

Applying Software Quality Criteria to Blockchain Applications: A Criteria

Catalog

Hauke Precht

Carl von Ossietzky University

Ammerländer Heerstr. 114-118

26129 Oldenburg

hauke.precht@uol.de

Stefan Wunderlich

Carl von Ossietzky University

Ammerländer Heerstr. 114-118

26129 Oldenburg

stefan.wunderlich@uol.de

Jorge Marx Gómez

Carl von Ossietzky University

Ammerländer Heerstr. 114-118

26129 Oldenburg

jorge.marx.gomez@uol.de

Abstract

The selection of the suitable blockchain software

ecosystem has become very complex, given the growing

market. More and more products with different

functionality (mainly consensus algorithms and smart

contracts) are available on the market. To identify the

correct blockchain system for the respective

application, a catalog of criteria with a focus on

software quality is developed in this work. This catalog

supports the selection of the right application and can

be individually weighted.

1. Introduction

There are numerous blockchain applications and

approaches for several specific domains as well as a set

of applications aiming for general usage in

heterogeneous use cases. When starting to get familiar

with blockchain and its possible usage, the actual need

for a blockchain must be determined as the first step.

Various studies have already addressed the question of

whether a blockchain is useful as a software solution for

the respective use case or not.

In order to determine whether a blockchain can be

used sensibly or whether classical relational databases

are desirable the works of [1] and [2] can be applied.

These works provide clear guidelines on whether the

respective use case calls for a blockchain

implementation or not. Combined with the approach of

a taxonomy for blockchains proposed by [3, p. 252], it

is possible to identify which type of blockchain can be

applied to solve a specific problem. The next step would

be to investigate existing blockchain applications. A

simple review for the number of existing cryptocurrency

implementations (which are mostly based on blockchain

technology) reveals many possibilities (there are 2140

cryptocurrencies listed on CoinMarketCap [4]). Most

cryptocurrencies are based on public blockchains. But

as companies started to adopt the technology as well,

also private, and permissioned blockchains emerged.

While public blockchains often implement proof of

work consensus (e.g., Bitcoin, Ethereum, Litecoin, etc.),

private and permissioned blockchains (e.g., R3 Corda,

Hyperledger Fabric, etc.) in most cases implement

completely different consensus algorithms.

In the area of enterprise blockchain systems, a large

set of applications exist. However, all these applications

are in different stages of development and are not

suitable for every use case. For many companies, it is a

big challenge to identify the right blockchain technology

for the respective use case.

This paper shows an approach based on a criteria

catalog in order to help companies to choose the correct

blockchain implementation. The criteria catalog is

based on well-known software evaluation criteria, such

as ISO 25010, capability maturity model (CMM), and

quality of open source software (QualOSS). This paper

is structured as follows: First, the used methodology and

the related background is presented. Next, the identified

criteria are introduced. This section is split into four

subsections covering blockchain-specific criteria,

software quality criteria, open-source software quality

criteria, and software maturity models. Subsequently, a

summary of the identified and selected criteria,

alongside with an example application, is given. This

paper concludes discussing the application of methods

for multi-criteria decision analysis (MCDA) using the

criteria catalog.

2. Methodology and Background

This work has been developed using grounded

theory and literature review methods. In order to

determine the various criteria, a literature review was

first carried out in order to capture the essential aspects

within the scope of the software quality criteria. These

works were then prioritized. The prioritization was

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6287
URI: https://hdl.handle.net/10125/64511
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326835954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

carried out based on the relevance of the underlying

works so that only those works for the criteria catalog

were selected that were highly accepted in the scientific

community. Furthermore, attention was paid to ensuring

that the works were up to date so that only the most up-

to-date approaches were integrated. In the field of

cryptocurrency and distributed ledger/blockchain

technology in general, numerous works addressing

classification have already been published. However, all

these approaches have in common that they single out

certain partial aspects, but do not provide a holistic

picture of the technology. In this section, the existing

works, extracted from IEEE Xplore, ACM Digital

Library, and ScienceDirect, are briefly presented to give

an overview of existing approaches.

An early taxonomy for distributed consensus

algorithms, focusing on cryptocurrency systems was

proposed by Glaser and Bezzenberger in 2015. The

purpose of this taxonomy is to enable practitioners and

researchers to classify a new cryptocurrency

implementation (or one which is being developed) into

the existing systems landscape of cryptocurrency

implementations [5].

In their article, from 2016, concerning blockchain

technology and smart contracts for the “internet of

things,” Christidis and Devetsikiotis refer to a taxonomy

based on questionnaire approach that covers the access

to the network, access to transaction permission, and

mining permission. Furthermore, they propose to

evaluate the used transaction mode, i.e., the unspent

transaction output model or the account-based model,

which allows the usage of smart contracts [6].

Based on the different access levels, a

differentiation between public, private, permissioned,

and permission-less blockchains can be made. Such

differentiation is used to populate heterogeneous

decision trees providing guidance in the process of

selecting a blockchain implementation for a specific use

case.

Peck et al. proposed one such decision tree [1].

Opposed to public opinion, [1] identified that “it is

rather difficult to identify a useful application for

blockchain.” Questions about the underlying use case,

determine, step by step if blockchain is a desirable

technology. Furthermore, the decision tree tries to

identify the access needs, such as the access levels

proposed in [6]. If data must be kept private, a

permissioned blockchain should be considered. If it is

data that can be publicly accessible, a public blockchain

is a possible solution [1].

A similar approach is described by [2] for the

National Institute of Standards and Technology (NIST).

Their decision tree starts with a similar question-based

system. Firstly, they ask if a shared data storage is

needed. Secondly, they ask if multiple entities can

provide data. It must be reviewed if this data is private

and if it requires to be immutable. Lastly, it is verified if

the data must be tamper-proof. If all these questions are

answered positively, Yaga et al. conclude that it might

be a useful blockchain use case.

Wust and Gervais propose a similar decision tree,

which may lead to four different results, targeting the

already described access levels: permissionless

blockchain, public permissioned blockchain, private

permissioned blockchain or the recommendation to not

use a blockchain in the first place [7]. Aspects that are

considered in their work include sorting of states, the

existence of multiple writers, usage of trusted third

parties, known and trusted writers, and public

verifiability [7].

A similar approach is described in [8], where

experts identified five key questions that should be

answered in order to determine if a blockchain should or

could be used. First, they ask if a shared database is

required. Next, it should be identified if multiple parties

require write permissions. Thirdly, they ask if these

identified parties are potentially untrusted. The fourth

identified question targets the need for

disintermediation. The last question aims to identify if it

is necessary to see the links between transactions [8].

Xu et al. propose a taxonomy, using basic questions

as a starting point but drill down into further detail.

Their taxonomy provides an overview of blockchain-

specific architectural aspects and their impact on design

decisions. [3]. These aspects, along with the possible

impact, are discussed in three tables. This taxonomy is

intended to aid software architects “to evaluate and

compare blockchains” [3]. The main point of criticism

is the insufficient explanation of the impact of different

properties as well as the selection of said properties.

Wessling et al. classify the work of Xu et al. as very

specific and for a single blockchain system, focusing on

blockchain-specific technical details, such as consensus

algorithms [9]. Wessling et al. provide an approach “to

decide which elements of an application architecture

could benefit from the use of blockchain technology”

[9], concentrating on the embedding of blockchain in

existing software environments.

The approaches and taxonomy described above are

intended to be independent of use case. In opposite to

this, Fridgen et al. developed a framework, based on an

evolutionary approach, specifically for the public

domain [10]. Within this framework, they identified

three domains: the technical, functional, and legal

domains. Their focus is to “derive a conceptual

framework that unifies blockchain concepts and their

relationships to digital market models into a single

framework.” [10].

Another use case-specific, taxonomy was

introduced by [11] concerning the post-trade process

Page 6288

within the financial sector. They developed a method for

creating requirement-driven taxonomies and evaluated

this method in the mentioned post-trade use case. They

take domain-specific requirements from the

technological, socio-economic, and legal environment

into consideration and add blockchain-specific

attributes. These blockchain-specific attributes are

mainly derived from [3]. The review of related work

shows that most works are dealing with the general

question for the applicability of blockchains along with

taxonomies evaluating blockchain-specific attributes.

These approaches can be used for decision-making on a

strategic level. Once the decision is made in favor of a

blockchain, the question arises, which kind of

blockchain should be used, and if it might need to be

developed from scratch. Every approach found so far is

missing a guideline in terms of comparing and selecting

blockchain technology after identifying the need for one

in dependence of the use case. The identified works

especially lack the consideration of technical quality

criteria. The aim of this work is to fill this gap by taking

up existing works and developing a catalog of criteria

on this basis.

3. Overview

As described in the section above, current works

deal with blockchain-specific criteria only. They do not

consider that; besides these specific criteria, further

general criteria should be considered to select a

blockchain implementation. Software quality criteria,

for example, ISO 9216 and its successor ISO 25010

[16], can be considered. Moreover, software quality

models emerged which focus on the maturity of the

development processes and the respective organization

that provides the software. With the rise of open-source

software (OSS), new quality models were developed to

meet OSS-specific criteria, such as the community. Four

points of view: blockchain specific, software quality,

OSS quality, and software maturity, have been

identified as important when it comes to selecting a

blockchain implementation. In the following, actual

model implementations are introduced, and it is

discussed if they could be of use when evaluating

blockchain implementations, starting with the

blockchain specific point of view.

The taxonomy proposed by [3] is used to cover the

blockchain-specific criteria, as it covers major

blockchain aspects and is commonly used cited by many

authors. As every blockchain implementation is a

software, that needs to be deployed, maintained, and

extended by a set of software developers, software-

specific quality criteria must be considered as well.

Within the literature concerning software quality

models, a range of different approaches exist. Five well-

known quality models (McCall's Quality Model [12],

Boehm’s Quality Model [13], Dromey’s Quality Model

[14] and FURPS Quality Model [15] and ISO 9216

(succeeded by ISO 25010 [16])) were analyzed and

compared by [17]. As they conclude in their research,

most of the quality models focus on one perspective,

e.g., the product perspective. Only ISO 9216 offers a

comprehensive view as well as the top-down, and

bottom-up approach [17]. Most of the described models

use similar criteria or the full subset of ISO 9126. The

Figure 1. Criteria overview and origin

Page 6289

ISO 9126 standard is succeeded by ISO 25010 which is

why it is used in this work to identify relevant software

quality criteria.

As most blockchain implementations are open

source, the third point of view will be open-source

specific criteria. The unique nature of open-source

software (OSS) requires unique quality evaluation

criteria [18], [19]. There are several OSS quality

models, such as QSOS [20] or QualOSS [21]. Every one

of them considers two major quality perspectives: the

product perspective, and the community perspective. As

[18] point out, the community is a unique attribute of

OSS and can be considered the main difference in

opposition to commercial software [22]. Only QualOSS

also considers a process perspective within open-source

software [22].

Since blockchains are used for potentially critical

business areas (e.g., finance, healthcare, governmental),

it is crucial to select a blockchain that is mature enough

from a process point of view [23]. Therefore, software

maturity criteria are used to evaluate maturity from a

process perspective. Since blockchain is a new trend and

multiple blockchain implementations are still emerging,

problems resulting from insufficient maturity may

occur. As already described, QualOSS considers the

process maturity with the focus on community-driven

processes. Software maturity models evaluating a larger

range of process maturity and will be therefore

integrated as an aspect on its own. Several software

maturity models emerged within the last 20-30 years.

The literature review by [24] shows that 58% of

maturity models examined are based on the capability

maturity model (CMM) [23]. Another study conducted

by [34] shows that 60% of the models evaluated are

based on CMM. Based on the high percentage of before

conducted research, CMM will also be used in this

work. It is evaluated in terms of applicability for

blockchain software.

As shown in Fig. 1, an attempt is made to combine

the four identified points of view – blockchain specific,

software quality, open-source software quality and

software maturity – towards a general applicable criteria

catalog to evaluate blockchains. Subsequently, the four

different domains with their specific evaluation criteria

are described in greater detail.

3.1. Blockchain-specific Criteria

Within this section, criteria which reflect the specific

characteristics of blockchains are considered. Naturally,

these specific criteria need to be considered when

aiming to create a general approach for evaluating and

comparing blockchains. As already mentioned, [3]

provides a taxonomy based on a large set of well-

established blockchain specific attributes and will,

therefore, serve as a basis for identifying relevant

criteria. In total, four criteria are selected:

Scope: The scope of the blockchain describes the

accessibility of the blockchain for the participants.

Blockchains are classified as public or private and

permissioned or permissionless, respectively [25], [26],

[27]. If everyone can participate in a blockchain, it is

considered public. If only a restricted set of participants

have access to the blockchain, it is called private as

different use cases require different accessibility, the

scope of the blockchain needs to be determined.

Verifier: Xu et al. point out that there are different

possibilities of how blocks or transactions are verified.

It is possible that a single verifier exists, trusted by the

whole network. The second possibility is an M-of-N

verifier who vote which proposed block is appended to

the blockchain. The third option they identified is the ad

hoc verifier [3]. Depending on the characteristics of the

verifier, the need for a consensus protocol might differ.

Consensus protocol: Blockchain systems use

distributed consensus algorithms to agree on the order

of how elements are appended to the chain. They also

provide a continuous service [28]. That means they are

a key element of every blockchain. Depending on the

blockchain scope, the consensus protocol varies. Zheng

et al. point out, that private blockchains might favor

practical byzantine fault tolerance (PBFT) [29], while in

public blockchains, typically proof of work (PoW) or

proof of stake (PoS) algorithms are used. Depending on

the scope of the blockchain and the possible splitting of

permissions (who can mine new blocks), supported or

used consensus protocols within the blockchains need to

be evaluated.

 Use case: Different blockchains were developed for

a specific domain, often for financial technology.

Depending on the use case and its domain, this needs to

be considered when selecting a blockchain. Ethereum,

for example, “attempts to build the generalized

technology; technology on which all transaction-based

state machine concepts may be built.” [30]. Hyperledger

Indy, in opposite, focuses on the specific domain of

decentralized identity [31]. That means that the use case

must be considered when evaluating blockchains.

Blockchain-specific criteria depend on each other to

a certain degree, e.g., a private blockchain might use a

single verifier with no need for a consensus protocol. A

blockchain used for creating a cryptocurrency most

likely will be a public blockchain, requiring a proof of

work or proof of stake consensus protocol.

3.2. Software Quality Criteria

As already described, a blockchain is a piece of

software that needs to be maintained, deployed, and

extended by a set of developers. When introducing a

Page 6290

blockchain (or any new software system) into a

corporate environment, it must be determined if this

software meets specific quality criteria. If, for example,

the technical environment consists of large

heterogeneous systems, portability would be a factor to

be considered. Besides, there is a set of quality criteria

which software should fulfill to be useable from a

technical point of view. In the following, the main

aspects of ISO 25010 are introduced, and it is shown

how they can be applied to evaluating blockchains.

Functionality suitability: This is the first aspect of

ISO 25010. It is used to check if the software provides

the required functionality [16]. As different domains

have different functional requirements, which need to be

provided by the blockchain application or which need to

be developed on top of the blockchain, this factor is

taken into consideration. Next, to the actual

functionality, sub-factors like compliance or security

are also included. The latter is especially important

when dealing with important transactions.

Reliability: This factor describes how reliable

software is in terms of fail-safety. Sub-factors are, for

example, the fault-tolerance or the maturity of the

software. Since blockchains are decentralized, the fault-

tolerance is an important factor also in terms of

malicious attacks. Due to the fast-evolving blockchain

technology, the maturity should be taken into

consideration as well, to determine possible outcomes

of future developments.

Usability: Usability can be seen from multiple

perspectives, e.g., from a developer’s or a user’s point

of view. As blockchain is a low-level software that does

not directly affect the user interface (UI), the end-user

point of view can be neglected. The developer’s point of

view, however, should be considered in terms of

learnability or understandability. As every software

must be maintained by a set of (sometimes fluctuating)

developers, understandability is a critical feature every

software should provide. Especially when the software

will be used, which was not developed in-house, this

criterion should be focused as there will be the need to

add and modify or at least deploy the software.

Performance Efficiency: This quality factor

determines how efficient the software works. Further

subfactors are time behavior, resource utilization, and

capacity [16]. Since the blockchain runs on multiple,

heterogeneous systems with different hard- and

software specifications, especially the resource

behavior, should be evaluated.

Maintainability: As the blockchain needs to be

further enhanced by different developers, the

requirement for maintainability is an important one.

Maintainability is within the ISO 25010 further split into

modularity, reusability, analyzability, modifiability

(combining changeability and stability from ISO 9126)

and testability [16]. The analyzability, as well as

modifiability, will heavily affect the quality of future

developments and should be well investigated.

Portability: Portability describes in what way a

software can be ported to another environment. A sub-

factor is the adaptability that describes how the software

reacts to changes within its environment. As mentioned

above, the blockchain needs to support a set of

heterogeneous systems, making the portability criterion

necessary.

Modifiability: The modifiability is not a “top-level”

factor in the ISO standard but a sub-factor of the

maintainability [16]. In Boehm’s model, however, it is

covered at a higher level labeled as modifiability [13].

Already in 1976, they identified that it is crucial to

evaluate how efficient it is to maintain or to modify a

newly acquired software. In order to be of use for

specific domains, blockchains must implement domain-

specific requirements. Especially general-purpose

blockchain application approaches like the Hyperledger

project need to be customized for the respective domain.

Therefore, this criterion is, in this work, on a higher

level than it is currently in the ISO standard.

Security: This factor describes the “[…] degree to

which a product or system protects information and data

[…]” [16]. Only users or software systems with

appropriate authorization should access the data or

information they need. Within security, five sub-factors

exist: confidentiality, integrity, non-repudiation,

accountability, authenticity. As blockchains are used to

store and manage several types of data and information,

e.g., transaction data, security must be provided and

needs to be considered for evaluating blockchains. Due

to the decentralized approach combined with

cryptographically secure linkage of blocks; the sub-

factor integrity should be fulfilled by nearly every

blockchain in terms of preventing unauthorized

modification.

3.3. Open Source Software Quality Criteria

As shown the “classic” software quality models

focus on the software only. With an increasing number

of open source software projects, the conventional

software quality models were not sufficient anymore as

they do not consider the community of a software or the

process maturity. Therefore, open source software

quality models were introduced. The identified starting

point concerning open source software quality criteria

is, as already mentioned, QualOSS. The product quality

perspective is similar to the above-mentioned software

quality criteria as they use the same standards, i.e. ISO

25010 [32] [22]. As these criteria were already

investigated, they will not be considered within this

section again, but the community perspective will be

Page 6291

further analyzed in terms of applicability for blockchain

projects. The community consists of developers and

users which contribute to the software. The community

criteria can be further split up in several sub-criteria

concerning the maintenance capacity, the sustainability

and the process maturity [22] which will be discussed in

the following and mapped to the use case of blockchain

evaluation.

Maintenance capability: The maintenance

capability covers the essential questions if the

community can maintain the software throughout a

longer period and if they follow established processes to

secure a certain degree of quality. Within the QualOSS

model, the analysis of existing mailing lists, forums and

ticket systems can be used to analyze the maintenance

ability of the community [21]. Based on this data, it is

possible to identify the core contributors of the software.

Most open source blockchain projects are hosted on

GitHub. Several studies within the field of social

analytics and social coding analyzed GitHub projects

and its developer base, for example in terms of relations

between GitHub users and repositories as well as their

expertise [33]. As most blockchain implementations are

open source software and are hosted on GitHub, the

community of these projects need to be regarded when

evaluating an open source blockchain implementation.

Sustainability: This criterion describes the ability

of the community to sustain and to remain in order to

maintain and develop the software [21]. This means that

the sustainability is strongly connected with the

maintenance capability. Therefore, it is considered as

well when evaluating blockchain implementations.

Possible metrics that are considered in order to measure

the sustainability would be the rate of developer intake,

turnover, or the overall growth in terms of active

developers. These metrics are grouped as the factor

“developer base” in the Software Quality Observatory

for Open Source Software model (SQO-OSS) [19].

Process maturity: This criterion describes how

mature the software is, i.e. how well established the

processes within the community are. These processes

describe how a new feature is introduced or in what way

a bug is fixed. Since companies must rely on the

community to introduce features and bug fixes to a

certain degree, the process maturity needs to be

considered especially in crucial blockchain projects. In

order to evaluate the process maturity, several factors

can be used, for example, if a project management

structure can be determined or if a quality assurance

process is established. These criteria are also part of the

Qualification and Selection of Open Source (QSOS)

Model [20].

3.4. Software Maturity Models

The established processes within open-source

software projects are regarded as significant

contributing factors. These process maturity criteria

from the open-source software community can be

directly linked to software maturity in general. The

CMM will serve as the basis for this section. It is

determined whether it can assist in evaluating

blockchains from a process point of view extending the

process maturity factor described above.

CMM provides five levels to describe the maturity

of a software: initial (level 1), repeatable (level 2),

defined (level 3), managed (level 4) and optimizing

(level 5), where initial is the lowest level and optimizing

is the highest reachable level [23]. For each level, a set

of characteristics is defined by Paulk et al., which must

be met, in order to reach the next level. In the following

sub-sections, the different levels, along with the goals

which must be fulfilled in order to reach that level, are

described based on [23]:

Initial (level 1): The initial level does not have any

criteria to be met, i.e., every software is at least at this

level [23]. If a (blockchain) software is identified to be

at the initial level, it hints that no process of software

management is established.

Repeatable (level 2): If the software process

includes requirements management, software project

planning, software project tracking and oversight,

software subcontract management, software quality

assurance, and software configuration management it

can be considered as repeatable and is therefore on level

2 [23]. Fulfilment of these requirements is evaluated by

checking if known project management tools, such as

Jira, Tempo or Confluence, are used.

Defined (level 3): A software process can be defined

(in level 3) in case organization process focus,

organization process definition, training program,

integrated software management, software product

engineering, integrated group coordination and peer

reviews are in place [23].

 Managed (level 4): Level 4, managed, is reached

when a quantitative process management, along with a

software quality management is introduced to the

software process [23].

Optimizing (level 5): The highest level, optimizing,

is reached once a defect prevention, a technology

change management, and a process change management

is in place [23].

As shown, each level represents an optimization of

processes concerning the software. When introducing a

blockchain, this is a crucial part as it can be derived by

the maturity level how robust the software is as well as

how the software is supported. Therefore, it is included

in the criteria catalog.

Page 6292

4. Summary of Criteria

In the above sections, a selection of different criteria

is presented and discussed if it is feasible to include

these into a selection process for blockchain

implementations. Below, these factors are summarized

with a short description. There are several possible ways

to measure and to identify possible information to meet

a single criterion. As the process maturity criterion can

be considered alike, the maturity levels identified when

considering software maturity models. They are merged

into one criterion.

Scope: It must be analyzed if the blockchains are

private, public, permissioned, or permission-less. This

information can be obtained from respective

whitepapers or technical analysis

Verifier: The number of verifiers approving

transactions must be determined. This depends on the

scope, and the information can be gathered from the

whitepaper as well.

Consensus protocol: The consensus protocols are

strongly linked to the number of verifiers, e.g., a single

verifier does not need to find a consensus. For

evaluating which consensus protocols are supported, the

respective whitepapers can be used as well as reviewing

the source code directly.

Use case: It must be considered if a blockchain was

developed for a special use case or if it should provide a

basis for multi-purpose applications. Again, this

information can be obtained from whitepaper and from

the company’s website.

Functionality: The technical functionality of the to

be evaluated blockchain implementation must match the

requirements of the use case.

Reliability: Depending on the use case, the

blockchain software must serve as a reliable source of

data and therefore, must fulfill this quality criterion.

Usability: The usability from a developer’s point of

view must be taken into consideration in terms of

modifiability and available documentation. The end-

user perspective can be neglected as they do not interact

with blockchain directly.

Efficiency: Efficiency has, for example, to be

considered in terms of transaction throughput depending

on the expected usage and the application domain.

Statistics concerning the efficiency can be obtained

from existing studies or by conducting proof of concepts

and own measurements.

Maintainability: Blockchain software must be

maintained by a set of developers. Maintainability can

be derived from several factors like testability (can be

measured by the number of existing unit tests) or

stability (can be measured by examining reports of the

continuous integration tools)

Portability: Blockchain software should be easy to

install and should support multiple environments so that

it can be run by multiple heterogeneous parties building

the network. Portability can be tested by evaluating the

necessary installation steps and existing scripts.

Modifiability: The modifiability must be evaluated

in order to determine if the application can be modified

to fit the exact requirements of the use case.

Security: Especially in private blockchain

implementations, it must be evaluated if access rights

are integrated.

Maintenance capability: The community must

show that they can maintain the core blockchain

implementation and provide updates as these are

necessary when building a software stack.

Sustainability: Sustainability describes the

likelihood of the community to sustain and to further

develop and maintain the blockchain implementation.

This is strongly linked to the before-described

maintenance capability.

Process maturity: The process maturity provides an

insight into how well the community is established and

considers processes regarding the integration of new

features, bug fixing, or release management.

Maturity level: The level of maturity of a

blockchain application based on CMM indicates how

well the community or company providing the

blockchain implementation is organized from a broad

process point of view.

 Criteria from different aspects may have an impact

on other criteria. The process maturity from the open-

source software community quality criteria can affect

the functionality criterion stated in ISO 25010. This

could be, for example, the case when no working quality

assurance process is defined, which leads to a higher

possibility that software errors are not found. Further

possible implications could be the used consensus

protocol and the reliability criterion. The above-

described criteria will be briefly applied in an example

in the next section.

5. Example

A brief, exemplary application of the criteria catalog

is shown in table 1. The identified criteria are applied to

the three most widely used [35] blockchain

implementations: Bitcoin, Hyperledger Fabric, and

Ethereum. Since the importance of the criteria may

differ between use cases, no weighting of the criteria is

done in this work. However, to give a rough idea of how

the use case could influence the weighting of the

criteria, consider the use case identified by [44]. The

authors describe a blockchain-based system to digitize

the bills of lading leveraging blockchain technology. In

Page 6293

this use case, only a considerable small set of actors

should be able to access data, leading to a higher weight

of the scope attribute.

The example in table 1 shows that it can be

distinguished between qualitative and quantitative

criteria. Qualitative criterions do not leave any room for

interpretation, for example: Bitcoin is a public

blockchain and it uses a PoW consensus protocol.

Another example is the criterion efficiency, which

depends on measurable metrics, such as the transactions

per second (TPS).

Table 1: Applying the criteria catalog

The data for quantitative criteria must be obtained

through research, prototyping, and own expertise. For
example, a public blockchain is out of the question for

an application for electronic bills of lading, since the

necessary confidentiality is not given. Furthermore,

there may be other factors that are decisive, e.g., a

blockchain framework may not support smart contracts.

This may mean that the necessary transactions cannot be

mapped. This applies to different use cases and must,

therefore, always be individually determined. In this

example, an exploratory approach is used where each

blockchain framework was investigated individually.

In this example, a scoring from 1 to 5 is used to

evaluate the criteria, where 1 is the worst, and 5 is the

best possible. The criterion for functionality is not

considered in this example because it requires an in-

depth analysis of a specific use case.

In this example, all criteria and their characteristics

have been depicted on a nominal scale. This is intended

to illustrate how the criteria catalog can be applied.

However, the focus of this work is on identifying the

criteria. Future work will show more comprehensive

application examples.

6. Conclusion

This paper provides a compilation of different

criteria to select blockchain implementations for

different use cases. Current approaches concerning the

selection of blockchain implementations solely focus on

the applicability of blockchain technology. As shown in

the background section, taxonomies were developed

based on blockchain-specific attributes, such as the

access scope or the used consensus protocols. All the

identified approaches do not consider software quality,

open-source software quality, or software maturity

models.

This paper shows, that these quality criteria,

combined with blockchain-specific criteria, lead to a

general criteria catalog, enabling practitioners and

researches an in-depth evaluation of blockchain

implementations and their applicability in specific use

cases. The presented catalog is based on well-

established models and approaches. The criteria for

software quality are extracted from the ISO 25010

standard (formerly ISO 9126). In order to evaluate open-

source software quality, the QSOS model is integrated.

CMM is integrated to evaluate the maturity of

blockchain implementation. These three models are

combined with blockchain-specific attributes derived

from the taxonomy proposed by Xu et al., leading to a

set of 15 factors.

The weighting of these factors can vary from use

case to use case. Therefore, within the frame of this

work, no definitive answer can be given as to how each

criterion is to be weighed individually. Consequently, it

is left to the users to determine the concrete weighting

of the criteria. As for electronic bills of lading the

criteria security, reliability, and scope would be most

important, as it is a document of title [44]. Therefore,

these criterions would be weighted higher as other ones.

 Bitcoin Hyper-

ledger

Ethereu

m

Scope
Public

[36]

Private

[37]
Public

Number of

Verifiers

~ 9962

[36]

Configur

able [37]

~ 8829

[38]

Consensus

Protocol

PoW

[36]

Kafka /

Raft [37]
PoW [39]

Use case

Crypto

Currency

[36]

Multi-

purpose

[37]

Crypto

Currency

/ multi-

purpose

[40]

Functionality - - -

Reliability 5 4 5

Usability 4 4 5

Efficiency

1

(4.6 TPS

[40])

5

(20000

TPS

[41])

3

(15 TPS

[42])

Maintain-

ability
2 5 3

Portability 4 [43] 3 [41] 4

Modifiability 2 5 3

Security 3 5 3

Maintenance

capability
5 4 4

Sustainability 5 4 4

Maturity

level
4 4 4

Page 6294

There are several methods to support multi-criteria

decision (MCDA) processes. Well-known approaches

for this are analytical hierarchy processing (AHP),

PROMETHEE, and analytic network process (ANP).

The criteria presented in this paper serve as basis for

multi-criteria decision processes to select blockchain

applications.

7. References

[1] M. E. Peck, “Blockchain world - Do you need a

blockchain? This chart will tell you if the technology

can solve your problem,” IEEE Spectr., vol. 54, no. 10,

pp. 38–60, 2017.

[2] D. Yaga, P. Mell, N. Roby, and K. Scarfone,

“Blockchain Technology Overview,” 2018. Accessed

on: Mar. 07 2019.

[3] X. Xu et al., “A Taxonomy of Blockchain-Based

Systems for Architecture Design,” in ICSA 2017: 2017

IEEE International Conference on Software

Architecture: proceedings: 3-7 April 2017,

Gothenburg, Sweden, Gothenburg, Sweden, 2017, pp.

243–252.

[4] Coinmarketcap, All Cryptocurrencies. [Online]

Available: https://coinmarketcap.com/all/views/all/.

Accessed on: Apr. 29 2019.

[5] F. Glaser and L. Bezzenberger, “Beyond

Cryptocurrencies - A Taxonomy of Decentralized

Consensus Systems,” in Proceedings of the 23rd

European Conference on Information Systems, ECIS

2015, Münster, Germany, May 26-29, 2015, 18 S.

[6] K. Christidis and M. Devetsikiotis, “Blockchains and

Smart Contracts for the Internet of Things,” IEEE

Access, vol. 4, pp. 2292–2303, 2016.

[7] K. Wust and A. Gervais, “Do you Need a Blockchain?,”

in 2018 Crypto Valley Conference on Blockchain

Technology: CVCBT 2018 : 20-22 June 2018, Zug,

Switzerland : proceedings, Zug, 2018, pp. 45–54.

[8] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda,

and V. Santamaria, “To Blockchain or Not to

Blockchain: That Is the Question,” IT Prof., vol. 20, no.

2, pp. 62–74, 2018.

[9] F. Wessling, C. Ehmke, M. Hesenius, and V. Gruhn,

“How much blockchain do you need?,” in 2018

ACM/IEEE 1st International Workshop on Emerging

Trends in Software Engineering for Blockchain:

WETSEB 2018 : 27 May 2018, Gothenburg, Sweden :

proceedings, Gothenburg, Sweden, 2018, pp. 44–47.

[10] G. Fridgen et al., “Developing an Evaluation

Framework for Blockchain in the Public Sector: The

Example of the German Asylum Process,” 2018.

Accessed on: Mar. 15 2019.

[11] B. Notheisen, S. Willrich, M. Diez, and C. Weinhardt,

“Requirement-driven Taxonomy Development – A

Classification of Blockchain Technologies for

Securities Post-Trading,” in Proceedings of the 52nd

Hawaii International Conference on System Sciences,

2019, pp. 4615–4624.

[12] J. A. McCall, P. K. Richards, and G. F. Walters,

“Factors in software quality: Concepts and Definitions

of Software Quality,” GENERAL ELECTRIC

COMPANY 1, 1977.

[13] B. W. Boehm, J. R. Brown, and M. Lipow,

“Quantitative Evaluation of Software Quality,” in

Proceedings of the 2Nd International Conference on

Software Engineering, 1976, pp. 592–605.

[14] R. G. Dromey, “A model for software product quality,”

IIEEE Trans. Software Eng., vol. 21, no. 2, pp. 146–

162, 1995.

[15] R. B. Grady and D. L. Caswell, Software metrics:

Establishing a company-wide program. Englewood

Cliffs, NJ: Prentice-Hall, 1987.

[16] INTERNATIONAL STANDARD ISO/IEC 25010, 25010,

2017.

[17] D. Samadhiya, S.-H. Wang, and D. Chen, “Quality

models: Role and value in software engineering,” in 2nd

International Conference on Software Technology and

Engineering (ICSTE), 2010: 3 - 5 Oct. 2010, San Juan,

Puerto Rico, USA ; proceedings, San Juan, PR, USA,

2010.

[18] A. Adewumi, S. Misra, N. Omoregbe, B. Crawford, and

R. Soto, “A systematic literature review of open source

software quality assessment models,” (eng),

SpringerPlus, vol. 5, no. 1, p. 1936, 2016.

[19] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos,

“The SQO-OSS Quality Model: Measurement Based

Open Source Software Evaluation,” in IFIP – The

International Federation for Information Processing,

vol. 275, Open Source Development, Communities and

Quality: IFIP 20th World Computer Congress, Working

Group 2.3 on Open Source Software, September 7-10,

2008, Milano, Italy, pp. 237–248.

[20] QSOS, “Qualification and Selection of Open Source

software (QSOS),” 2013. [Online] Available:

http://dist.qsos.org/qsos-2.0_en.pdf. Accessed on: Mar.

29 2019.

[21] M. Soto and M. Ciolkowski, “The QualOSS open

source assessment model measuring the performance of

open source communities,” in 3rd International

Symposium on Empirical Software Engineering and

Measurement, 2009 Lake Buena Vista, FL, USA, 2009,

pp. 498–501.

[22] M. Ciolkowski and M. Soto, “Towards a

Comprehensive Approach for Assessing Open Source

Projects,” in Lecture notes in computer science, vol.

5338, Software process and product measurement:

International conferences, IWSM 2008, MetriKon 2008,

Page 6295

and Mensura 2008, Munich, Germany, November 18 -

19, 2008 ; proceedings, pp. 316–330.

[23] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber,

“Capability maturity model, version 1.1,” IEEE Softw.,

vol. 10, no. 4, pp. 18–27, 1993.

[24] C. Gresse von Wangenheim, J. Carlo, J. Hauck, C.

Salviano, and A. von Wangenheim, “Systematic

Literature Review of Software Process

Capability/Maturity Models,” 10th International SPICE

Conference on Software Process Improvement and

Capability Determination, SPICE 2010, 2010.

[25] J. Mattila, “The Blockchain Phenomenon: The

Disruptive Potential of Distributed Consensus

Architectures,” ETLA Working Papers, no. 38,

http://pub.etla.fi/ETLA-Working-Papers-38.pdf, 2016.

[26] B. Singhal, G. Dhameja, and P. S. Panda, Beginning

Blockchain. Berkeley, CA: Apress, 2018.

[27] L. S. Sankar, M. Sindhu, and M. Sethumadhavan,

“Survey of Consensus Protocols on Blockchain,” in vol.

4, International Conference on Advanced Computing

and Communication Systems (ICACCS), 2017.

[28] C. Cachin and M. Vukolić, “Blockchain Consensus

Protocols in the Wild,” Jul. 2017. [Online] Available:

http://arxiv.org/pdf/1707.01873v2.

[29] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An

Overview of Blockchain Technology: Architecture,

Consensus, and Future Trends,” in 2017 IEEE

International Congress on Big Data - BigData

Congress 2017: 25-30 June 2017, Honolulu, Hawaii,

USA : proceedings, Honolulu, HI, USA, 2017, pp. 557–

564.

[30] G. Wood, “Ethereum Yellow Paper: a formal

specification of Ethereum, a programmable

blockchain,” Accessed on: Mar. 06 2019.

[31] S. Gubler, Hyperledger Indy Graduates To Active

Status; Joins Fabric And Sawtooth As “Production

Ready” Hyperledger Projects. [Online] Available:

https://www.hyperledger.org/blog/2019/04/10/hyperle

dger-indy-graduates-to-active-status-joins-fabric-and-

sawtooth-as-production-ready-hyperledger-projects.

Accessed on: Apr. 30 2019.

[32] A. Adewumi, S. Misra, and N. Omoregbe, “Evaluating

Open Source Software Quality Models Against ISO

25010,” in 2015 IEEE International Conference on

Computer and Information Technology; Ubiquitous

Computing and Communications; Dependable,

Autonomic and Secure Computing; Pervasive

Intelligence and Computing, LIVERPOOL, United

Kingdom, Oct. 2015 - Oct. 2015, pp. 872–877.

[33] Y. Hu, J. Zhang, X. Bai, S. Yu, and Z. Yang, “Influence

analysis of Github repositories,” (eng), SpringerPlus,

vol. 5, no. 1, p. 1268, 2016.

[34] C. G. von Wangenheim et al., “Creating Software

Process Capability/Maturity Models,” IEEE Softw., vol.

27, no. 4, pp. 92–94, 2010.

[35] G. Hileman and M. Rauchs, “GLOBAL

BLOCKCHAIN BENCHMARKING STUDY,”

Cambridge Centre for Alternative Finance, 2017.

[Online] Available:

https://www.ey.com/Publication/vwLUAssets/ey-

global-blockchain-benchmarking-study-2017/$File/ey-

global-blockchain-benchmarking-study-2017.pdf.

Accessed on: Jun. 26 2019.

[36] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash

System,” 2008. [Online] Available:

https://bitcoin.org/bitcoin.pdf. Accessed on: Mar. 21

2019.

[37] Hyperledger Fabric [Online] Available:

https://hyperledger-fabric.readthedocs.io/en/release-

1.4/blockchain.html#what-is-hyperledger-fabric.

Accessed on: May 24 2019.

[38] Bitnodes, Bitnodes. [Online] Available:

https://bitnodes.earn.com/dashboard/?days=365.

Accessed on: Aug. 27 2019.

[39] Ethernodes, ethernodes.org. [Online] Available:

https://www.ethernodes.org/network/1. Accessed on:

Aug. 27 2019.

[40] G. Wood, “Ethereum Yellow Paper: a formal

specification of Ethereum, a programmable

blockchain,” Mar. 2019. Accessed on: Mar. 06 2019.

[41] HACKERNOON, The Blockchain Scalability Problem

& the Race for Visa-Like Transaction Speed. [Online]

Available: https://hackernoon.com/the-blockchain-

scalability-problem-the-race-for-visa-like-transaction-

speed-5cce48f9d44. Accessed on: Aug. 27 2019.

[41] C. Gorenflo, S. Lee, L. Golab, and S. Keshav,

“FastFabric: Scaling Hyperledger Fabric to 20, 000

Transactions per Second,” CoRR, vol. abs/1901.00910,

2019.

[42] A. Hertig, How Will Ethereum Scale? [Online]

Available:

https://www.coindesk.com/information/will-ethereum-

scale. Accessed on: Aug. 27 2019.

[43] BitcoinCore, Running a Full Node: Support the Bitcoin

network by running your own full node. [Online]

Available: https://bitcoin.org/en/full-node#what-is-a-

full-node. Accessed on: Aug. 27 2019.

[44] S. Wunderlich, and D. Saive, „The Electronic Bill of

Lading,” in International Congress on Blockchain and

Applications, Cham, Springer, 2019, pp. 93-100.

Page 6296

