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Abstract 

 
  Chaotic and random time series generated from 

improved chaotic and random neural network (CRNN) 

afford statistically appropriate pseudo-random number 

series for information security. Randomness of outputs 

of CRNN is empirically validated in detail, and control 

methods of an appropriate ratio of chaotic character 

and randomness in the time series for PRNG is 

reported.  The rate of random number generation has 

reached 2.8530×10
12

 b/s. In future, the generator may 

play an important role on implementing applications 

for protecting personal information on the Internet.  

  

 

1. Introduction  

 
Chaotic time series from the artificial neural 

networks (for example CNN in Figure.1) are useful for 

a pseudo-random number generator (PRNG) for stream 

cipher. CNN consists of 4 conventional artificial 

neurons [1-6].  It is useful for protecting private data 

and keeping safety on the Internet.    

Recently, we have reported pseudo-random number 

series from CNN with fix-point arithmetic for applying 

the cipher to embedded systems [5,6].  The fix-point 

arithmetic is a simple Q5.26 without a carry and it 

allows overflow and underflow of variables.  APLF 

(Asymmetric Piecewise-Linear-Function) [3-6] has 

been used as an activation function for the networks 

(Figure 2).  The preliminary study suggests that the 

time series has both chaotic and random property; 

therefore the network is called CRNN (Chaotic and 

Random Neural Network) hereinafter.  

  In this paper, we report experimental validation of 

randomness in CRNN outputs, and report control 

methods of an appropriate ratio of chaotic character 

and randomness in the time series for PRNG, and also 

report a novel fast and secure PRNG.  It is expected 

that information security applications using CRNN can 

be applied to IoT device or embedded systems which 

do not support double-precision-floating-point 

arithmetic, and also smartphones with GPU.   

2. Properties of CRNN 

  
 2.1. Iterations of CRNN and the extraction 

method of pseudo-random number 

  
   The network that composed of 4 neurons in the 

discrete-time system has been used for a chaos 

generator (Figure 1).  Ij is an external input of jth 

neuron.  A total value of inputs in jth neuron at time t (t 

= 0, 1, 2, ...) is defined as equation 1.  wij is a synaptic 

weight and xi is an input from ith neuron at time t.  An 

output from jth neuron at time t+1 is defined as 

equation 2 with the asymmetric piecewise-linear-

function (APLF) f (Figure 2).  The time series 

generated from CRNN can separate into 2 independent 

subseries; α series and β series [5,6].  In other words, 2 

subseries are simultaneously generated.   

  Computer generated chaotic time series is eventually 

periodic by the calculation with the finite precision 

within our knowledge.  A period of chaotic time series 

from CRNN changes with a different external input 

value I.  Therefore, a perturbation ID is added to an 

external input I at odd discrete time t = 1, 3, 5, ... where 

perturbation ID is a small additional value.  2 subseries 

don’t always reach different periodic orbits, the 

perturbation ID, however, leads the 2 subseries to 

different periodic orbits [5,6].  Generally, ID can be 

decided randomly.  Result on α series is shown in the 

following unless otherwise mentioned. 

 

 

 

 

 

 

 

 

Figure 1.  Neural networks consist of 4 neurons 
having cyclic structure (C4-nn). 

CNN: C4-nn with double-precision-floating point arithmetic. 
 CRNN: C4-nn with fix-point arithmetic (Q5.26). 
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𝑢𝑗(𝑡) = ∑ 𝑤𝑖𝑗𝑥𝑖(𝑡)

𝑛

𝑖=1

+ 𝐼𝑗             (1) 

 
𝑥𝑗(𝑡 + 1) =   𝑓(𝑢𝑗(𝑡))                 (2) 

 
Pseudo-random number series were extracted from 

outputs of CRNN by the method shown in Figure 11(a) 

until now because the chaotic time series itself is not 

uniform as shown in Figure 3. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 2. An activation function f (APLF) for CRNN 

using fix-point arithmetic. 
The value of the points, A-E can be decided randomly, APLF1 
(f1) and APLF3 (f3) are used in this work. 

 
2.2. Randomness in outputs of CRNN 

 

Randomness in outputs of CRNN is observed on 

the attractor as shown in Figure 3.  The distribution, 

however, is not uniform, because APLF1 has 3 fixed 

points; 2 attractive fixed points near (20.999784, 

20.999784) and (-20.999900, -20.999900), and the 

repelling fixed point near (-0.292066, -0.292066).  The 

interval of possible values on Q5.26 is X = [-32, 32-2
-

26
], so initial values of CRNN can be selected in the 

Cartesian product, X × X.  Points in X × X are attracted 

to the attractor shown in Figure 3; the interval of 

attractor is about X' = [-26.5, 26.7].  The volume of X 

× X is diminished to X' × X' in 2D phase space.  The 

Lyapunov spectrum [7] of CRNN has positive value 

(1.664, 0.796) under the standard condition.  Therefore 

it implies that the time series involves considerable 

randomness besides the chaotic properties.  More 

evidence on randomness is mentioned in the following. 

 

 
 

(a) the attractor at even time (t = 0, 2, 4...) 

 

 
 

(b) the attractor at odd time (t = 1, 3, 5...) 

 
Figure 3. The attractor of CRNN with APLF1 and 
synaptic-weight-set A. 
The parameters are ID = 0.119725, I = 0.000123, and 
synaptic-weight-set A (w12 = -12.60001, w23 = 5.951, w34 =  
-4.7004, w14 = 4.511, w41 = -7.345007).  

  
The determinism of the time series (the outputs of 

CRNN) is analyzed by the iso-directional neighbors 

plot (IDNP) which is the product set of RP and IDRP. 

IDNP shows the set of points that keep neighbors and 

similar moving directions [8].  The result on the time 

 APLF1(f1) APLF3(f3) 

u x u x 

A -21.0001 -21.0 -31.0001 -31.001 

B -4.980101 -12.9899 -7.9811 -8.29999 

C 0.0 0.499012 0.0001 0.500012 

D 4.980101 12.6891 7.981101 8.6901 

E 21.0002 21.0 31.0002 31.00999 

x 

u 0 

x = f (u) 

A 

B 

C 

D 

E 

x3 

x1 

x4 

x2 
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series from CRNN with APLF1 is shown in Figure 4.  

The determinism of the time series is low because the 

cardinality of the set IDNP is small.  The result also 

supports high randomness of the outputs of CRNN 

with APLF1. 

 

 
(a) Recurrence Plot (RP) 

 

 
(b) Iso-directional 

Recurrence Plot (IDRP)  

 

 

 
(c) IDNP (RP∩IDRP) 

 

Figure 4.  The determinism analysis of CRNN with 
APLF1. 

  
Furthermore, the number-of-points dependency on 

the Lyapunov spectra was observed (Figure 5).  

Lyapunov exponents increase with the number of 

points.  The dependency is particularly notable if time 

series involves larger dynamical noises [7].  In this 

case, a local versus global (LVG) plot of Lyapunov 

spectra is a possible method of analysis [7,8].   

The result of LVG plot of CRNN with APLF1 is 

shown in Figure 6.  The values of Lyapunov exponent 

change with the number of neighbors but they show no 

flat region.  The precise value of Lyapunov exponent 

would not be determined by the method, too, the 

tendency, however, is characteristic of the chaotic time 

series with large dynamic noises. 

  Entropy of a dynamic system is known to 

distinguish chaotic, random, and regular motion 

(equation 3) [10,11].  In particular, entropy of chaotic 

system is discussed on the basis of the invariant 

measure of the strange attractor (chaotic attractor).  

That is, the invariant measure of the chaos attractor (μi) 

gives pi (= μi), and the entropy S, which is considered 

as a scale of randomness.  

 

𝑆 = − ∑ 𝑝𝑖 log2 𝑝𝑖

𝑛𝑝

𝑖=1

                 (3) 

 

 
Figure 5.  The number-of-points dependency on 

Lyapunov Spectra of CRNN outputs with APLF1. 

 
Figure 6.  A local versus global plot of Lyapunov 

spectra of CRNN outputs with APLF1. 

 
The entropy of CRNN outputs with APLF1 is 

determined by using the invariant measure shown in 

Figure 3.  The number of partition (np) and the number 

of points (N) are determined as S approaches a 

maximum value in the system, that is, np = 4096, and 

N = 10
5
 in this work.  As for random time series (or 

uniform distribution), pi = 2
-12

 and then entropy in a bit 

unit should be S = 12 b, and 24 b for a whole network.  
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The entropy of the first line in Table 1 was determined 

by the invariant measure in Figure 3. The value, 21.60 
b is larger than entropy of the chaotic time series from 

CNN which is only 4 b.  It also suggests high 

randomness in the time series shown in Figure 3. 

 

3. Pseudo-random numbers extracted from 

CRNN outputs 

 
  Pseudo-random numbers had been extracted by the 

method in Figure 11(a) until now.  Generally upper bits 

of chaotic time series almost always include a fractal 

property; therefore the distribution is not uniform.  And 

lowest 3 bits sometimes include calculation errors in 

double-precision-floating-point arithmetic. 

  The extracted pseudo-random number series are 

tested by NIST SP800-22 test suite [12,13].  

Appropriate random number series for information 

security applications can be selected, because as for 

CNN the fail rates of the most NIST tests are below 

1% [4,14].  The fail rate is the number of fails over 

100-1000 times of the NIST tests. 

  As for CRNN with APLF1 and synaptic-weight-set A, 

results of the NIST tests are almost the same as results 

of CNN except the overlapping template matching test 

(OT test).  The fail rate of OT test was 0.64% as an 

average of the test repeated 5000 times.  The rate is 

higher than other tests which are normally about 0.1-

0.3%.  In order to investigate the cause of the results, a 

correlation between entropy and the fail rate is studied. 

    A new synaptic-weight-set has been designed to 

make various invariant sets corresponding to smaller 

entropy values, that is, synaptic-weight-set B: w12 =  

-1.60001, w23 = 5.0, w34 = -7.004, w14 = 4.511, w41 = -

0.345007.  The input-output characteristic of CRNN 

with synaptic-weight-set A is shown in Figure 7 and 

with synaptic-weight-set B is shown in Figure 8.  The 

entropy under various conditions is shown in Table 1 

and Table 2. 

   
Table 1.  Entropy of the time series. 

Time Series Entropy / b 

SWS
 a)

 APLF I x1-x3 
c)

 x2-x4 
d)

 total 

A APLF1 0.000123 10.81 10.79 21.60 

B 
b)

 APLF1 -18.22696599 8.41 10.78 19.20 

B 
b)

 APLF1 -9.00651951 9.34 10.58 20.15 

A APLF3 0.000123 11.88 11.88 23.76 

Random Series 
e)

 12.00 12.00 24.00 

a) Synaptic-weight-set A or B. 
b) Synaptic-weight-set B corresponding to the time series 
shown in Figure 8. 
c) Entropy at even time.    d) Entropy at odd time. 
e) Theoretical values on uniformly distributed series. 

   
 

Figure 7.  The Input-output characteristic of CRNN 
with APLF1 and synaptic-weight-set A. 

The abscissa is I and the ordinate is x1.  The parameters 
are ID = 0.119725, and synaptic-weight-set A. 

  
 

 
 

 
Figure 8. The input-output characteristic of CRNN 

with APLF1 and synaptic-weight-set B. 
The abscissa is I and the ordinate is x1.  The parameters are 
ID = 0.119725, and synaptic-weight-set B which is a special 
and rare set for the comparable study. 

  
The selected results of the NIST tests on CRNN with 

synaptic-weight-set B are shown in Table 2; test fail 

rates corresponding external inputs Is, periods of time 

series, and entropy values of the invariant measure in a 

bit unit.   
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I 
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Table 2. Selected results of NIST SP800-22 test. 
a)

 

 Test Fail Rate (%)
 b)

   

I FR RU RK OT AE LC Period S 
c)

 

-19.30944918 1 0 0 0 0 0 2.0×10
9
 19.23 

-19.19931289 0 0 0 0 0 1 1.2×10
9
 19.23 

-18.22696599 0 0 1 3 0 0 4.6×10
9
 19.20 

-17.41411053 0 0 0 1 0 0 2.6×10
9
 19.22 

-17.38534870 0 0 0 0 0 0 2.6×10
9
 19.23 

-15.67024619 0 0 0 0 0 0 2.3×10
9
 19.19 

-14.64446048 0 0 1 0 0 0 3.3×10
9
 19.23 

-12.88730720 0 0 0 2 0 0 1.6×10
9
 19.47 

-11.78719633 0 0 0 1 1 1 3.7×10
9
 19.65 

-11.07755968 0 0 0 0 0 0 1.3×10
9
 19.85 

-9.95751086 0 0 2 1 0 1 6.3×10
9
 20.09 

-9.92205388 0 0 0 0 0 0 4.4×10
9
 20.09 

-9.00651951 0 0 0 1 0 1 1.3×10
9
 20.15 

11.69055082 0 0 1 1 1 0 3.8×10
9
 19.72 

12.77303401 0 0 0 1 0 0 1.7×10
9
 19.54 

13.58588947 1 0 0 2 0 0 2.5×10
9
 19.32 

16.29794228 0 0 0 2 0 0 3.5×10
9
 19.33 

16.35553952 0 0 0 1 0 0 3.8×10
9
 19.32 

17.22436138 0 0 0 1 0 0 5.4×10
9
 19.27 

18.11269280 0 0 0 1 0 0 2.0×10
9
 19.34 

19.21280367 0 2 0 2 0 0 3.5×10
9
 19.27 

a) Representative results on the examination of the 
proportion of sequences passing a test in the NIST tests.  
Abbreviations of test names:  FR: Frequency test, RU: Run 
test, RK: Binary Matrix Rank Test, OT: Overlapping Template 
Matching Test, AE: Approximate Entropy Test, LC: Linear 
Complexity Test.  
b) The test fail rate is an average of repeated 100 times of 
the NIST tests. 
c) Total entropy of the invariant measure in a bit unit. 

 

3. New activation-function APLF3 for 

improved PRNG 

 
  Next, the result in Table 2 is analyzed in order to 

determine whether the additional randomness should 

be increased or decreased. 

  The results of the NIST tests corresponding to various 

entropy values showed nearly the same tendency 

(Table 2).  The fail rate of OT test corresponding to an 

external input was higher value 0-3%.   

  The fail rates of the most NIST tests as an average of 

the test repeated 2600 times over 26 external inputs 

were about 0.1-0.3%, and that of OT test was higher 

value 0.96%, too.  The statistical correlation analysis 

between the test fail rates of OT test and the entropy 

values affords no correlation against expectations; a 

correlation coefficient, R = -0.140.  It suggests that 

additional randomness has no effect on the statistical 

properties of the lower bits which extracted by the 

method in Figure 11(a) in this work.  The slight 

increase of the test fail rate of OT may be caused by 

fix-point arithmetic, but a detailed mechanism is still 

unclear. 

  According to the result, a new activation-function 

APLF3 is designed to increase randomness as much as 

possible, because it is expected to hide the information 

of an activation function; for example existence of 

fixed-points, and a range of an attractor. 

  The attractor of the time series which generated from 

the CRNN with APLF3 is shown in Figure 9.  The 

points of the attractor extend to the dynamic range, the 

distribution, however, isn’t uniform.  The Lyapunov 

spectrum of the time series has positive value (1.153, 

0.338) under the standard condition (the number of 

neighbors is 20).  Although a precise value of the 

Lyapunov spectrum is hard to decide, sensitive 

dependence on initial conditions is clearly observed.  

That is, 2 initial points of CRNN at shortest distance 

(=2
-26

) exponentially apart to the attractor size within 

several iterations (vide infra).   

 

 
 
Figure 9.  The attractor of the time series generated 

from CRNN with APLF3. 

 
Therefore, approximation of the initial points (or 

outputs of CRNN) is no meanings on the time series 

from CRNN, because points in the neighborhood 

extend to different orbits.    

x3 

x1 
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  The result of determinism analysis on the time series 

from CRNN with APLF3 is shown in Figure 10.  The 

determinism of the time series with APLF3 is lower 

than that with APLF1 because the cardinality of the set 

IDNP is smaller.   

  

 
(a) Recurrence Plot (RP) 

 
(b) Iso-directional 

Recurrence Plot (IDRP)  

 
(c) IDNP (RP∩IDRP) 

 

Figure 10. The determinism analysis of CRNN with 
APLF3 (α1 series). 

  

4. The new extraction method for CRNN 

with APLF3 

 
  A fail rate of each NIST test is valuable for evaluating 

result, and useful to determine an extraction method of 

random numbers from time series.  In our work a test 

fail rate is estimated by repeated NIST tests and an 

overall result is judged by the test fail rate: less than 

1.0% for normal test [14].   

  The fail rate of NIST tests on CRNN outputs with 

APLF3 is shown in Table 3 as an average of repeated 

5000 tests over 50 external inputs.  Only selected 

results are shown in Table 3 for simplicity. 

  It suggests that the lower bits do not need discarding, 

and the border of higher bits which needs to discard is 

about 4-6 bits including a sign bit. The result is very 

interesting because APLF3 extends the extractable 

PRN from 8-16 b to 26-28 b (Method B in Figure 

11(b)).  The rate of PRN generation is expected to be 

faster.   

  The statistical property of the time series extracted by 

the new method (Method B) was confirmed as 

appropriate for information security applications with 

the NIST test. 

  
Table 3. Averaged fail rate (%) of 5000 NIST tests for 

the discarded number of bits. c) 

High a) 0 1 2 4 6 8 8 8 8 

Low b) 0 0 0 0 0 0 1 2 3 

FR 92 35 0.44 0.16 0.24 0.12 0.18 0.18 0.06 

BF 5.4 10 11 0.06 0.08 0.06 0.04 0.10 0.06 

CS 88 31 0.36 0.17 0.17 0.12 0.17 0.11 0.06 

RU 100 100 0.76 1.9 0.16 0.14 0.28 0.12 0.10 

LR 0.56 0.18 0.08 0.16 0.32 0.40 0.32 0.38 0.22 

RK 0.10 0.10 0.20 0.16 0.20 0.16 0.10 0.12 0.16 

OT 24 1.3 0.70 0.48 0.40 0.64 0.68 0.72 0.58 

a) The discarded number of higher bits.  
b) The discarded number of lower bits. 
c) Abbreviations of test names:  FR: Frequency test, BF: 
Frequency Test within a Block, CS: Cumulative Sums Test, 
RU: Run test, LR: Linear Complexity Test, RK: Binary Matrix 
Rank Test, OT: Overlapping Template Matching Test.  

 
 CRNN Output                                                                          Discard 

Sign  
bit 

5 b .  23 b 3 b 

     

 
 

 
 

 
 

 
 

 
 

Pseudo-Random Number 
(8-16 b) 

 
 

 
(a) Method A: an extraction method for APLF1 [5,6].  

 
CRNN Output    

Sign  
bit 

3 b 2 b . 26 b 

 
 

   

Pseudo-Random Number 
(26-28 b) 

 
(b) Method B: a new extraction method for APLF3.  

 
Figure 11. The extraction method of a pseudo-

random number block from a CRNN output. 

 

5. Implementation of an ultra-high-speed 

pseudo-random-number generator by GPU  
 

Before implementation of a high-speed PRNG by 

GPU, the bit operation should be installed to prevent 

side-channel attacks.  The outputs of CRNN are kept 

secret as internal states, the possibility of side-channel 

attacks would not be denied.  Therefore, the 7-bit-
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rotate-left instruction has been introduced before APLF 

mapping [5-6].  

In the same way, the 7-bit-rotate-left instruction is 

introduced before APLF3 mapping at N1 and N2 also in 

this work.  The statistical properties were confirmed by 

the NIST test.    

  Next, CRNNs have been implemented with CUDA 

8.0 on PC mounted with a GPU [15] (NVIDIA Tesla 

P100, 3584 CUDA cores).  The rate of pseudo-random 

number (PRN) generation has been extremely 

accelerated by the GPU (Figure 12).  The rate of 

PRNG on CRNN with APLF3 and Method B has been 

superior to the previous rate (Method A) [6] and 

reached 2.85 Tb/s (10
12

 b/s) as shown in Figure 12 and 

Table 4.  

  

 
Figure 12.  Rate of PRN generation from CRNNs. 

 
Table 4. Rate of PRN generation by GPU. 

Extraction 
Number of 

Threads 
Max Rate of PRN  

Generation /Tb s
-1

 

Method A 
a)

 6.7108864×10
7
 1.8570 [6] 

Method A 
b)

 6.6060288×10
7
 1.7785 [6] 

Method B 
c)

 6.6060288×10
7
 2.8530 (this work) 

a) CRNN with APLF1.  
b) CRNN with APLF1 and with 7-bit-rotate-left instruction. 
c) CRNN with APLF3 and with 7-bit-rotate-left instruction. 

 
  The number of threads (the number of CRNNs) was 

optimized to realize the maximum rate.  As for CRNN 

the number of blocks is 64512, the number of 

threads/blocks is 1024, that is, 6.6060288×10
7
 CRNNs 

with different external inputs work in parallel on P100. 

  The simple structure of CRNN probably makes the 

huge number of threads possible.   

  The rate of PRN generation by GPU with the number 

of discarded upper bits is shown in Table 5.  The rate 

corresponding to discarding 6 b is slower than others 

due to efficiency at coding.  The number of discarded 

upper bits can be selected 4 or 8 b depending on the 

situation.   

 
Table 5. Rate of PRN generation by GPU with the 

number of discarded upper bits. 

Number of Discarded 
Upper Bits /b 

Maximum Rate of PRN  
Generation /Tb s

-1
 

4 2.853 

6 2.056 

8 2.466 

  

6. Predictable terms of chaotic time series. 

  
  Chaotic time series are characterized as long term 

unpredictability. A limit of a predictable term (Tc) is 

estimated by the following equation 4 [7,16].  ε is a 

difference of initial values, L is an attractor size, and K 

is a constant.  In other words, the time Tc is the critical 

time between a predictable term and an unpredictable 

term.  If t > Tc, the discrepancy grows to the order of 

the magnitude of the attractor size over the limits of the 

predictability of the system.  

 

𝑇𝑐 =
1

𝐾
log2

𝐿

𝜀
                       (4) 

 

   Tc was estimated as an average of repeated 10
5
 times 

experiments in this work (as for outputs of neuron 1 

under randomly selected 10
5
 initial values) (Table 6).  

The experimental value on the Logistic map is also 

shown as an example of a chaotic time series. 

 

Table 6.  Experimental result on predictable terms of 
time series. 

Generator ε Tc 
a)

 K 
b)

 

CRNN with APLF1 1.49×10
-8

 6.75 9.57 

CRNN with APLF3 1.49×10
-8

 6.08 10.1 

Logistic Map 
c)

 1×10
-15

 46.3 1.00 

CNN 1×10
-15

 43.9 1.08 

a) Tc is an average of repeated 10
5
 times experiments. 

b) The unit is bits per cycle. 
c) yn+1 = 4yn(1-yn), where n = 0,1,2... 

 
  The result suggests that the predictable term is 

considerably reduced for CRNN, and especially CRNN 
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with APLF3.  The detailed result on predictable terms 

will be discussed in further publication. 

 

7. Conclusion  

 
  The randomness of outputs of CRNN has been 

validated by several methods.  The result suggests that 

it is difficult to predict sequences in the outputs of 

CRNN because the outputs of CRNN have large 

sensitive dependence on initial conditions and lower 

determinism.  And it also suggests that the predictable 

term is considerably reduced for CRNN, and especially 

CRNN with APLF3.  The detailed result on the 

predictable term will be discussed in further 

publication. 

  The new activation-function APLF3 has been 

designed as extending randomness, and resulted in 

producing the better extraction method B (Figure 

11(b)). 

  The secure and ultra-fast PRNG has been 

implemented on PC mounted with the GPU (NVIDIA 

Tesla P100), the speed has reached 2.85 Tb/s.  It is 1.6 

times faster than the previous PRNG. 

  In the previous study, the period of pseudo-random 

number generator consists of 4200 chaotic time series 

has estimated to be 10
22432

 [6].  It may be also possible 

for the new PRNG with APLF3.  The period of the 

huge number of time series from the new PRNG will 

be confirmed in the next study. 

     As future work, we will apply the new PRNG and 

the new method to information security applications 

for IoT devices which don’t support floating-point 

arithmetic and for also smartphones equipped with 

GPU. 
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