

CARTT: Cyber Automated Red Team Tool

Joseph Plot
Naval Postgraduate School

japlot@nps.edu

Alan Shaffer
Naval Postgraduate School

alan.shaffer@nps.edu

Gurminder Singh
Naval Postgraduate School

gsingh@nps.edu

Abstract

Military weapon systems are often built using

embedded, non-IP (Internet Protocol) based computer
systems that are not regularly updated and patched
due to their isolation. As adversaries expand their
capability to exploit and penetrate these systems, we
must be able to verify they are not susceptible to cyber-
attack. Currently, cyber red teams are employed to
assess the security of systems and networks in isolated
environments, however, this method can be costly and
time-consuming, and the availability of red teams is
limited. To address this need and resource shortfall,
we have developed the Cyber Automated Red Team
Tool (CARTT) that leverages open source software and
methods to discover, identify, and conduct a
vulnerability scan on a computer system’s software.
The results of the vulnerability scan offer possible
mitigation strategies to lower the risk from potential
cyber-attacks without the need for a dedicated cyber
red team operating on the target host or network.

Keywords: Red team, cyber, network, security,
software vulnerability

1. Introduction

The cybersecurity posture of a military
organization’s computer devices, specifically those
without Internet connectivity, is often overlooked.
According to operational testing conducted by the
Government Accountability Office (GAO), the
“[Department of Defense] routinely found mission-
critical cyber vulnerabilities in systems that were under
development, yet program officials GAO met with
believed their systems were secure and discounted
some test results as unrealistic” [1]. More importantly,
the GAO noted that they discovered vulnerabilities that
likely only represent a small fraction of the total
number of cybersecurity threats.

The GAO further stated that the service branches
conduct cybersecurity assessments on new weapon
systems with support from the National Security

Agency (NSA) and U.S. Cyber Command, although
these two organizations are not primarily responsible
for identifying vulnerabilities in new weapon systems.
Furthermore, the 2019 Secretary of the Navy
Cybersecurity Readiness Review states that “phishing
attacks, poor cyber hygiene, and failure to update and
patch software are the root cause of the vast majority
of cyber incidents” [2]. The military’s current policy
effectively allows the “commander to ‘make the call’
on the risk mitigation for his/her installation, facility,
or vessel” [3]. Commanders often rely on red teams to
conduct cybersecurity assessments of their networks
and systems. Regrettably, an in-depth and independent
assessment of a computer network conducted by a
cyber red team may be unfeasible due to time,
financial, and personnel expertise constraints.

The key contribution of this work is a portable
cyber red teaming tool called Cyber Automated Red
Team Tool (CARTT) that is designed to identify and
assess cybersecurity vulnerabilities on computer
systems not directly connected to the Internet, and to
provide users with recommendations to mitigate the
cyber threats associated with these vulnerabilities.
CARTT is designed to overcome the resource
limitations of current red teams conducting remote
cybersecurity assessments on cyber-physical systems.
Ideally, CARTT could be widely deployed as a cheap,
convenient, and effective cybersecurity tool that would
enhance computer systems security by complementing
other defense-in-depth measures.

This paper represents work in progress on
automating the actions of red teams by automatically
executing a series of commands to search and identify
hosts on a target network, and then automatically
scanning those hosts for vulnerabilities. Following this,
CARTT will provide recommendations to mitigate the
cyber threats based on the identified vulnerabilities,
and automatically launch cyber exploits against those
threats in order to fully “red team” the target network.

The rest of this paper is organized into four
sections: background, CARTT system design, CARTT
system implementation, and conclusions.

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6695
URI: https://hdl.handle.net/10125/64562
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326835957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Background

The DoD continuously faces attacks from
Advanced Persistent Threats (APTs) that are
sophisticated, well-resourced, and highly motivated,
and whose goal is to extract or compromise sensitive
data. An APT can conduct an attack over several years
and target “highly sensitive economic, proprietary, or
national security information” [4]. In 2018, the GAO
released a report to the U.S. Senate Committee on
Armed Services detailing the increasing number of
threats the DoD is facing due to a large number of
complex computerized weapon systems developed for
use against the U.S. arsenal [1]. The report outlined
several steps the U.S. government can take to create
robust weapon systems and provide a defense-in-depth
approach against advanced cyberspace threats. The
DoD Office of the Director, Operational Test &
Evaluation (DOT&E) also provided a similar analysis
of the risk of adversarial cyberspace operations in their
FY17 annual report. The report stated that although
“DoD cyber defenses are improving, … [they] are not
enough to stop adversarial teams from penetrating
defenses, operating undetected, and degrading
missions” [5]. The report also noted that troops have a
false sense of security during large-scale exercises
because the cyber environment is not hostile enough to
accurately depict the actual threat faced by most DoD
systems against an APT [3], [5]. The concern is that
DoD forces are not appropriately training against the
cyberspace capabilities of peer or near-peer
adversaries.

The recently released National Cyber Strategy
(NCS) goes further by naming Russia, China, Iran, and
North Korea as APTs that have used cyberspace to
steal intellectual property, participate in economic
espionage, and “sow discord in our democratic
processes” [6]. The DoD’s cyber strategy agrees with
the NCS assessment and takes the extra step of
defining its role in cyberspace as securing any sensitive
data contained within DoD systems, deterring cyber-
attacks against the United States, and conducting
offensive cyberspace operations, if deemed necessary
[7]. Both of these strategic documents demonstrate the
importance of identifying the threats facing the DoD,
reducing vulnerabilities, and ultimately protecting the
national interests of the United States.

2.1. DoD Cyber Red Teams

A DoD cyber red team is authorized to mimic an
adversary’s behavior by conducting exploitation
techniques or cyber-attacks against a specific target or
government capability [8]. DoD cyber red teams can be

tasked to expose a target’s vulnerabilities; degrade,
disrupt, or deny a user’s ability to access a particular
cyber environment; test the techniques and skills of a
defensive cyber force; and, support operational security
surveys. In the DoD, the NSA is the designated
certification authority that manages the formal
certification process for cyber red teams, while U.S.
Strategic Command maintains its accreditation [8].
Since FY16, the demand for cybersecurity assessments
in the DoD has doubled as more weapon systems
require an in-depth evaluation per the annual National
Defense Authorization Act [9]. However, the DoD has
recently faced a shortfall in providing enough certified
cyber red teams that can realistically depict adversarial
threats because of limited resources to thoroughly
conduct proper evaluations [5]. The reasons for this
shortfall are manifold.

It can take as long as seven years for military
members to be adequately screened and to receive the
extensive training required to become proficient in
cyber red team operations [10]. However, in 2017
DOT&E observed that military personnel assigned to
cyber billets are kept to a regular duty station rotation
cycle, typically leaving after three years. This prevents
them from gaining the required cyber experience to
transition from journeyman to master during a cyber
tour [5]. Further exacerbating the problem, many
journeymen leave the DoD shortly after fulfilling their
initial military service obligation and are quickly hired
by the civilian sector to serve as contractors for the
DoD [5], [9]. The assessment also recognized the
importance of retaining skilled civilian and contractor
personnel through selective hiring practices and job
continuity [5]. It recommended keeping personnel who
can fully understand a government computer system
and quickly recognize abnormalities on a network.

Regrettably, even though DoD cyber red teams are
trained to mimic an adversary’s behavior, in practice,
they typically cannot fully exploit a target system due
to restrictions imposed on them by a local military
commander. For example, the commander will set
forth Rules of Engagement that specifically prevent a
red team from “[doing] any harm to the system” [11].
This apprehension from DoD leaders stems from a lack
of understanding of the benefits of using a red team to
expose their network’s vulnerabilities. Combatant
commanders trained in traditional military tactics are
often reluctant to build realistic cyber threat scenarios
and incorporate them into their regular training
regimen due to the fear that the cyberspace operations
may interrupt the command’s primary training
objectives. Additionally, most DoD personnel forgo
any emphasis on cybersecurity defense by treating it as
an administrative function rather than a warfighting
capability [9].

Page 6696

2.2. Related Work

It is reasonable to conduct a thorough vulnerability
assessment of a small network manually, but it
becomes prohibitively cumbersome to assess a large
and complex network due to the time, effort, and skill
required, therefore an automated approach would be
preferred. Today, there are several open-source
vulnerability assessment tools available for download,
such as Open Vulnerability Assessment System
(OpenVAS), Nexpose Community, and Nikto. All of
the available commercial and open-source tools have
their strengths and weaknesses ranging from the user
interface to the number of platforms supported and
their ability to succinctly provide a detailed report of
the discovered vulnerabilities. However, few products
can integrate multiple tools and then objectively
analyze their results simultaneously [12].

One solution is to use a vulnerability assessment
framework that can integrate the devices and
applications that communicate by sorting scan results
through a management interface and then setting
management policies [12]. The Metasploit Framework
(MSF) is an example of such an open-source tool that
accomplishes this by discovering exploits and releasing
payloads onto a target system. Furthermore, it is
designed to use third-party vulnerability assessment
tools to scan for vulnerabilities on an individual system
or a network of targets [13].

In 2015, researchers from Northern Kentucky
University developed a semi-automated system called
Pentest box that scans and reports network
vulnerabilities by using a miniaturized computer to
host all of the necessary equipment needed for the
penetration tester, cybersecurity professional, or
system administrator [14]. In this case, the researchers
were attempting to reduce the cost of conducting white
hat hacking, or ethical penetration testing, of an
organization’s information systems. They used
Raspberry Pi computers as a cost-effective alternative
to a commercial penetration testing device, with the
intent of discovering vulnerabilities and protecting a
company’s information technology assets.

The Pentest box runs Kali Linux and primarily uses
Network Mapper (NMAP), MSF, and OpenVAS as its
penetration testing tools. To automate the penetration
testing process, it runs a script that conducts a
reconnaissance scan of the local area network (LAN),
and then sends any hosts, open ports, and known
vulnerabilities it discovers to the MSF database. These
researchers, however, did not experiment any further
than the reconnaissance phase of the Cyber Kill Chain,
and only built a simple web interface with minimal
assessment functionality.

The Mayhem Cyber Reasoning System is yet
another vulnerability analysis tool, recently developed
by researchers at Carnegie Mellon University. Mayhem
is slightly different from previous vulnerability
analysis tools in that it autonomously searches and
fixes vulnerabilities in executable programs without
the need for human intervention [15]. Mayhem works
by “actively managing execution paths without
exhausting memory, and reasoning about symbolic
memory indices,” which means it searches for bugs at
the binary level by using hybrid symbolic execution
and index-based memory modeling [16]. Specifically,
Mayhem searches for exploits by determining whether
a computer bug can redirect an instruction pointer,
whether or not malicious code can be implanted in
memory, and if that code can then be executed.
Mayhem was shown to manipulate open-sourced
fuzzing tools to search for bugs at the binary level
during the 2016 Defense Advanced Research Projects
Agency (DARPA) Cyber Grand Challenge, but the
overall process was slow with only 65 out of 131 bugs
found in 24 hours [15]. Unfortunately, Mayhem resides
in a large server rack which makes it infeasible to use
as a portable vulnerability analysis or red teaming tool.

A DoD team at the Naval Information Warfare
Center (NIWC), formerly Space and Naval Warfare
Systems Command (SPAWAR), leveraged the
University of California, Santa Barbara’s Python-based
Angr framework and cyber reasoning system, along
with open-source virtualization tools, to perform
limited automated analysis on embedded systems and
Industrial Internet of Things (IIoT) devices [17]. They
intended to conduct an automated IIoT firmware
analysis in search of malicious content.

To accomplish this, NIWC researchers first
extracted the firmware from an IIoT device and then
emulated the software in a separate operational
environment not directly connected to the original
hardware. Afterward, the team used Angr and Driller
to perform static, dynamic, and symbolic analysis.
Additionally, the NIWC team used American Fuzzy
Lop (AFL), OpenPLC, Firmadyne, and QEMU to
expose firmware vulnerabilities, mitigate them, and
ultimately improve the overall security posture for IIoT
devices. This approach led to previously undiscovered
authentication bypass and non-existent stack protection
vulnerabilities in numerous IIoT devices.

Although this is not an exhaustive list, there are a
large number of academic papers and research projects
that are actively attempting to automate the process of
identifying, assessing, and mitigating the risks
associated with automated vulnerability assessments. A
summary of related work is provided in Table 1.

Page 6697

Table 1. Summary of related work

3. CARTT System Design

CARTT was designed to be used by individuals
without expert knowledge of red teaming techniques,
or penetration testing. To this end, it automates the
various phases of a red teaming event, so that they may
be performed by network administration users who are
not qualified cyber red team members.

CARTT functions through a GUI that is at a level
of abstraction above the CLI, which is the normal
sphere of operation for red team operations. The
CARTT frontend gives the user a set of options to
conduct various portions of the vulnerability scan and
assessment, while the backend runs Python scripts with
the previously mentioned tools on a Kali Linux
distribution. The front-end GUI design is intended to

be simple and to support the overall goal of CARTT’s
red teaming tasks.

We have developed CARTT as a framework that
leverages open source tools used for host discovery,
OS fingerprinting, vulnerability scanning, and user
feedback, and can seamlessly combine these tasks into
a single user-friendly device. CARTT was designed to
test DoD networked and embedded devices not directly
connected to the Internet, to include mission and non-
mission critical computer systems onboard aircraft,
ground vehicles, ships, and submersibles. It is assumed
that the targeted devices may receive occasional
software or firmware updates via a standalone
intermediary device such as a laptop or a USB flash
drive.

CARTT uses open-source frameworks and tools to
reap the cost, security, and flexibility benefits of

Page 6698

crowd-sourced and peer-reviewed software. The goal is
to leverage the open-source community’s ability to
continually check for flaws in software, rather than
attempting to provide cybersecurity through
obfuscation or behind a private company’s intellectual
property copyright.

Penetration testing distributions are frequently used
to simulate a cyber-attack on a friendly system
designated as a target. Currently, there are several
open-source distributions used by ethical computer
hackers and security experts wishing to conduct
security evaluations on vulnerable computer systems.

Unfortunately, all of these distributions require an
intimate knowledge of the pre-installed tools, which
can be daunting for a novice user or someone
unfamiliar with penetration testing. Also, the
distributions often require the user to be comfortable
navigating through the Command-Line Interface (CLI)
of a Unix system, as opposed to a user-friendly
Graphical User Interface (GUI). To reduce the user’s
learning curve and to make the system more
comfortable to use, CARTT uses GUI-based scripts to
execute tasks for conducting its red team assessment
on a target device. This shields novice users from
becoming overwhelmed by the Unix CLI and
automates portions of the red team process. This
research focused on using Kali Linux as the primary
CARTT distribution due to its high number of pre-
installed tools, available support documents, and robust
online community.

Scanning and enumerating a networked
environment is an essential step in determining which
services, ports, and applications are accessible and
available. Techniques that allow a red team member to
discover active hosts and services on a network include
ping sweeps, port scanning, banner grabbing, and OS
fingerprinting. One of CARTT’s first functions is to
determine the type of host it is scanning through a
simple set of user commands. Ideally, a preliminary
scan will allow CARTT to accurately identify the OS
on each host by analyzing numerous markers
historically aligned with an OS’s default settings.
Many conventional operating systems can be passively
identified by examining captured Transmission Control
Protocol (TCP) packets. For example, p0f is a
fingerprinting tool that compares a packet’s Time To
Live (TTL) value, IP header flags, Maximum Segment
Size (MSS), and window size to ascertain what type of
OS is actively communicating with other devices on a
network [18].

Alternatively, there are more active approaches
used by other network scanning tools for OS
fingerprinting. For instance, NMAP compares the
responses it receives from TCP and User Datagram
Protocol (UDP) packet requests against a database of

over 2,600 known OS fingerprints [19]. Nonetheless,
quickly discovering hosts on a network and accurately
identifying their OS enables CARTT to tailor its
vulnerability scan, decrease the number of unnecessary
follow-up scans, and ultimately reduce the number of
false positives.

CARTT has the advantage of being able to connect
directly onto a target host or network, thereby
increasing the speed and accuracy of its vulnerability
scan which allows it to bypass the potentially
cumbersome process of attempting to gain initial
access onto a target system. However, this does not
guarantee complete and unfettered access to the host.
An adequately defended host or network will deny a
potential attacker, whether acting with malicious intent
or not, from accessing any valuable data. From here, a
variety of available tools can be used to automatically
scan for vulnerabilities, including OpenVAS, Nessus,
Core Impact, and Nikto. To keep CARTT as a practical
and inexpensive tool, we used the open-source
vulnerability scanner OpenVAS, eschewing the pricey
licensing fees of Nessus and Core Impact.

Fortunately, OpenVAS is designed to work as a
module within the MSF which allows a CARTT user
the opportunity to create targets and run vulnerability
scans from a single CLI. Of note, launching OpenVAS
using a traditional command-line argument within Kali
Linux automatically starts a web-based GUI called the
Greenbone Security Assistant (GSA). The GSA
contains several tabs to facilitate vulnerability scans,
including configuring targets, filtering results, and
identifying the OS of each host.

Other open-source frameworks provide a high level
of automation for red teams wishing to conduct
vulnerability scans. For example, AutoSploit
introduced in 2018 is a tool that collects vulnerable
targets via the Shodan, Censys, and Zoomeye online
search engines, and attempts to run MSF modules to
exploit them by creating “reverse TCP shells and/or
Meterpreter sessions” [20]. However, this framework
would fail to be a useful CARTT vulnerability
scanning tool due to its requirement to use databases
found on the Internet at runtime. Alternatively, a
Windows OS specific tool called PowerSploit released
in 2014 was PowerShell’s first offensive security
framework [21]. Although PowerSploit contains a
repository of capabilities that leverages the
functionality of Windows PowerShell, CARTT will
use a Unix based framework to reduce the complexity
of swapping between PowerShell and Unix commands,
and increase its compatibility with other tools.

OpenVAS, through the Greenbone network, uses
the National Vulnerability Database (NVD) which is
maintained by the National Institute of Standards and
Technology (NIST) as a repository to aid in the

Page 6699

automation of vulnerability management. Specifically,
the NVD provides OpenVAS with an updated
collection of Common Vulnerabilities and Exposures
(CVEs), misconfigurations, and security flaws to help
red team members quickly analyze hosts.

Unfortunately, no single vulnerability scanner can
identify all potential vulnerabilities on a target system.
For example, an information security specialist was
able to demonstrate that OpenVAS and Nessus failed
to detect 51.6% of known vulnerabilities in the CVE
database; however, he admitted that this discrepancy
could be that the vulnerability assessment vendors are
ignoring old software vulnerabilities that only exist in
outdated or deprecated OS distributions [22]. This does
not mean the information provided by a vulnerability
assessment tool should be rejected, but rather its results
should be seen as a subset of the possible
vulnerabilities maintained in a threat database.

Interestingly, CARTT also needs to receive
periodic CVE updates via the Internet to provide the
most current and relevant protection against cyber
threats. A potential “Catch-22” situation arises for
CARTT since there exists the possibility that it could
inadvertently infect an isolated and malware-free
system during a routine vulnerability scan (if the
CARTT device were itself infected with malware).
However, the possibility of this threat is low and
should not hinder a user from conducting a red team
analysis on a target system. The purpose of CARTT is
to expose vulnerabilities and harden DoD computer
systems. Thus, the benefits of taking an active
cybersecurity approach outweigh the risks associated
with possibly infecting the target host or network.
CARTT is only one layer in a comprehensive defense-
in-depth strategy that employs physical, technical, and
administrative security controls.

4. CARTT System Implementation

CARTT was implemented using a Kali Linux
distribution due to the latter’s wealth of pre-installed
penetration testing tools. The initial test system was
built using a LAN of VMs within the Cyber Battle Lab
(CYBL), a Type I hypervisor physically located at the
Naval Postgraduate School (NPS) campus. The VMs
used in this experimental system ran various Windows
and Linux distributions, including Windows 7
Professional (Service Pack 1), Windows XP
Professional (Service Pack 3), and Ubuntu 8.10
(Intrepid Ibex) running a Linux 2.6.27-7 kernel.

Microsoft ceased providing software support for
Windows XP in 2018 and has publicly stated that
Windows 7 will no longer be receiving support or
security updates after January 2020 [23], [24].

Similarly, Ubuntu 8.10 reached its end-of-life support
in 2010 [25]. Despite this, using these OSs for our
testing provided valuable research potential for several
reasons. First, Windows 7 still commands over a third
of the market share for global desktop OS usage
according to NetMarketShare which “tracks [the real-
time] usage share of web technologies” by filtering out
web robots to discern real users on the Internet [26].
Second, according to the Secretary of the Navy’s
Cybersecurity Readiness Review released in March
2019, the USS Gerald R. Ford (CVN-78) aircraft
carrier, commissioned in July 2017, was installed with
Windows XP [2]. The concern here is that the U.S.
Navy’s newest aircraft carrier is operating with
software that Microsoft has explicitly stated “will still
work but [the computer] might become more
vulnerable to security risks and viruses,” due to the
overall lack of cybersecurity support, especially when
using Internet Explorer [23]. Further, small embedded
devices typically employ Linux kernels because they
are free and lightweight (in terms of memory usage and
total lines of code), so we tested an older Ubuntu OS
distribution. Finally, many of the cybersecurity
vulnerabilities on these older OS versions have been
well documented and cataloged by the NVD which
feeds into several common vulnerability management
systems, including OpenVAS.

4.1. The CARTT GUI

CARTT uses a Python GUI library called Tkinter
that creates a simple interface between the user and the
CLI in an attempt to abstract away some of the
complexities of directly interacting with a system
prompt (see Figure 1). There are various interactive
software toolkits available for Python, but Tkinter is
free, relatively simple to use, and has achieved
acceptance as the de facto Python GUI platform.

For the CARTT GUI, each button created by
Tkinter is used to call a function that initiates a set of
predetermined commands to be executed on the CLI.
Although Tkinter creates a simple interface and is
visually appealing, it negatively impacts the speed,
precision, and customization provided by a CLI. For
example, if a CARTT user wants to change the
standard input or output stream while conducting a
vulnerability analysis, a change in the CARTT source
code is required, as opposed to simply updating the
command string on the CLI. However, we feel that the
benefit of using CARTT greatly reduces the steep
learning curve required for CLI usage. Further, the
controlled nature of the GUI can limit the user’s ability
to cause unintended, harmful, or destructive effects on
the target system.

Page 6700

Figure 1. CARTT GUI screenshot

4.2. Scenario and CARTT Functionality

In our test scenario, we assumed that a system
operator is tasked with conducting a regularly
scheduled cybersecurity vulnerability assessment on
their command’s automated weapon system. Most
service members within a DoD command have user-
level privileges on the weapon system and can access
applications on a variety of individual computer
systems, but none of the users has direct access to the
Internet. To perform the vulnerability assessment,
CARTT can be directly connected by a technician to
the closed network during regular working hours,
while system users conduct routine operations. The
specific operational details of the weapon system are
irrelevant to this scenario as long as the CARTT user
can physically connect to the network. Figure 2 shows
the overall CARTT process flow.

During the cyber reconnaissance phase, the
technician begins the first CARTT task by conducting
a reconnaissance of the target system to determine the
overall network topography. After the user initiates the
CARTT utility, Kali Linux leverages the ifconfig
system utility on the CLI to retrieve a listing of the host
device’s network interface configuration, including the
host device’s active interfaces, IP addresses, network
mask, and hardware Media Access Control (MAC)
address. CARTT parses this output data in search of its
newly assigned IP version 4 (IPv4) address in dot-

 Figure 2. CARTT flow diagram

decimal notation. It then re-parses the IPv4 address and
converts it into /24 Classless Inter-Domain Routing
(CIDR) notation. We have chosen a /24 CIDR prefix
since it gives CARTT the ability to scan through 256
IP addresses; however, the size of the network can be
manually adjusted to be larger or smaller in the source
code, based on the CIDR used. After the
reconnaissance phase, CARTT creates a text file that
stores the new network address in CIDR notation and
displays both the CARTT assigned address and the
network address to the user on the CARTT window
frame.

Next, CARTT uses the host’s network address to
discover all other live hosts on the network through an
active NMAP scan. Since the goal is to enumerate the
hosts on the network quickly the -sn option is used,
which tells NMAP to forgo a port scan and output the
hosts that responded to the discovery probe queries.
The -sn or “ping scan” option sends an Internet Control
Message Protocol (ICMP) echo request by sending a
“TCP SYN to port 443, TCP ACK to port 80, and an
ICMP timestamp request” to each host on the /24
network [27]. This option is preferred and is more
reliable than sending pings over the broadcast address
because some devices are configured not to respond to
broadcast queries. Additionally, the -sn option does not
have any detrimental performance effects on the host
during the scan. The results of this ping sweep are then
recorded in another text file created by CARTT, which
is subsequently parsed and displayed to the user on the
CARTT GUI.

At this point, CARTT has enumerated through the
/24 network and displayed all of the active hosts it
discovered through the ping sweep in a scrollable
section within the GUI. Next, the CARTT user has the
option to enter the OS discovery phase. Here, the

Page 6701

previous text file created during the ping sweep is used
to detect which type of OS the host may be using.
CARTT uses NMAP’s -O option, which allows NMAP
to send several TCP and UDP packets to the target
systems for TCP/IP stack fingerprinting [19]. The
output from this scan provides a description of the OS,
vendor name, version number, and device type. This
information may be useful for a CARTT user to
identify and understand the types of OSs on their
network during a large-scale audit.

Additionally, the CARTT user has the option to
augment the OS detection phase by conducting a
passive scan leveraging the TCP/IP stack
fingerprinting capabilities of p0f. Unlike NMAP’s
noisy and active scanning methods, p0f’s approach
passively collects and analyzes traffic generated by a
target host as it communicates with other devices. It is
important to note that selecting this option would not
be an effective method to determine the OS on a
standalone host since p0f assumes the target host
shares a telecommunication medium with another
device. Regardless, the results of the p0f scan are then
stored in a separate log file for future analysis.

After the OS detection phase is complete, CARTT
enters the vulnerability scanning phase by configuring
and initializing the MSF database through a short
series of commands to the CLI. Since Kali Linux is a
widely used penetration testing platform, its software
developers created strict network service policies that
attempt to minimize the exposure in potentially hostile
or hazardous network environments. They do so by
disallowing any network services to remain
persistently on or open by default on the Kali Linux
device, especially after a reboot. To open the services
required by MSF, CARTT starts an open-source
relational database management system called
PostgreSQL and then initializes the MSF database
[28]. Afterward, msfconsole is launched to provide a
centralized interface between CARTT and MSF’s
capabilities to incorporate executing external
commands.

Once msfconsole is running, CARTT sends a series
of commands to configure and initialize OpenVAS.
Although the OpenVAS command line utility allows
users to configure targets, run vulnerability scans, and
retrieve reports, it lacks some functionality provided
through the more-capable GSA web-based GUI.
Specifically, whenever a user sets a device as a target,
the user is required to input the local and remote host
IP addresses as well as other amplifying information.
However, the GSA GUI does provide an option to
import a list of IP addresses which alleviates the user’s
burden of having to type each alphanumeric string
manually. Since CARTT is configured to save a list of
the live or active hosts that it encountered during its

host discovery phase, the CARTT user can directly
import the information into the GSA target list and
initiate a sequential scan of all of the hosts. Although
this process causes the CARTT user to switch GUIs
after configuring OpenVAS, it provides the user with a
scalable solution for scanning large networks.

A cumulative summary of the vulnerability findings
becomes available after performing the GSA scan and
is available for export in various formats including
text, PDF, XML, and CSV. The report provides a
listing of each discovered vulnerability with a brief
explanation of the vulnerability’s impact, affected
software, available solutions, mitigation actions to
reduce the overall threat and web links to source
documents about the vulnerability. Of note, most of the
recommendations provided by the summary typically
instruct the user to install updated software on the
target system. The CARTT user would then be
responsible for conducting any further research of the
vulnerability, downloading patches from the Internet,
and uploading the updated software on the vulnerable
machines.

4.3. CARTT Testing

We conducted CARTT testing on two identical
closed networks within the NPS CYBL. The results
discussed in this research only reference the
10.2.99.0/24 LAN since the overall network space did
not affect the outcomes of the vulnerability scan. Each
target VM on the network was automatically assigned
an IPv4 address using Dynamic Host Configuration
Protocol (DHCP); however, a static IPv4 address of
10.2.99.85 was assigned to CARTT. Within each LAN,
two separate tests were conducted to determine
CARTT’s scalability and effectiveness. The first test
was run as a proof-of-concept with only three hosts,
while the second was intended to be a larger scale test
with one hundred hosts. We repeated each experiment
at least twice, but no noticeable deviations between
repeated tests were observed during OpenVAS’s final
vulnerability report.

For the first test, the CIDR prefix was set to
10.2.99.84/30 to ensure that CARTT examined a
maximum of three outdated, vulnerable hosts. The goal
was to scope the CARTT scan to a small address space
before proceeding to a /24 network. After running the
scan, CARTT accurately found all of the devices on
the network and made an initial determination of each
host’s OS. Although CARTT had some difficulty
uniquely identifying the Windows 7 machine using its
OS discovery tools, this did not have any detrimental
effects on OpenVAS’s ability to identify critical
vulnerabilities on the target device during its
subsequent vulnerability scan.

Page 6702

The output of the host discovery scan was sent to a
separate text file for use by the GSA when it runs a
vulnerability scan within the OpenVAS framework. To
do so, the CARTT user must manually upload the text
file as a new target under the GSA “Configuration”
tab. The GSA then automatically parses the file and
lists all of the hosts to be scanned as comma-separated
values. After a vulnerability scan was created and
launched on the GSA, it iterated through each host and
stored the discovered vulnerabilities in an exportable
report. Each scan on the /30 network took about thirty
minutes which could be a product of the computing
resources available on the CYBL hypervisor or due to
the delays that occur as the GSA algorithm iterates
through its repository of vulnerabilities on each host.
The GSA source documents do reveal that if a scan is
run on more than one system at a time, “the scan might
have a negative impact on either the performance of
the scanned systems, the network or the [GSA]
appliance itself ” [29].

The second round of tests was conducted using a
/24 network with one hundred VMs to determine how
CARTT would perform against a larger subnet. In this
case, all of the environmental variables remained the
same except the total number of hosts connected to the
network due to the modification of the CIDR variable
in the source code. During these tests, CARTT did not
have any significant delays in determining how many
hosts were on a network or identifying the host’s OS.
As expected, a considerable delay occurred after
launching the GSA scan. Scanning through one
hundred VMs in search of known vulnerabilities took,
on average, about 5.25 hours.

Although analyzing the amount of time it takes
CARTT to conduct a scan successfully was not an
objective of this research, it is nonetheless an essential
consideration for the CARTT user. Specifically,
CARTT users would need to understand that scanning
an extensive network of devices may have secondary
effects on CARTT’s resources such as losing battery
power or entering a sleep state due to inactivity which
could ultimately delay or abort the vulnerability scan.
Regardless, the GSA worked as anticipated and
produced similar results during both rounds of tests.

5. Conclusions

The main goal of this research was to develop a
portable cyber red teaming tool, CARTT, capable of
identifying and assessing the cybersecurity
vulnerabilities on DoN computer systems not directly
connected to the Internet, and of providing users with
recommendations to mitigate cyber threats against
those vulnerabilities. CARTT automates a series of

common tasks used by DoD cyber red teams to
conduct vulnerability assessments on networked
systems. From our testing we concluded that CARTT
can be effectively employed by users with limited
cybersecurity knowledge to perform vulnerability
scans on networks, and subsequently receive
recommendations to mitigate associated cybersecurity
threats.

While our approach has been successful, several
other tools and techniques were considered in this
research, but not integrated into the prototype due to
time and resource limitations. Future research could
target CARTT’s deficiencies and extend its capability
for automating vulnerability assessments on embedded
devices without Internet connectivity.

For instance, NSA maintains a publicly available
repository of open source software that could be
incorporated into CARTT’s current functions [30].
Their AtomicWatch was designed to be used by
network administrators to recursively parse through a
directory of log files and return any “results if a
positive match is found” [30]. In CARTT’s case,
AtomicWatch could be used to scan for keywords or
phrases on the log file created by p0f. Another NSA
tool called Maplesyrup shows “the low-level operating
configuration of the system, and can be used to help
determine the security state of a device” [30]. This tool
would be used in CARTT to determine security
settings on Linux devices by displaying the read, write,
and execute permissions enforced by the kernel, and
help ascertain whether or not CARTT has access to
certain regions of memory on the target device.

To fully assess a target device’s vulnerabilities, we
acknowledge that it would be relevant to test its
firmware binary. However, since most firmware
extraction techniques involve physical interactions
with the circuit boards and at least a basic knowledge
of reverse engineering, this was beyond the scope of
CARTT’s current capabilities. If the firmware image
could be pulled from a device and uploaded to
CARTT, then it would be feasible for CARTT to
perform a vulnerability assessment using a tool such as
Binwalk on the Kali Linux distribution.

6. References

[1] C. Chaplain, “Weapon Systems Cybersecurity: DoD just
beginning to grapple with scale of vulnerabilities,”
Washington, DC, USA, GAO Report No. GAO-19-128,
2018.

[2] M. J. Bayer, J. M. B. O’Connor, R. S. Moultrie, and W.
H. Swanson, “Secretary of the Navy: cybersecurity readiness
review,” Washington, DC, USA, 2019.

Page 6703

[3] S. Buchanan, “Cyber space security: dispelling the myth
of computer network defense by true red teaming the Marine
Corps and Navy,” Quantico, VA, USA, 2010. [Online].
Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/a536674.
pdf.

[4] Department of Defense, “Department of Defense cyber
strategy summary 2018,” Washington, DC, USA, 2018.

[5] R.F. Behler, “The office of the director, operational test &
evaluation FY2017 annual report,” Washington, DC, USA,
2018.

[6] D. Trump, “National cyber strategy of the United States
of America,” Washington, DC, USA, 2018.

[7] E. Hutchins, M. Cloppert, and R. Amin, “Intelligence-
driven computer network defense informed by analysis of
adversary campaigns and intrusion kill chains,” in 6th Intl.
Conf. on Warfare and Sec., 2011, pp. 80–106.

[8] Department of Defense Cyber Red Team Certification
and Accreditation, CJCSM 6510.03, Department of Defense,
Washington, DC, USA, 2013. [Online]. Available: https://
www.jcs.mil/Portals/36/Documents/Library/Manuals/m6510
03.pdf?ver=2016-02-05-175711-083.

[9] J. M. Gilmore, “The office of the director, operational test
& evaluation FY2016 annual report,” Washington, DC, USA,
2016.

[10] J. J. Li and L. Dougherty, “Training cyber warriors:
What can be learned from defense language training?”
RAND Corp., Santa Monica, CA, USA, RR-476-OSD, 2015.
[Online]. Available: https://www.rand.org/content/dam/rand
/pubs/research_reports/RR400/RR476/RAND_RR476.pdf.

[11] J. Schab, “Tackling DoD cyber red team deficiencies
through systems engineering,” SANS Institute, Philadelphia,
PA, USA, 2017. [Online]. Available: https://www.sans.org/
reading-room/whitepapers/testing/tackling-dod-cyber-red-
team-deficiencies-systems-engineering-38020.

[12] J. Yoon and W. Sim, “Implementation of the automated
network vulnerability assessment framework,” in Innov. in
Info. Tech. 2007. [Online]. doi: 10.1109/IIT.2007.4430423.

[13] MSF Development Staff, “Importing data,” Metasploit,
October 17, 2018. [Online]. Available: https://metasploit.help
.rapid7.com/docs/importing-data.

[14] L. Epling, B. Hinkel, and Y. Hu, “Penetration testing in
a box,” presented at the InfoSec ’15, Kennesaw, GA, USA,
October 10, 2015.

[15] T. Avgerinos et al., “The Mayhem cyber reasoning
system,” IEEE Security & Privacy, vol. 16, no. 2, pp. 52–60,
Mar. 2018.

[16] G. Palavicini Jr, J. Bryan, E. Sheets, M. Kline, and J.
San Miguel, “Towards firmware analysis of Industrial

Internet of Things (IIoT) - applying symbolic analysis to IIoT
firmware vetting,” in 2nd Intl. Conf. on IoT, Big Data and
Sec., 2017, pp. 470–477.

[17] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley,
“Unleashing Mayhem on binary code,” in Proc. of the 2012
IEEE Symp. on Sec. and Priv., 2012, pp. 380–394.

[18] M. Zalewski, “p0f v3 (version 3.09b),” Icamtuf, 2014.
[Online]. Available: http://lcamtuf.coredump.cx/p0f3/.

[19] G. Lyon, “NMAP network scanning: OS detection,”
NMAP, September 1997. [Online]. Available: https://nmap.
org/book/man-os-detection.html.

[20] V. NullArray, “AutoSploit,” GitHub, January 30, 2018.
[Online].Available: https://github.com/NullArray/AutoSploit.

[21] M. Graeber, “PowerShell magazine: PowerSploit,”
PowerShell Magazine, July 8, 2014. [Online]. Available:
https://www.powershellmagazine.com/2014/07/08/powersplo
it/.

[22] A. V. Leonov, “Fast comparison of Nessus and
OpenVAS knowledge bases,” AV Leonov, November 27,
2017. [Online]. Available: https://avleonov.com/2016/11/27/
fast-comparison-of-nessus-and-openvas-knowledge-bases/.

[23] Microsoft Support, “Windows XP support has ended,”
Microsoft, 2019. [Online]. Available: https://support.micro
soft.com/en-us/help/14223/windows-xp-end-of-support.

[24] Microsoft Support, “Support for Windows 7 is ending,”
Microsoft, 2019. [Online]. Available: https://www.microsoft.
com/en-us/windowsforbusiness/end-of-windows-7-support.

[25] S. Langasek, “Ubuntu 8.10 reaches end-of-life on April
30, 2010,” Ubuntu, December 15, 2012. [Online]. Available:
https://web.archive.org/web/20121215114257/https://lists.ub
untu.com/archives/ubuntu-security-announce/2010-
March/001067.html.

[26] NetMarketShare Support, “Operating system share by
version,” Net Marketshare, April 14, 2019. [Online].
Available: https://tinyurl.com/y4fb78co.

[27] G. Lyon, “NMAP network scanning: host discovery,”
NMAP, September 1997. [Online]. Available: https://nmap.
org/book/man-host-discovery.html.

[28] PostgreSQL Global Development Group, “What is
PostgreSQL,” PostgreSQL, 2019. [Online]. Available:
https://www.postgresql.org/about/.

[29] Greenbone Networks GmBH, “Vulnerability
management,” Greenbone Networks, 2019. [Online].
Available: https://docs.greenbone.net/GSM-Manual/gos-4/en
/vulnerabilitymanagement.html.

[30] NSA, “Open Source @ NSA,” NSA, 2019. [Online].
Available: code.nsa.gov.

Page 6704

