125/64525
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326835979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 2. Visualizing container files and VM disks

VM disk or container file. Bytes are read from file

and passed through a one-way privacy preserving hash

and then assigned an ASCII color based on byte value.

They are then transposed onto a PNG file of fixed

width and variable length (Figure 2, below). The

resulting visualization is intended to be interpreted by

members of the operations teams. It provides insights

into the contents of containers and VMs.

The proposed step is designed to provide a rapid

response to cloud-based incidents. With modest

classification thresholds, it could reduce the number of

assets requiring forensic analysis. This would reduce

operational costs and increase customer satisfaction.

A proof-of-concept test of the proposed new step is

evaluated. The results indicated that it shows promise

and merits additional development.

The remainder of this manuscript is organized as

follows: the next section contains the background. It

describes existing methods for forensically analyzing

containers and virtual machines and introduces the

basics of visualization. The conceptual development

section follows the background. It describes the

proposed method and the expected benefits. The

process of testing and comparison described in the

evaluation section. The results of the tests are

described next. Implications and future research are

then discussed. Finally, concluding comments are

shared.

2. Background

This section provides background information on

three topics. First, it reviews existing methods for

forensically analyzing containers and virtual machines.

Second, it surveys current visualization techniques.

Third, it reviews related research.

2.1. Container and VM forensics

Both containers and virtual machines provide a

means for software isolation, and are an essential

components of any cloud based-environment. With

containers, the abstraction is performed at the

operating system level [4]. Multiple containers can

share a single host operating system. Each container

has one or more applications and their associated

libraries, configuration files, and subdirectory

structures [5]. One of the most common container

platforms is Docker. Containers have the benefit of

being lightweight. They typically provide efficiencies

over and above their VM counterparts.

For their part, VMs offer more isolation, greater

security, and cross-platform functionality [6]. They

make use of hardware-level abstraction. Each VM

includes a complete operating system, software, and

host applications. Because they replicate the operating

system, they are more costly in terms of performance.

Although containers and VMs differ in a number of

respects, at a fundamental level they both provide a

means for isolating and maintaining software that

someone else may own [7]. In this sense, the methods

of their forensic analysis tend to overlap. Some of the

approaches to accessing and investigating a container

are also used on virtual machines [6]. This is most

evident in legally-motivated investigations.

Digital forensics were historically driven by the

need to support judicial proceedings. A high degree of

importance was placed on following process,

maintaining a chain of custody, etc. [8]. However,

Page 6398

current analyses may also be aimed at informing inter-

organizational processes and workflows. Here the

emphasis is on getting enough information to support

internal decision making while not violating terms of

service. Hence, there are two approaches to container

and VM forensics: the first is herein referred to as the

legal approach while the second will be called the

introspective approach because it uses interrogative

techniques.

The legal approach is a formalized process which

involves creating demonstrable links between points of

interest without modifying the original data. The

purpose is to provide evidence which conforms to the

practices and standards of a respective legal system [9].

This can involve several different issues, which were

partially discussed in O’Shaughnessy and Keane [10],

whose discussions dealt with data collection within a

cloud environment. Two key issues covered were the

chain of custody and multi-jurisdictional-legislation.

Chain of custody concerns with who had access to data

that will be used as evidence; given a given cloud can

span multiple geographical locations and be collocated

with other user’s data on a rack of servers, legally

obtaining the data, without crossing other users’ rights

can be challenging. This is even more complicated

when geographical location crosses jurisdictions

Once that issue is resolved and the raw files are

collected and duplicates are obtained, the forensic

investigator can proceed at a pace which allows for

appropriate diligence and care. The investigator begins

by importing a toolset which allows for brute force

password cracking [11]. After access is obtained, the

file and directory structure is reconstructed onto the

desktop of the workstation. The files and data of

interest are then gleaned.

This time-tested approach is reliable. It provides a

high degree of accuracy in file classification and

anomaly detection [12]. However, it is not particularly

time-sensitive. This approach is generally performed

post-hoc. However, it is not fast enough for real-time

operations. Too much time is lost in gaining access to

the container or VM. During a cyber event, the

operations team needs information as quickly as

possible.

The introspective approach consists of a family of

techniques which uses introspection in order to gain

insights into the processes being executed within [13].

Although this approach was originally developed for

virtual machines, parallel techniques and tools can be

used within the container space as well [4].

Introspection techniques monitor the runtime processes

and applications currently running in a virtual machine

or container. They give visibility into the software

being executed [14]. Introspection has been used in the

past to fingerprint the software running on a container

or virtual machine [6].

Introspection can be achieved via a few different

means. Dykstra and Sherman [15] developed FROST,

which is a set of tools that operated upon OpenStack, a

cloud operating system [16]. FROST permits users to

retrieve an copy of virtual disks associated with that

user’s virtual machines; it also checked API requests

and OpenStack firewall logs. One drawback is the tools

are built on-top of OpenStack and integrated into the

Horizon web-based user interface for OpenStack;

hence the stack was directly tied to OpenStack.

Another OpenStack-based approach was proposed

by Saibharah and Greethaukumari [17] who used

existing tools already available within the platform.

They built a framework based off of snapshots of both

random-access memory and disk images, as well as

working through logging systems native to OpenStack.

Finally, the researchers extended their framework to

incorporate network forensics. The evaluations showed

that evidence could be obtained for several different

types of attacks on a cloud environment.

Graziano et al. [18], unlike the previous two

studies, assumed that the forensics teams did not know

what hypervisor was being used. Hence, they

exploited physical memory dumps of a given machine

to identify (a) if a hypervisor is present and (b), if

present, what type of hypervisor was being used. The

concept was based upon the idea that hypervisors

virtualization of memory changed how that memory is

allocated.

Casalicchio and Percibali [19] focused specifically

on analyzing containers. They wanted to determine if a

battery of tools, that collected CPU and Disk I/O

workloads, captured the same information. They

determined different tools present similar but not

completely equivalent results. Rather than compare

tools, Watts et al. [20] examined whether Prometheus

[21], an open-source introspection tool, using default

metric collection, could be used to determine if a

container was infected or not during an investigation.

The results indicated it could be, but the authors noted

an automated solution, versus manual inspection,

would be desirable.

One drawback of the previous efforts was the

concept the assumption that the underlying system was

sound; that is, that no tampering or inconsistent

information had been introduced. Thrope et al. [22]

did not make this assumption, rather, they built a

virtual machine profiler model and a log auditor to

detect and report errors and inconsistencies within the

logs; the assumption is attackers could introduce

deletions and modifications to the logs. Results

indicated that the system could find inconsistencies

within the log, indicating that they had been modified.

Page 6399

Shropshire [23] approached the problem of

detecting anomalous behavior within a compromised

cloud system from a hardware prospective.

PowerCheck was developed, which identified

discrepancies by comparing the system state

parameters with parameters based upon server energy

consumption. Tests validated the idea of secondary

system measures as legitimate integrity monitors.

Unlike the previous studies. Stelly et al. [24]

focused on demonstrating the scalability of forensic

analysis of containers. They developed a toolkit

entitled SCARF toolkit that was shown to obtain high

throughput in processing when tested upon two

different clusters running containers.

2.2. Visualization techniques

The field of visualization encompasses a number of

techniques for interpreting data. These techniques

range in complexity from simple bar charts and line

graphs to x-y plots. Even more sophisticated

techniques may be used if the data structures and

relationships are highly complex. Visualizations can be

classified along three dimensions: the data to be

visualized, the visualization technique, and the

interaction technique [25, 26].

 Visualizations may be based on one-dimensional

data, two-dimensional data, multi-dimensional data,

text or hypertext, graph or relational data, hierarchical

data, or audio/visual signals [27]. In general, one

dimensional data are typically represented using

histograms or visualization similar to pie charts. Two

dimensional data may be visualized with scatter plots

and line graphs. Multi-dimensional data is often

associated with icon, dense-pixel, and geometric

transformations. Regardless of data type, some

preprocessing is usually performed in order to identify

complexities such as missing elements, trends,

conversions, and skewing tendencies. Following

normalization, the most appropriate visualization

technique is selected.

2.3. Related Research

Several studies have used the concept of

visualization for security, performance, and integrity

monitoring.

Perrig and colleagues developed a method for hash

visualization [28]. The visualizations were designed to

be used instead of authentication tokens or strings. It

was theorized that humans are better equipped to

compare images than identify differences in long

alphanumeric key strings.

A study by Lee et. al. [29] investigated malicious

codes using visual pattern analysis. In this study, a

number of malicious software packages were

visualized so that pattern matching algorithms could

detect repeated features. This study laid the

groundwork for a number of follow-up studies in

malware analysis.

A study conducted by Nataraj et. al. [30] examined

the usefulness of analyzing software binaries as

images, with the goal of automatically determining

which binaries were malware. In that study, binaries

were converted into grey-scale images. Image

processing techniques were used to extract texture

information, which was then feed into a classifier,

which would then determine if the binary was safe or

malicious. Various studies expanded upon the

classification of images of software by showing

texture-based classification was faster than dynamic

analysis [31], creating noise-tolerate features from

images [32], and finally by creating a full-fledge

system based on content-based search [33]. However,

all these approaches are based on file-level analysis.

A project conducted by Jain et. al. [34] created a

visual image of Android binaries in order to study the

effect of optimization and obfuscation techniques; the

latter is often used to hide the fact that malicious code

has been developed. The inspection was done

manually, and has aided by the fact Android binaries

are generally structured; hence, color coding

techniques based on the structure were utilized to

improve understanding. This work was expanded to

include predicting what type of obfuscation was being

used; accuracy of nearly 90% were achieved [35].

A number of visualizations techniques have been

used for network forensics and security [36]. Directed

and undirected graphics, radials, and hub-and-spoke

networks can be constructed from packet flows to

support easier interpretation among human analysts.

Additionally, new generations of network visualization

incorporate clustering and random walks.

3. Conceptual Development

Most cloud security incidents are initially detected

by automated monitoring tools. Because they are

generally tuned to minimize the risk of false-negative

errors, these tools cast a wide net of suspicion.

Depending on the scale of the incident, the automated

tools may implicate rather long lists of VMs and

containers. Typically, these assets have to wait in

quarantine until they can be forensically investigated

and cleared. This could anger clients and increase

operational costs for the cloud service provider.

Hence, this study proposes a new intermediate step

aimed at reducing the number of VMs and containers

awaiting investigation. The proposed method uses

Page 6400

visualization techniques to quickly interpret the

contents of VMs and containers and clear assets which

are unrelated to the incident.

The proposed new method is out-of-band, meaning

it is undetectable to the container or VM being

investigated. The container or VM is inspected from a

peering point within the hypervisor or container

engine. Furthermore, there is no impact on container

performance.

The proposed new method is designed to balance

speed with reliability. Further, it does not rely on brute

force password cracking. Additionally, it is highly

interactive. An investigator can manipulate the

visualization associated with the proposed method in

order to make rapid inferences.

The visualization methods support investigation of

the functionality of software housed in containers and

virtual machines. It enables the investigator to

fingerprint the contents of a container, identify

anomalous software, and detect content or media

which might be illegal.

The workflow is as follows: when suspicious

activity is reported or detected within the cloud,

monitoring software traces the activity over the

network back to a subset of potential offenders. These

containers or virtual machines may fall within the same

subnet, broadcast domain, or reside in the same

physical host or data center.

Each suspicious container or VM is traced from its

host back to the location where its container file or VM

disk image is permanently stored. Here the proposed

visualization techniques would be used to create a

PNG image file for each file or disk image. The PNG

image contains a two dimensional visualization of the

raw contents of the container file or VM disk.

Once the visualizations are collected, members of

the operations team perform inspections in order to

identify their software contents. The team then looks

for anomalous modifications, rootkits, other instances

of malware, and illicit content. With little training it is

possible to make meaningful inferences from the

visualizations. For instance, contrasting visualizations

of the same container over time will yield a time-

ordering of changes in its contents (See Figure 3).

Assets which are clearly not part of an ongoing

cyber incident could be returned to production. This

would reduce time-in-quarantine, please clients, and

reduce forensic backlogs.

Figure 3. Detecting changes in container / VM contents

As described in the introduction, the process for

creating each visualization is as follows: each byte

from the container file or VM disk is sampled and

run through a one-way privacy-preserving hash

function. Each hashed byte is then mapped to 1 of

256 ASCII color values. Each color value is used to

shade the corresponding pixel in the visualization

PNG file.

Interpretation of the visualizations requires some

degree of contextualization. In many cases it is useful

Page 6401

to compare container or VM visualizations against

labeled segmentations of other images. This allows

the inspector to identify various segments within the

visualization of interest. For instance, such

comparisons can be made to identify operating

systems, libraries and specific applications. Once a

software component is identified it can be contrasted

against other visualizations of trusted instances of the

same component. Any unexplained differences would

be considered anomalies.

It is predicted that the proposed visualization

method will result in more accurate and timely

identification of container/ VM contents. It is further

expected to result in more accurate and timely

detection of anomalies within identified software

components.

4. Evaluation

A proof-of-concept evaluation was performed to

assess to the efficacy of the proposed new method.

Specifically, the evaluation sought to answer two

questions:

 How fast is the proposed method relative to other

investigative techniques?

 How reliable is the proposed method relative to

other investigative techniques?

4.1. Experimental Groups

Subjects were randomly assigned to either the test

group or the control group. Test group subjects used

the proposed visualization method to analyze

containers and VMs during a simulated cyber event.

The proposed visualization method was

operationalized for this experiment as a SaaS

platform (see Figure 4).

The platform was custom built for this research

using a combination of python 3 Anaconda libraries

for creating visualizations and JavaScript on the front

end for user interaction. It has modules for comparing

visualizations, identifying software components

within visualizations, and detecting anomalous areas

within known software.

The control group used the contemporary method

to analyze containers and VMs associated with the

same scenario. This group used Kali Linux for brute

force password cracking, data extraction, and

timeline reconstruction.

Figure 4. Forensic analysis using the SaaS

platform

4.2. Participants

A total of 42 individuals assisted in evaluation of

the proposed new methodology. Individuals were

either graduate students who had recently completed

a course on cloud computing, digital forensics, or

operating systems or were recent graduates. To

overcome biases, unfair experience, and any pre-

existing familiarity with commercial toolsets, only

individuals with no prior professional experience in

digital forensics were included in the study.

Individuals were evenly distributed between the

control group and the test group. Each subject

completed a 45 minute online training session which

described how to use the forensic tool associated with

their group. Subjects then completed a short online

quiz to ensure their familiarity with the toolset.

4.3. Procedure

The purpose of the evaluation is to assess the

relative speed and accuracy of the proposed

visualization method. Each subject was asked to

assess a large number of cloud-based assets during a

limited period of time. As previously indicated, half

of the subjects used the visualization method and half

used traditional techniques.

The analysis includes fingerprinting the software

in the suspicious containers / VMs, identifying

anomalous software, and correctly classifying

individual instances as benign or infected.

Subjects logged into a subset of a private, IaaS

(Infrastructure-as-a-Service) cloud which was

constructed for the purposes of this experiment. Each

subset contained the analytical tool associated with

the subject’s assigned and replications of the same

Page 6402

container and VM instances. During their analysis,

participants recorded their findings conclusions for

each container or VM instance they analyzed within a

web-based form. The form consisted for 30 sections –

one for each container or VM. There was a space to

record the software inventory and denote the absence

or presence of anomalous code for each instance.

4.4. Means of Comparison

Some 15 Docker containers and 15 ESX-based

VMs were included. The 15 containers were clones

of a single MEAN (mongoDB, express, angular,

node.js) stack web application. The MEAN stack was

chosen because although it is widely used, it is of

sufficient complexity to warrant careful forensic

analysis. The latest stable version of each of the

MEAN stack elements was used in the image. Of the

15 containers 5 were infected with a rootkit which

consists of modified code in the node.js script and a

compressed key string in the angular library (see

Figure 5).

The 15 VMs were clones of a single LAMP

(Linux, Apache, MySQL, PHP) stack web

application. The LAMP stack was selected because it

provides a balance between familiarity and

complexity. The Ubuntu 18.04 Linux flavor was

used, along with the latest stable versions of the other

elements. (The study participants all reporting having

at least an introductory level of Linux proficiency.)

The stack was sufficiently large enough to require a

careful investigation. Of the 15 VMs 8 were infected

with a rootkit which modified code within the glibc

library and stored compressed malware in the

MySQL database.

Individuals were scored across two key metrics:

software fingerprinting accuracy and adjudication

accuracy. Fingerprint accuracy is defined as the

correct classification of each software component

within an instance. One point was awarded for

correctly identifying each software component. For

instance, for a container, one point would be awarded

for identifying each MEAN component (and the

node.js code base) for a total of five points per

container.

Similarly, seven points were available for each of

the main components of a LAMP VM. Adjudication

accuracy is the accuracy with which one correctly

classifies a container or VM as benign or infected.

One point is awarded for each correct classification

while a point is deducted for making an incorrect

classification. Overall, a total of 180 software

fingerprinting points and 30 adjudication points were

available for each candidate.

Figure 5. Comparing Container Visualizations

5. Results

Following the completion of the tests, the

demographic data and test results were imputed into a

spreadsheet for further analysis. The demographics

indicate that the subjects skewed towards a younger

age and gender skewed towards male. These data are

illustrated in Table 1 (below). To compare the

performance of the proposed forensic method against

the standard method, a series of T-tests of significant

differences were completed.

The first test compared relative performance at

fingerprinting. The results of this test are shown in

Table 2 (below). The results indicate that the test

group earned significantly more points for

fingerprinting than the control group. This is likely

because once the individuals in the test group learned

to visually recognize specific software components in

the first few visualizations they only needed to

procure visualizations of the other instances to make

quick comparisons. On average, members of the test

group blueprinted 12 containers and 4 VM instances

(for an average of 88 points) while the control group

inspected 5 containers and 1 VM (37 points on

average).

Page 6403

It appeared that the control group did not suffer in

terms of fingerprinting accuracy. Of the images they

analyzed, their accuracy was either on par or above

the level of the test group. However, they were

limited in their ability to project their acquired

insights across the domain. The traditional approach

is costly in terms of the time consumed acquiring

access credentials for each instance. Further, it does

not provide a single snapshot of the software

contents. This has to be determined manually for

each instance.

A second t-test of significant differences was

conducted to assess adjudication accuracy (see Table

3). This is the extent to which a container or a VM is

correctly classified as containing suspicious software.

Although there were significant differences, the gap

was somewhat less dramatic. The test group earned

an average 12 points while the control group earned 4

points on average.

Members of the test groups did not have to wait

for access the containers or VMs. Hence they were

able to inspect more instances in the same period of

time. On a per-instance basis, it appears that the

accuracy rates are relatively equivalent between

groups. The test and control groups averaged a

classification rate of approximately 68% and 71%,

respectively. Neither approach is conclusively more

accurate than the other.

To sum, the results of the tests indicate that the

proposed visualization method outperforms the

contemporary methods in terms of the speed and

accuracy of software inventorying and adjudication.

Age
18-24 25-29 30-39 40-49 50-59 60+

19 18 4 1 0 0

Gender
Male Female Other

27 15 0

Ethnicity
White Black Hispanic Asian Am. Indian Other

28 3 0 11 0 0

Table 1. Demographics

 Levene’s Test t-test for Equality of Means

F Sig. t df
Sig.

(2-tailed)
Mean
Diff.

Std.
Err.
Diff.

95% Confidence
Interval

Lower Upper

Equal variance
assumed

9.32 .000

4.41 40 .000 51 6 49.13 52.87

Equal variance
not assumed

5.01 38.14 .000 51 6 49.98 53.54

Table 2. t-Test of Significant Differences at Fingerprinting

 Levene’s Test t-test for Equality of Means

F Sig. t df
Sig.

(2-tailed)
Mean
Diff.

Std.
Err.
Diff.

95% Confidence
Interval

Lower Upper

Equal variance
assumed

1.332 .005

2.98 40 .005 8 2.01 7.38 8.62

Equal variance
not assumed

3.01 38.72 .005 8 2.01 7.42 8.68

Table 3. t-Test of Significant Differences at Adjudication

6. Implications and future research

The proof-of-concept test described in the

previous sections yields several implications. It

appears that subjects using the visualization method

could adjudicate more VMs and containers than

subjects using traditional methods in the same time

period without a significant increase in errors. During

a massive cloud security incident it would be

beneficial to use the proposed method in order to

reduce backlogs of assets awaiting forensic analysis.

Page 6404

Future research should focus on exploring the

relationship between the granularity of the

visualization, analytical speed, and classification

accuracy. It is expected that down-sampled images

allow for faster analysis although they increase the

likelihood that subtle details will be missed. Further,

future research should focus on automating the

process of software blueprinting. Machine learning

methods such as near-neighbor could be useful for

classifying installed.

7. Conclusions

It is concluded that the proposed method of rapid

incident response could of significant value when

time is of short supply and/or a large quantity of

containers or VMs must be evaluated. An additional

analytical step between automated incident detection

and forensic investigation could save considerable

time and effort if it reduces investigation backlogs.

The proposed method provides an out-of-band

approach to investigating the contents of hosted

instances. It uses a new visualization technique to

display data which might be otherwise difficult to

understand. In this case, the data represents raw bytes

taken from cloud storage. This is a novel viewpoint

which users could not ordinarily access or interpret.

The proof-of-concept tests suggest that the

proposed new step merits additional testing and

development. Using the visualization tools,

Individuals were able to successfully detect malware

approximately 70% of the time. With more research

and development this could rise even higher. Future

combinations of visualizations with more advanced,

intelligent forensics will likely provide even better

results for cloud computer systems.

8. Conclusions

This work is supported in part by the National

Science Foundation award IIP-1740434 and in part

by the Industry Advisory Board of the Center for

Advanced Research in Forensic Science.

9. References

[1] Kandukuri, B., R. Paturi, and A. Rakshit, Cloud

Security Issues, in 2009 IEEE International Conference on

Services Computing. 2009: Bangalore, IN.

[2] Jansen, W., Cloud Hooks: Security and Privacy Issues

in Cloud Computing, in 44th Hawaii International

Conference on System Sciences. 2011: Kauai, HI.

[3] Aikat, J., et al., Rethinking Security in the Era of Cloud

Computing. IEEE Security & Privacy, 2017. 15(3): p. 60-

69.

[4] Watts, T., et al., Insight from a Docker Container

Introspection, in Proceedings of the 52nd Hawaii

International Conference on System Sciences. 2019: Maui,

HI.

[5] Xavier, M., et al., Performance Evaluation of

Container-Based Virtualization for High Performance

Computing Environments, in 21st Euromicro International

Conference on Parallel, Distributed, and Network-Based

Processing. 2013: Belfast, UK.

[6] Rosenblum, M. and T. Garfinkel, Virtual Machine

Monitors: Current Technology and Future Trends.

Computer, 2005. 38(5): p. 39-47.

[7] Felter, W., et al., An Updated Performance Comparison

of Virtual Machines and Linux Containers, in 2015 IEEE

International Symposium on Performance Analysis of

Systems and Software 2015: Philadelphia, PA.

[8] Olsson, J. and M. Boldt, Computer Forensic Timeline

Visualization Tool. Digital Investigation, 2009. 6(1): p. 78-

87.

[9] Osborne, G., H. Thinyane, and J. Slay, Visualizing

Information in Digital Forensics, in 8th International

Conference on Digital Forensics. 2012: Pretoria SA.

[10] O’Shaughnessy, S. and A. Keane, Impact of cloud

computing on digital forensic investigations, in IFIP

International Conference on Digital Forensics, pp 291-303,

Jan. 2013.

[11] Palomo, E., et al., Visualisation Of Network Forensics

Traffic Data with a Self-organising Map for Qualitative

Features, in Proceedings of International Joint Conference

on Neural Networks. 2011: San Jose, CA. p. 1740-1247.

[12] Vlastos, E. and A. Patel, An Open Source Forensic

Tool to Visualize Digital Evidence. Computer Standards &

Interfaces, 2007. 30(6): p. 614-625.

[13] Garfinkel, T. and M. Rosenblum, A Virtual Machine

Introspection Based Architecture for Intrusion Detection, in

Proceedings of the Network and Distributed System

Security Symposium. 2003: San Diego, CA.

[14] Choo, K., C. Esposito, and A. Castiglione, Evidence

and Forensics in the Cloud: Challenges and Future

Research Directions. IEEE Cloud Computing, 2017. 4(3):

p. 14-19.

[15] Dykstra, J. and A.T. Sherman, Design and

Implementation of FROST: Digital Forensic Tools for the

OpenStack Cloud Computing Platform. Digital

Investigation, 2013. 10, pp. S87-S95.

[16] What is OpenStack?, accessed Sep 21, 2019

https://www.openstack.org/software/.

[17] Saibharath, S. and G. Geethakumari, Design and

Implementation of a forensic framework for Cloud in

OpenStack cloud platform, in International Conference on

Advances in Computing, Communications and Informatics,

pp 645-650, Sep 2014.

Page 6405

https://www.openstack.org/software/

[18] Graziano, M., A. Lanzi, and D. Balzarotti, Hypervisor

Memory Forensics, in International Workshop on Recent

Advances in Intrusion Detection, pp. 21-40, Oct. 2013.

[19] Casalicchio, E. and V. Perciballi, Measuring Docker

Performance: What a Mess!!!, in Proceedings of the

ACM/SPEC on International Conference on Performance

Engineering Companion, pp. 11-16, Apr 2017.

[20] Watts, T., R. G. Benton, W. B. Glisson, and J.

Shropshire, Insight from a Docker Container Introspection,

in Hawaii International Conference on System Sciences,

pp. 7194-7203, Jan 2019.

[21] Prometheus - Monitoring system & time series

database, accessed 21 Sep 2019, https://prometheus.io/.

[22] Thorpe, S., I. Ray, T. Grandison, A. Barbir, and R.

France, Hypervisor event logs as a source of consistent

virtual machine evidence for forensic cloud investigations,

in IFIP Annual Conference on Data and Applications

Security and Privacy. Pp. 97-112, July 2013.

[23] Shropshire, J, Securing Cloud Infrastructure:

Unobtrusive Techniques for Detecting Hypervisor

Compromise, in International Conference on Cloud

Security and Management, pp. 86-99 , 2015.

[24] Stelly, C. and V. Roussev, SCARF: A container-based

approach to cloud-scale digital forensic processing. Digital

Investigation, 2017. 22, p. S39-S47.

[25] Hansen, C. and C. Johnson, The Visualization

Handbook, ed. E. Butterworth-Heinemann. 2005,

Burlington, MA.

[26] Munzner, T., Visualization Analysis and Design. 2014,

New York, NY: CRC Press.

[27] Marschner, S. and P. Shirley, Fundamentals of

Computer Graphics. 4th ed. 2-15, Boca Raton: Taylor &

Francis.

[28] Perrig, A. and D. Song, Hash visualization: A new

technique to improve real-world security, in Workshop on

Cryptographic Techniques and E-Commerce. 1999: Hong

Kong.

[29] Lee, D., et al., A Study on Malicious Codes Pattern

Analysis Using Visualization, in 2011 International

Conference on Information Science and Applications.

2011: Jeju Island, South Korea.

[20] Nataraj, L., S. Karthikeyan, G. Jacob, and B.S.

Manjunath, Malware Images: Visualization and Automatic

Classification in International Symposium on Visualization

for Cyber Security (VizSec), 7 pages, Jul. 2011.

[31] Nataraj, L., V. Yegneswaran, P. Porras, and J. Zhand,

A comparative assessment of malware classification using

binary texture analysis and dynamic analysis in ACM

Workshop on Security and Artificial Intelligence, pp 21 –

30, Oct 2011.

[32] Kirat, D., L. Nataraj, G. Vigna, and B. S. Manjunath,

SigMal: A Static Signal Processing Based Malware Triage

in Annual Computer Security Applications Conference, pp

89-98, Dec 2013.

[33] Nataraj, L., D. Kirat, B. S. Manjunath and G. Vigna,

SARVAM: Search And RetrieVAl of Malware in Annual

Computer Security Applications Conference (ACSAC)

Workshop on Next Generation Malware Attacks and

Defense (NGMAD), 9 pages, Dec. 2013.

[34] Jain, A., H. Gonzalez, and N. Stakhanova, Enriching

reverse engineering through visual exploration of Android

binaries, in Program Protection and Reverse Engineering

Workshop, 9 pages, Dec. 2015.

[35] Kaur, R., Y. Ning, H. Gonzalez, and N. Stakhanova,

Unmasking Android Obfuscation Tools Using Spatial

Analysis, in Annual Conference on Privacy, Security and

trust, 10 pages, Nov. 2018.

[36] Shiravi, H., A. Shiravi, and A. Ghorbani, A Survey of

Visualization Systems for Network Security. IEEE

Transactions on Visualization and Computer Graphics,

2011. 18(8): p. 1313 - 1329.

Page 6406

