

SKI: A New Agile Framework that supports DevOps, Continuous Delivery,
and Lean Hypothesis Testing

Jeffrey Saltz

Syracuse University
 jsaltz@syr.edu

Alex Sutherland
Scrum Inc.,

 alex.sutherland@scruminc.com

Abstract

This paper explores the need for a new process
framework that can effectively support DevOps and
Continuous Delivery teams. It then defines a new
framework, which adheres to the lean Kanban
philosophy but augments Kanban by providing a
structured iteration process. This new Structured
Kanban Iteration (SKI) framework defines capability-
based iterations (as opposed to Kanban-like no
iterations or Scrum-like time-based sprints) as well as
roles, meetings and artifacts. This structure enables a
team to adopt a well-defined process that can be
consistently used across groups and organizations.
While many of SKI’s concepts are similar to those in
found in Scrum, SKI’s capability-based iterations can
support the demands of product development as well as
operational support efforts, and hence, is well suited for
DevOps and Continuous Delivery. SKI also supports
lean hypothesis testing as well as more traditional
software development teams where capability-based
iterations are deemed more appropriate than time-
based sprints.

1. Introduction

DevOps is the integration of development and
operations, with a key goal of shortening the feedback
loop and the development cycle through collaboration,
automation and frequent software releases [1,2]. A
related term, Continuous Delivery (CD), is a set of
practices and principles to enable the release software
faster and more frequently [1]. In considering the key
goals and principles of DevOps and CD, we use the term
DevOps/CD and adopt a definition provided by Jabbari
et al. [3]:

 “DevOps is a development methodology aimed at
bridging the gap between Development (Dev) and
Operations (Ops), emphasizing communication and
collaboration, continuous integration, quality
assurance and delivery with automated deployment
utilizing a set of development practices”

Hence, DevOps/CD is a development paradigm that
enables continuous delivery and support via a set of
well-defined processes.

DevOps/CD is a growing practice in organizations
ranging from Amazon to Spotify [4]. Several studies
have noted the potential benefits of DevOps/CD. For
example, it enables teams to continuously track the
current build state of the software, reduce integration
and configuration errors, lower stress when dealing with
releases, increase deployment flexibility and provides
improved team collaboration [1,5]. More generally, it
has been noted that DevOps/CD speeds up decision-
making processes and helps teams meet the demands
found in rapid changing environments [4].

One key benefit of a DevOps/CD approach is that
it enables teams to rapidly test lean hypotheses [6]. For
example, The Lean Startup [7] describes how to
iteratively validate or reject a sequence of lean testable
hypotheses to drive product development and
innovation. Without DevOps/CD, delays in the
deployment of software and in the collection of data on
its usage slows down this empirical hypothesis testing
process.

In practice, many teams have struggled to realize
the benefits of DevOps/CD. Some issues have been
technical, such as the ability to easily deploy a software
release. These technical challenges are starting to be
resolved via techniques such as containerization [8].
Teams have also struggled to leverage DevOps/CD due
to the lack of a well-defined process framework that
effectively supports DevOps/CD [4].

In fact, while some teams have found success using
specific implementations of Scrum, Kanban, and other
frameworks, these approaches have typically required
ancillary patterns to support DevOps/CD. Because there
is a lack of a broadly accepted and documented agile
DevOps/CD practices that teams can turn to, each team
has been forced to define their own process. In short,
organizations have largely had to determine how to
apply DevOps/CD by themselves [5] and many think
that there is no defined process to use when using a
DevOps/CD approach [9].

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 6217
URI: https://hdl.handle.net/10125/64503
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

This paper aims to address this issue by defining a
standardized process framework that supports
DevOps/CD and also naturally integrates lean
hypothesis testing, and hence, can help teams realize the
full benefits of an agile DevOps/CD approach. The new
framework adheres to Kanban’s lean principles and, at
the same time, also adheres to most of the elements of
the official Scrum Guide.

Specifically, this paper first provides some
background on currently used agile frameworks (e.g.,
Scrum, Kanban) and the challenges in using these
frameworks within a DevOps/CD context. Then, the
principles used to define the new process are explained.
Next, the new process is described and explored via an
example of a team following the new framework.
Finally, the conclusion, along with potential next steps,
is presented.

2. Background

This section first reviews Scrum (the most popular
Agile framework) including its strengths and how some
have used Scrum within a DevOps/CD context, as well
as reviewing the challenges that have been identified
when using Scrum within a DevOps/CD context. It then
reviews Kanban and describes the challenges when
trying to use Kanban. This is followed by a description
of Scrumban, which is an attempt to integrate Scrum and
Kanban. Finally, usage trends of these different
frameworks are explored.

2.1 Scrum

2.1.1 Scrum Overview: Scrum is an adaptive
framework for “developing, delivering, and sustaining
complex products” [10]. It divides a larger project into
a series of mini-projects, called “sprints”, each of which
have a consistent and fixed length, typically one to four
weeks long. Scrum teams have three roles: the product
owner, the development team, and the scrum master.
Each sprint, starts with a sprint planning meeting where
the product owner explains the top items from the
product backlog, which is an ordered list of product
development ideas. The development team forecasts
what items from the product backlog they can deliver by
the end of the sprint and then makes a sprint plan to
develop a product increment that includes the selected
product backlog items. During a sprint, the team
coordinates closely and holds daily standup meetings.
At the end of each sprint, the team demonstrates the
newly developed product increment to stakeholders and
solicits feedback during sprint review. This increment
should be potentially releasable and meet the predefined
definition of done. To close a sprint, the team inspects
itself and plans for how it can improve in the next sprint

during the sprint retrospective. Throughout the process,
the scrum master acts as a servant leader and coach to
help everyone effectively implement Scrum [10].

The Scrum framework provides a broad definition of
the elements of Scrum. Teams that use Scrum may
incorporate a variety of best practices, documented via
patterns, that provide additional process details, which
helps to ensure a suitable specific Scrum
implementation for the team’s specific needs.

Scrum has become the most commonly used agile
approach with over 12 million practitioners [11].
Software companies have most heavily adopted Scrum
but a wide variety of companies use it for diverse
purposes. For example, National Public Radio uses it to
create new programming, John Deere for new
machinery development, Saab for fighter jets, Team
WIKISPEED for electric cars, and C.H. Robinson
applies scrum for human resources [12].

2.1.2 Scrum Support for DevOps/CD: DevOps/CD
practices rely on the foundations of agile and lean
software development, including continuous integration
practices [2]. In other words, both DevOps/CD and
Scrum have an emphasis on continuous integration,
testing, and delivery of working software. In particular,
both emphasize small and incremental releases [3] and
many also think that it is desirable to have a Scrum team
‟eat their own dog food” in that if they produce a defect
that gets into production, that same team should fix the
issue as soon as possible [13].

Thus, some contend that Scrum is an appropriate
framework to implement a DevOps/CD construct. From
a Scrum perspective, in order to implement
DevOps/CD, the team needs to be able to account for
unknown issues during sprint planning. For example, a
Scrum team that is in the middle of the sprint might
discover an issue that needs to be fixed, which takes
precedence over the tasks that are part of the sprint.

The Scrum Patterns Group has shown, via a defined
pattern, how to enable this type of interrupt driven work
within a sprint by establishing a buffer for the Scrum
team [13]. In short, the team should explicitly allot time
for interrupts (in a buffer for unexpected work). This
buffer might be, for example, 30% of the team’s
capacity. If work exceeds the allotment, the Sprint
should be altered or aborted.

Heeager and Rose [14] also explored how to enable
maintenance within the Sprint framework. They
conducted a study on agile maintenance and found
major problems related to missed sprint goals due to the
requested, but unplanned, emergency work during the
sprints. They also suggested, similar to the Scrum
Patterns Group, that teams should create a buffer, but
noted that it is difficult to predict the size of this buffer.
Furthermore, they suggested creating a well-managed

Page 6218

mechanism to handle these urgent emergency customer
requests.

In fact, while determining the size of a buffer might
be difficult, using a buffer is now a common practice
within Scrum teams that need to support operational
production related issues [15].

2.1.3 Challenges of Scrum for DevOps/CD: While
buffers can be used to enable the use of Scrum in a
DevOps/CD context, the practice of using a buffer can
also be thought of as actually having two processes, one
for the Ops (interrupt) work, and the other process for
the development work [15]. This is why Heeager and
Rose [14] suggested the creation of a well-managed
mechanism to handle this buffer work. It has also been
argued that the use of a buffer reduces project
transparency [16].

More broadly, Ahmad et al. [17] identified several
interconnected challenges with maintenance teams
using Scrum. Beyond the challenge relating to the fact
that operational support tasks are difficult to predict
(e.g., emergency bug fixes), similar to Mitchell [16],
they note that these unplanned tasks often lack visibility
across the team. In addition, it has also been argued that
maintenance work differs from development work [14].
For example, maintenance work can be organized into
sprints, but there is not necessarily any task synergy or
common goal for these tasks [18]. Hence, there may be
less need (or perceived need) for openness, information
sharing and collective ownership if the tasks are
unrelated, and there is no coherent release [19].
Therefore, it has been noted that it’s reasonable to
expect a number of challenges when using Scrum in a
maintenance context [14, 17].

Exemplifying the perceived need for a new process,
Samarawickrama and Perera [9] suggest that a new
“continuous scrum” framework is required to support
DevOps/CD, since they think that there is a need to
modify Scrum rituals and rules to address DevOps/CD
goals such as reducing the required time for a feature to
be put into production [9].

2.1.4 Scrum Challenges: We note that the key
challenge of using a sprint-based framework within a
DevOps/CD context include:

Long feedback cycle – In Scrum, a list of features is
implemented during a sprint. For many Scrum teams,
these are released throughout or at the end of the sprint,
and the team starts working on a new set of features
(during the next sprint). Hence, market feedback from
that first sprint is often not incorporated until the third
sprint, which means, if the team has two-week sprints, a
refinement from one sprint might not be available in the
product for a month (the first two weeks the team is
working on other backlog items, and then there is a two-

week sprint, independent of how long the requested item
will take). Even if the Scrum team practices CD and
releases new features many times per sprint, it is often
the case that measurement and analysis of the
performance of these features is not assessed until the
end of the current sprint (during the sprint review), or
the next sprint, and because the work to be done during
a sprint is unchanged once the sprint starts, iteration on
a feature released on the first day of a sprint will take at
least a full sprint length to occur and often longer.

Decoupling Scrum events (meetings) from item
swarms - the goal of minimizing sprint duration (so that
items can be released faster) implies that the sprint
meetings will also occur more frequently. However, at a
certain point, there is diminishing value in these
ceremonies. One should think logically about the
frequency needed for meetings such as a retrospective
(which might be different than the duration of very short
sprints).

Arbitrary sprint duration - For some teams, the length
of a fixed sprint might not make sense. For example, it
might be the case that sometimes it makes sense to have
a sprint that lasts one day, and other times, it makes
sense for a sprint to last three weeks (ex. due to how
long specific bug fix or set of backlog items will take to
complete). This could allow smaller logical chunks of
work to be released in rapid and coherent fashion, rather
than creating software in predefined sprint windows,
which may not match the length of a logical group of
tasks. The Scrum Guide suggests that the central focus
of each sprint should be a specific Sprint Goal (a single
goal that the team wants to achieve in the given sprint).
Limiting the choice of Sprint Goals to things that take a
specific known duration, reduces the choice set for the
team which may result in non-optimal decision making.

Task estimation reliability - If the team can not
accurately estimate task duration, the concept of a
sprint, and what can get done within a sprint is
problematic. If the team underestimates the work, they
either have to work very long hours, extend the sprint or
in some other way, change the definition of a sprint. If
the team overestimates the duration of tasks, the team
will not have a clear direction of what to do. Note that
there are many reasons why a team might have
unreliable task duration estimates (e.g., a bug fix task
where it is not yet clear what is causing a bug, a task that
is exploratory in nature, etc.).

Operational Support Challenges - Teams that have to
support production code might have to stop their
software development to fix an issue. This typically
can’t be scheduled, but when it occurs, will impact the
team’s ability to deliver the agreed upon sprint tasks,
unless a buffer has been allocated to account for this

Page 6219

unscheduled work. However, the use of a buffer implies
an expected consistent amount of unscheduled work,
which might not be an appropriate assumption.

2.2 Kanban

2.2.1 Kanban Overview: Kanban aims to support lean
thinking by focusing on maximizing value and
minimizing waste in production processes. Specifically,
Kanban defines a set of principles which include:
visualize the workflow, limit work-in-progress, measure
and manage flow, make process policies explicit, and
improve collaboratively / implement feedback loops
[20].

Two key strengths of Kanban are that (1) it visually
represents work on a Kanban board with work items
flowing across the columns (or bins) of increasing work
status completion (i.e., work items are represented
visually on a Kanban board, allowing all team members
to see the state of every piece of work at any time),
typically starting with a ‘to-do’ column and ending with
a ‘done’ column, and (2) it aims to minimize work-in-
progress, often with WIP limits. Minimizing WIP
enables a lean approach (by focusing on reducing the
time it takes to complete a task or user story) and also
enables agility (since tasks are re-prioritized each time a
new task starts).

Kanban proponents claim that Kanban offers
improved project visibility, software quality, team
motivation, communication and collaboration compared
to other Agile methodologies [17]. In addition, a survey
of Kanban software development practitioners reported
that they perceived Kanban as easy to learn and use [21].
The respondents noted several perceived benefits for
using Kanban, such as bringing visibility to work,
helping to reduce work in progress, improving
development flow, increasing team communication and
facilitating coordination.

2.2.2 Kanban Challenges: While Agile practices such
as Scrum have a well-defined process framework to
structure work, Kanban has no such specified process
framework. Hence, teams that are looking to apply
Kanban report a variety of challenges. These challenges
include the lack of organizational support and culture,
lack of training and the misunderstanding of key
concepts [21]. In fact, since Kanban does not define
project roles nor any process specifics, the freedom that
Kanban provides can be part of the challenge in
implementing Kanban. Specifically, while this lack of
process can be a strength when using Kanban (since it
allows teams to implement Kanban within existing
organizational practices), the lack of process definition
also means that every team can implement Kanban

differently. In short, a team using Kanban needs to
define their own processes and artifacts.

2.2.3 Kanban Challenges: Since teams need to
define their own processes and artifacts, it is not
surprising that there remains a lack of cohesion and
consensus around how to use Kanban. For example,
Ahmad et al. [22] identified seven different
implementation definitions during a literature review of
Kanban. Stated another way, the fact that Kanban does
not explicitly specify a process framework suggests that
Kanban needs to be supported by additional practices
[23]. This lack of process definition also explains why
teams that use Kanban note that "Kanban requires
integration with existing agile techniques, which can be
complicated, expensive, and time-consuming” [22].

2.4 Scrumban as a Possible Solution

2.3.1 Scrumban Overview: Scrumban, which was
introduced by Ladas [24], is a lean approach that defines
a set of processes for teams that use Kanban. Ladas
viewed Scrumban as a way to transition from Scrum to
Kanban, and focused on using Kanban within a Scrum
sprint. Many others use a different definition for
Scrumban, such as Nikitina, Kajko-Mattsson & Stråle
[25], who suggest that Scrumban is the implementation
of some of the Scrum practices with some of the Kanban
principles. Others, such as Reddy [26], leave significant
freedom in the definition (e.g., use some, all or none of
the Scrum artifacts and ceremonies).

This shows that there is not a single, commonly
accepted, definition of Scrumban. Even looking at
popular web sites such as Wikipedia and the Agile
Alliance makes it clear that there is not one definition.
This was highlighted by Reddy [26] who noted that
“although Scrumban has evolved as a framework over
the years, it has no definitive guide or definition. In fact,
… several ‘authoritative’ sources disagree about what
Scrumban actually represents”.

2.3.2 Summary of Scrumban: While there is not a
commonly agreed upon definition, most definitions of
Scrumban agree that Scrumban includes the concept of
a sprint. Hence, Scrumban loses Kanban’s focus on
continuous delivery. Most definitions also include the
concept of task estimation, but many Scrumban
definitions do not have specifically defined roles. All
agree on using visual board, and many view the
Scrumban board as being persistent across iterations.

For an example of how Scrumban has been used
within a DevOps/CD context, in describing how one
organization migrated from Scrum to Scrumban (to
implement Continuous Deployment), it was noted that
the organization migrated to Scrumban, but their version
of Scrumban (which had no sprints and no and Scrum

Page 6220

ceremonies) was, in reality, Kanban [27]. Furthermore,
it was noted that the organization realized that there was
more to implementing Kanban than using a Kanban
board. Specifically, the team realized that there needs to
be a shared understanding of “when to move things from
one column to the next” as well as “what will be done
when WIP limits are reached”.

2.3.3 Scrumban Challenges: While there are many
flavors of Scrumban, most have timeboxed sprints,
which means the key Scrum challenges previously
noted are applicable to Scrumban (arbitrary sprint
duration, the need to decouple meetings from item
swarms, the long feedback cycle, and challenges in task
estimation are also applicable to Scrumban).

2.4 Agile Usage Trends

Dingsøyr & Lassenius [28] noted that there is a
transition from teams wanting to use an iterative
development approach via Scrum sprints to the desire
for continuous deployment of new features. For
example, in the latest “State of Agile Report” [29, 30],
VersionOne identified Scrum as the most common agile
framework, used by 56% of respondents. However, for
the previous two years, it was used by 58% of the
respondents, so it appears that the use of Scrum has
plateaued. The survey also noted that the use of Kanban,
as an agile technique, grew to 65% (in 2017) from 50%
in 2016, and from 31% in 2014. The survey also noted
that 8% of teams reported using Scrumban and 5%
reported using Kanban (as their main process
framework). In short, the use of Kanban is growing
quickly, but most teams currently view Kanban as a
technique (similar to the daily stand-up) that is used
within Scrum projects.

This view is consistent with what has been reported
by the Scrum Alliance [31]. Specifically, that the
number of teams exclusively using Scrum is
dramatically decreasing (from 43% in 2015 to 16% in
2017), and “Scrum with Others” is now used by 78% of
the respondents, with Kanban being, by far, the most
often used other framework (with 60% of the teams
incorporating Kanban).

3. SKI: A New Agile Kanban Framework

 “Scrumban is one of many possible stories about
Lean transformation—we need more!”
 Ladas, 2009

To address these challenges and usage trends, we
have defined SKI, which is an agile Structured Kanban
Iteration framework, leveraging some of the key
concepts of Scrum and Kanban, but differently than
Scrumban (which as previously noted, is more of

Kanban within a Scrum Framework). The rest of this
section first describes the principles driving the
definition of SKI, and then describes the roles, artifacts,
and events that comprise the framework.

3.1 Principles Driving SKI

In general, we view that the key concepts and
benefits for a lean agile project are based on the
following three key tenets:

1. Agile is intended to be a sequence of iterative
experimentation and adaptation cycles.

2. The goal of such cycles should be to have an
idea or experiment in mind, to build it, and then
to observe its performance in the real-world use
case for which it is intended, and then to analyze
those observations to create the next idea or
experiment.

3. Going from an initial idea, through
implementation, deployment and the
measurement and analysis of results should be
the basis for an iteration. The completion of the
empirical process should mark the end of an
iteration (not a predetermined number of
elapsed hours).

Teams should focus on maximizing the number of
empirical processes that they can achieve in a given
year, weighted by the value of each empirical process,
by minimizing the cycle time of each empirical iteration.
By following these tenets, teams will naturally focus on
their process efficiency (i.e., focusing on trying to
ensure that the time spent during an iteration goes
towards work that was actually required to run the given
experiment/iteration).

3.2 The Framework

SKI teams use a visual board and focus on working
on a specific item or collection of items during an
iteration that is task-based, not time boxed. Thus, an
iteration more closely aligns with the lean concept of
pulling tasks, in a prioritized manner, when the team has
capacity, and each iteration may be viewed as validating
or rejecting a specific lean hypothesis.

Specifically, an iteration is defined by the following
three steps:

1. Create: A thing or set of things that will be
created and put into use with a hypothesis
about what will happen.

2. Observe: A set of observable outcomes of that
use that will be measured (and any work that is
needed to facilitate that measurement).

3. Analyze: Analyzing those observables and
creating a plan for the next iteration

Page 6221

 The create, observe, analyze process is similar to
“build, measure, learn” from The Lean Startup [7], but
with an emphasis on ensuring that the work that is
required for data collection and data analysis is directly
incorporated into the team’s tasks for a given iteration.
Note that we use the word “analyze” rather than “learn”
to indicate that the team should dedicate time
specifically to active quantitative or qualitative analysis
of data according to a statistically sound methodology.
The results of this analysis are specific to the
performance of the creation, according to the selected
observables, which is different than other learning that
might occur during an iteration (e.g., learning how to
execute a task more efficiently, identification of
impediments, etc).

Furthermore, SKI has a well-defined set of roles,
artifacts, and events, which are explained below.

3.2.1 Roles: Similar to Scrum, each SKI team is a group
of three to nine people, one of whom is the product
owner, and one of whom is the process master. As in
Scrum, the product owner in SKI is the empowered
central point of product leadership – the person who
decides which features and functionality to build, the
order in which to build them, and what aspects of them
to observe and analyze. The process master (SKI
master) acts as a coach, facilitator, impediment remover
as well as helping everyone involved understand and
embrace the SKI values, principles, and practices to aid
the organization obtain exceptional results from
applying SKI. Both the product owner and the process
master are part of the SKI Team and may contribute to
creating, observing and analyzing throughout an
iteration. Finally, the team should be comprised of a
cross-functional collection of people that have all the
skills needed to design, build, test and deploy the desired
product. The team self-organizes to determine the best
way to accomplish the goal defined by the product
owner.

3.2.2 Artifacts: A Product Backlog Item (PBI) may
take a variety of forms such as “user stories” or “testable
hypotheses” as popularized by XP and Lean. Each PBI
should include at least one thing to create, one thing to
observe and one thing to analyze. The Product Backlog
is a prioritized list of PBIs (i.e., work to be done). The
product owner, with input from the stakeholders and the
team, is responsible for maintaining the product
backlog, which evolves and changes throughout the
project. The Task Board is a visual representation of the
work items currently in progress. For any item that is in
progress (i.e., being worked on by the team), the tasks
for that item are displayed on the board (items not yet
started are on the product backlog). The board has
several columns (at a minimum, ‘to do’, ‘in progress’,
‘done’) and each task flows across the board, thus

visually showing work being done within the team. As
with Kanban, to facilitate task throughput, each team
defines a maximum number of tasks within a single
column.

3.2.3 Events: An Iteration is a collection of one or more
product backlog items that are combined into a single
testable experiment, the outcome of which must have
business value derived either from the thing that is
created, the information gained through observation and
analysis or both. Each iteration should aim to be a
minimally viable set of work that can deliver value and
allows the given lean hypothesis to be tested, and should
not last more than one month, but can be as short as the
team wants (e.g., one day). The team typically breaks
this set of one or more PBIs into several tasks that the
team collectively strives to complete as soon as possible.
These tasks are placed on the board, in the ‘to do’
column. The current status of these items is always
visually represented on the task board and the iteration
is completed when all the tasks for that item are in the
‘done’ column.

The Daily Meeting occurs each day, when the team
meets for a 15-minute inspect-and-adapt activity. An
important goal of this meeting is to help a self-
organizing team better manage the flow of its work (ex.
helping a team member get past an issue). Just as with
Scrum Standups, a common approach for conducting
this meeting is for team members to share with each
other what they did yesterday, what they are planning to
do today, and any obstacles they are facing.

The Iteration Review occurs on a regular and
repeating basis, and is scheduled by the product owner.
Reviews might be weekly and are calendar based to
account for the fact that there might be several iterations
per week, and there would be diminishing returns if
iteration reviews occurred on a daily (or more
frequently) basis. They would also be logistically
difficult to schedule if they were needed on an ad hoc
basis.

The review is intended to foster conversation about
completed functionality and the observations and
analysis that the team has generated regarding the
performance of the completed iteration(s). Participants
include the team, stakeholders, customers, and anyone
else interested in the outcome of the project. A
successful review results in bidirectional information
flow. The people who aren’t on the team get to sync up
on the project effort, the observed product performance,
and the team’s analysis of that performance. At the
same time, the team can get suggestions from the other
attendees for potential features, metrics and experiments
for future iterations. Furthermore, during this meeting,
the group discusses the prioritization of the backlog
items (since, for example, the insights gained might
suggest a change in item priority or the creation of new

Page 6222

items). At the end of the review, the tasks on the board
relating to the discussed and now completed item(s) are
archived.

Note that in addition to the SKI team working on
one or more iterations, the team also spends time
grooming and prioritizing the PBI, which is the activity
of creating, refining and prioritizing potential iteration
items. While the product owner owns the prioritization
process, the other members of the team typically budget
5% to 10% of their total capacity to assist the product
owner with product backlog grooming (e.g., breaking an
item into two smaller, but still useful, items). As part of
the grooming process, the team defines a relative unit of
measure, decided upon by the team, to provide relative
an estimate of the effort for completing different items.
This effort estimation, which could, for example, be a
T-Shirt sized view of the work to do (large, medium,
small), or be a number representing relative effort, is
used to help prioritize backlog items, but not define
what is part of an iteration.

Product backlog Selection occurs when the team
has capacity to start a new iteration (e.g., when an
iteration has completed, or when an iteration
observation does not require full-time focus). The team
reviews the prioritized backlog items (that have been
updated via grooming) and selects the top backlog
item(s) that will now be the team’s focus. Note that since
the iteration is capability-based, and is the minimally
viable set of items that can deliver value, the item
estimation is used to help prioritize items, not determine
how many items should be included in an iteration (e.g.,
if two items deliver the same value but one is deemed a
“small” effort and one is a “large” effort, the team might
select the smaller level of effort item). Combining
multiple items into a single iteration is generally only
desirable in the case that the associated hypothesis or
observable data overlap.

Finally, the Retrospective occurs at regular
intervals (ex. once a month) and is a time to inspect and
adapt the process. In the spirit of continuous
improvement, the team comes together to discuss what
is and is not working with the current process and
associated technical practices. The goal is to help a good
SKI team become great. At the end of a retrospective,
the team should have identified and committed to a
practical number of process improvement actions that
will be undertaken by the team going forward.

3.2.4 Comparing SKI to Scrum and Kanban: Table 1
provides a summary of how SKI compares to Scrum,
Scrumban and Kanban. The table focuses on the key
attributes of the SKI framework. Specifically, in
reviewing the table, one can see that SKI can be viewed
as an instance of Kanban. With respect to Scrum, SKI
can be viewed as being similar in many aspects, but SKI
differs from Scrum in the use of capability-based

iterations, the flexibility to not have to accurately
estimate task duration and having key meetings (ex.
retrospective) be calendar based, not sprint-based.

 SKI Scrum Scrumban* Kanban

Iteration Capability /
Item-based

Time-based Time-based No iteration

Unplanned /
Ops work
supported via

New task on
board

Buffers Buffers New task on
board

Iteration &
Retrospective
reviews

Time-based After each
sprint

After each
sprint

Not defined

Iteration
coordination

Kanban flow Not defined Kanban
flow

Kanban
flow

Task
Estimation
Usage

Only for PBI
prioritization

PBI priority
& What fits
into a sprint

PBI priority
& What fits
into a sprint

No Task
Estimation

Use of PBI Yes Yes Yes Yes
Backlog
selection

When there
is capacity
(to start new
iteration)

When sprint
completes

When sprint
completes

When there
is capacity

Daily
Standup

Yes Yes Yes Not defined

Roles Proc Master,
SKI Team
member, PO

Proc Master,
Dev Team,
PO

Proc Master,
Dev Team,
PO

None
Defined

*Based on the most commonly used definition of Scrumban
Table 1: Comparing SKI, Scrum, Scumban and Kanban

4. An Example

4.1 Background

A team is in charge of the website documentation,
tutorials and new user experience for a complex web
application. The application has a one-week free trial
after which users must either purchase the full version
of the software or cease to use it. The teams core
responsibility is to maximize the frequency with which
a user who starts a free trial of the software goes on to
purchase the full version.

The product owner is responsible for assessing the
business value of each potential experiment,
considering both the immediately created value (e.g.,
the increase in sales) as well as the potential value of
what the team might learn when analyzing their results.

The product owner collaborates with the rest of the
team to determine what needs to be done to create the
desired features, what data should specifically be
observed and analyzed, and what is required to collect
and analyze the data to create ready Product Back Items
(PBIs). These PBIs are estimated, with respect to how
much effort is required to finish each item. During the
product backlog selection discussion, led by their SKI
master, the team collectively might combine, separate,
simplify, or alter their product backlog items to come up
with a specific experiment to run (i.e. an iteration).

Page 6223

4.2 Example Iteration

An item on their product backlog is to translate their
FAQ, which currently is only provided in English, into
additional languages, because they have noticed that
their conversion rate in non-English speaking European
countries is substantially lower than it is in the
UK. Another item on their backlog is to create a guided
walkthrough that is triggered when a new user starts
using the application, as they notice that a large
percentage of their users launch the application once and
never use it again and they hypothesize that they lose a
substantial number of new users who are confused by
the application the first time they use it.

With respect to this iteration, the team might elect to
create the automated guided walkthrough, but to make
it available both in English and in German as they
realize that translating the walkthrough into just one
additional language is a small additional effort
compared to translating the entire FAQ and might give
insight into the value of translation. They would then
measure the increase in how many users launched the
application more than once, and how many converted to
a sale of the full version of the application, among users
from both the UK and Germany, and compare that to
existing baseline rates.

Analyzing the resulting data might inform the team
of both the potential future value of adding additional
language support to their documentation while also
helping them understand if new user confusion results
in a significant loss of sales or if there are other issues
(e.g., once a user tries the application they often feel that
the product doesn’t meet their needs).

Once the elements to create, analyze and observe are
fully fleshed out, the team begins their iteration. They
would take the larger experiment and break it into
specific tasks which would flow through the task
board. This team also had recurring regular
responsibilities that are required to “keep the lights on”,
as well as bug fixes that were also required as needed.
The team adds the “keep the lights on” items to the task
board as needed, and adds the “bug fix” items if/when
bugs are identified.

In this situation, an example set of tasks might be
“Select which features the automated walkthrough will
highlight and write text copy for each step in English”
or “Send the English text to our German translator” or
“Create code that will allow us to easily highlight a
specific element of the interface and show text in a
bubble near it with the ability to step forwards and
backwards through a list of walkthrough steps”. The
tasks will also include the steps required for the
observation and analysis, such as “randomly show the
new guided walkthrough to 50% of new users and track
how many users in each sample use the application more

than once, and how many buy the full version within a
week, separated by country” and “Run a statistical test
on the resulting data and assess the impact of the guided
walkthrough overall and the German language specific
version of it.”

Each day, the team has their daily standup to identify
issues and roadblocks. In this example, it might take 7-
10 days to finish observing and analyzing the data as the
team would want to compare conversion rates among
people who had used the automated walkthrough on
their first use of the product and whose one-week free
trial had ended prior to drawing conclusions.

Note that, in this situation, the team may have a
lighter workload during the observe and analyze portion
of the iteration. During this time, the team might work
on “keep the lights on” tasks or perform grooming of
their product backlog. In addition, the team might start
their next iteration and work on concurrently while
observing and analyzing the data from the current
iteration. Having the next iteration start while still in the
final phases of a different iteration is similar to a more
advanced pipeline of sprints found in type C Scrum,
described by Sutherland [32], but not commonly used
by Scrum teams.

4.3 After the Iteration has Completed

Once the data has been analyzed, the grooming and
prioritization is done before the next iteration starts. The
team also discusses their findings with their
stakeholders at their next scheduled iteration review.

To continue our example, if the team found that the
conversion rate in their German user segment was
significantly higher than expected, they might prioritize
a smaller iteration where they would add support for 3
additional languages. If they found that their
experiment resulted in no significant increase in sales
conversions among either the German or the English
demographic, then perhaps they would look to create an
experiment to see if a specific missing feature was
causing users to abandon the product after a single use.
As these tasks were already on the backlog, the start of
this new iteration (i.e., starting their next experiment)
would not need to wait for the team’s next iteration
review but rather, the priority of these items would be
adjusted via the team’s grooming and prioritization
effort. However, the iteration review might uncover
additional items for the product backlog, such as
potentially additional guidance for more advanced
features of the application.

Finally, the team has a monthly Retrospective to
discuss what is and is not working with the current
process and associated technical practices, and explore
how to improve the team’s process and results.

Page 6224

5. Discussion

SKI can be viewed as an instantiation of Scrum that
is mostly consistent with the official Scrum Guide, with
a few notable exceptions. The most important exception
is that the Scrum Guide requires all sprints to be of equal
length in time. However, iterations in SKI vary in
duration, so as to allow a logical increment of work to
be done in one iteration. The other notable exception is
that retrospectives and item reviews are not done at the
end of every iteration, but rather, on a frequency the
team deems appropriate.

In addition, SKI enables teams to achieve
continuous delivery by providing a structure for how the
team should coordinate operation, development, and
maintenance tasks without the reliance on an estimated
buffer. Specifically, SKI enables “keep the lights on”
tasks to be a set of repeating tasks that go on the team’s
board and “bug fix” tasks, if deemed an emergency, go
straight on the team’s board as their highest priority task
(perhaps as a new iteration). If the bug fix is not urgent
(as deemed by the product owner), then that code fix
goes on the product backlog and prioritized as
appropriate during grooming and prioritization.

Furthermore, in many Scrum implementations,
observing, analyzing and reacting to market feedback is
solely the responsibility of the product owner. This part
of the product owner’s job largely falls outside of the
codified process. Collecting and analyzing well-chosen
data and drawing appropriate conclusions is a crucial
part of the empirical process. By building these steps
directly into the core workflow and ensuring that the
entire team is involved in that the process, SKI will help
teams make better data-driven decisions.

Similarly, SKI adheres to Kanban (e.g., there is a
Kanban board, teams need to limit WIP, and work items
flow across the board). In fact, it is the Kanban
philosophy and artifacts that enables the coordination
and integration of interrupt requests (ex. bug fixes) with
a planned enhancement iteration. However, the
framework provides more structure than defined by
Kanban (ex. roles, meeting and artifacts). Having a more
clearly defined process, which leverages agile best
practices, enables teams to implement the lean process
in a more consistent and repeatable manner.

5.1 Potential Metrics

Since this framework implements Kanban, many
Kanban metrics are appropriate for SKI. In addition,
calculating velocity (which is the key Scrum metric) is
also feasible. Hence, potential metrics include:
• Top Item time: How much the team is being

interrupted / working on non-priority items.

• Lead time: The total time it takes for an iteration to
complete.

• Cycle item time: How long it takes a work item to
complete after the item work is started.

• Cycle iteration time: How long it takes an iteration
to complete after the item work is started.

• Throughput: The number of tasks (or iterations)
processed per time unit (e.g., per week).

• Velocity: The number of points completed per unit
time (e.g., per week).

5.2 Conclusion

This paper describes SKI, a new agile Structured
Kanban Iteration-based framework and explains how
the framework can be used within a DevOps/CD
context. While leveraging key aspects of Scrum and
Kanban, the framework provides several advantages as
compared to Scrum and Kanban.

As compared to Scrum, SKI defines an iteration that
is capability-focused (not time-based) so as to provide a
team the ability to execute small logical iterations as
well as supporting unplanned operational support.
While SKI has these key differences, as compared to
Scrum, SKI’s artifacts and time-based meetings enables
SKI to be easily integrated within organizations that use
Scrum.

As compared to Kanban, this framework provides
clear guidance on roles, artifacts and events, which
enables teams to more easily and reliably achieve the
benefits of Kanban.

While this paper focused on the use of SKI within a
DevOps/CD context, the framework could be
appropriate in other contexts, such as when a team is
using Kanban but wants some a more structured
framework or when the team thinks that capability-
based iterations are more appropriate than time-based
iterations. More generally, SKI could be appropriate
when the project:

1. Has the ability to rapidly release iterations and
observe that release in use

2. Faces a significant degree of uncertainty in what
they need to build or how the market/client will
react to an iteration

3. Can dedicate a significant amount of their effort
to new product development

Finally, future work is planned to explore and
validate the effectiveness of SKI. The validation of SKI
will require surveys and case studies of teams using
SKI. For example, future work will document real world
usage of SKI within a DevOps/CD context as well as
other contexts, such as within data science projects or
more traditional software teams, where capability-based
iterations are deemed more appropriate than time-based
sprints. Furthermore, future research will also explore

Page 6225

the metrics that were proposed in this paper and evaluate
how they can be leveraged to compare SKI with other
agile approaches such as Scrum and Kanban, with a goal
of understanding when SKI is more appropriate than
these other frameworks.

References
[1] Humble, J. and Farley, D., (2010). Continuous Delivery:

Reliable Software Releases through Build, Test, and
Deployment Automation, 1st ed. Boston: Addison-Wesley.

[2] Lwakatare, L. E., Karvonen, T., Sauvola, T., Kuvaja, P.,
Olsson, H. H., Bosch, J., and Oivo, M. 2016. “Towards
DevOps in the Embedded Systems Domain: Why Is It so
Hard?,” in System Sciences (HICSS), 2016 49th Hawaii
International Conference On, IEEE, pp. 5437–5446.

[3] Jabbari, R., bin Ali, N., Petersen, K., & Tanveer, B. (2016,
May). What is devops?: A systematic mapping study on
definitions and practices. In Proceedings of the Scientific
Workshop Proceedings of XP2016 (p. 12). ACM.

[4] Wiedemann, A. 2018. IT Governance Mechanisms for
DevOps Teams-How Incumbent Companies Achieve
Competitive Advantages. In Proceedings of the 51st
Hawaii International Conference on System Sciences.

[5] Nybom, K., Smeds, J., and Porres, I. (2016). On the Impact
of Mixing Responsibilities Between Devs and Ops, in
International Conference on Agile Software Development.

[6] Kevic, B. Murphy, L. Williams and J. Beckmann,
Characterizing Experimentation in Continuous
Deployment: A Case Study on Bing, 2017 IEEE/ACM
39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP).

[7] Ries, E. (2011). The lean startup: How today's
entrepreneurs use continuous innovation to create
radically successful businesses. NY: Crown Business.

[8] Pahl, C., Brogi, A., Soldani, J., & Jamshidi, P. (2017).
Cloud container technologies: a state-of-the-art
review. IEEE Transactions on Cloud Computing.

[9] Samarawickrama, S. S., & Perera, I. (2017). Continuous
scrum: A framework to enhance scrum with DevOps. In
17th International Conference on Advances in ICT for
Emerging Regions (ICTer) (pp. 1-7). IEEE.

[10] Sutherland, J., & Schwaber, K. (2017, November). The
Scrum Guide. Retrieved from scrumguides.org:
www.scrumguides.org/docs/scrumguide/v2017/2017-
Scrum-Guide-US.pdf

[11] Scrum Alliance. (2017). The State of Scrum Report 2017
Edition.

[12] Rigby, D. K., Sutherland, J., & Takeuchi, H. (2016, May).
Embracing Agile. Retrieved from Harvard Business
Review: https://hbr.org/2016/05/embracing-agile

[13] ScrumPlop.org. (2018). Published Patterns:.
https://sites.google.com/a/scrumplop.org/published-
patterns/product-organization-pattern-
language/illegitimus-non-interruptus

[14] Heeager, L. T., & Rose, J. (2015). Optimising agile
development practices for the maintenance operation: nine
heuristics. Empirical Software Engineering, 20(6).

[15] Reddit, 2019. Sprint buffer: Is it a good practice?
https://www.reddit.com/r/scrum/comments/b0fomi/sprint
_buffer_is_it_a_good_practice/

[16] Mitchel, J. 2019. Expedite! Handling Unplanned Work in
Scrum, www.scrum.org/resources/blog/expedite-
Humhandling-unplanned-work-scrum

[17] Ahmad, M. O., Kuvaja, P., Oivo, M., & Markkula, J.
(2016). Transition of software maintenance teams from
Scrum to Kanban. In 2016 49th Hawaii International
Conference on System Sciences (HICSS) (pp. 5427-5436).

[18] Poole, C., & Huisman, J. W. (2001). Using extreme
programming in a maintenance environment. IEEE
Software, 18(6), 42-50.

[19] Bennett, K. H., & Rajlich, V. T. (2000). Software
maintenance and evolution: a roadmap. In Proceedings of
the Conference on the Future of Software Engineering

[20] David. J, Anderson, “Kanban: Successful Evolutionary
Change for Your Technology Business”. Sequim, WA:
Blue Hole Press, 2010.

[21] Ahmad, M. O., Markkula, J., & Oivo, M. (2016, May).
Insights into the Perceived Benefits of Kanban in Software
Companies: Practitioners’ Views. In International
Conference on Agile Software Development (pp. 156-168).

[22] Ahmad, M. O., Dennehy, D., Conboy, K., & Oivo, M.
(2018). Kanban in software engineering: A systematic
mapping study. Journal of Systems and Software, 137.

[23] Ikonen, M., Pirinen, E., Fagerholm, F., Kettunen, P., &
Abrahamsson, P. (2011). On the impact of kanban on
software project work: An empirical case study
investigation. In IEEE International Conference on
Engineering of Complex Computer Systems

[24] Ladas, C. (2009). Scrumban-essays on kanban systems
for lean software development. Lulu.com.

[25] Nikitina, N., Kajko-Mattsson, M., & Stråle, M. (2012).
From scrum to scrumban: A case study of a process
transition. In 2012 International Conference on Software
and System Process (ICSSP) (pp. 140-149). IEEE.

[26] Reddy, A. (2015). The Scrumban [r] evolution: getting
the most out of Agile, Scrum, and lean Kanban. Addison-
Wesley Professional.

[27] Neely, S., & Stolt, S. (2013). Continuous delivery? easy!
just change everything (well, maybe it is not that easy). In
2013 Agile Conference (pp. 121-128). IEEE.

[28] Dingsøyr, T., & Lassenius, C. (2016). Emerging themes
in agile software development: Introduction to the special
section on continuous value delivery. Information and
Software Technology, 77, 56-60.

[29] VersionOne Inc. 2018. The 12th Annual State of Agile
Report. Technical Report. VersionOne Inc.
https://explore.versionone.com/state-of-agile/versionone-
12th-annual-state-of-agile-report

[30] VersionOne, Inc. 2016. The 10th Annual State of Agile
Survey. Technical Report. VersionOne Inc.
http://www.agile247.pl/wp-
content/uploads/2016/04/VersionOne-10th-Annual-State-
of-Agile-Report.pdf

[31] Scrum Alliance. 2018. The State of Scrum Report,
http://info.scrumalliance.org/State-of-Scrum-2017-
18.html

[32] J. Sutherland, Future of scrum: parallel pipelining of
sprints in complex projects, Agile Development
Conference (ADC'05), USA, 2005, pp. 90-99.

Page 6226

