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Abstract

The documentation of IT landscapes is a challenging
task which is still performed mainly manually.
Technology and software development trends like
agile practices and microservice-based architectures
exacerbate the endeavours to keep documentation
up-to-date. Recent research efforts for automating this
task have not addressed runtime data for gathering
the architecture and remain unclear regarding proper
algorithms and visualization support. In this paper,
we want to close this research gap by presenting
two algorithms that 1) discover the IT landscape
based on historical data and 2) create continuously
architecture snapshots based on new incoming runtime
data. We especially consider scenarios in which runtime
artifacts or communications paths were removed from
the architecture as those cases are challenging to
unveil from runtime data. We evaluate our prototype
by analyzing the monitoring data from 79 days of a
big automotive company. The algorithms provided
promising results. The implemented prototype allows
stakeholders to explore the snapshots in order to analyze
the emerging behavior of the microservice-based IT
landscape.

1. Introduction

The current Information Technology (IT) in
organizations is evolving rapidly for fulfilling the
fast-changing requirements. The reason is that
companies operate in a dynamic and high competitive
marketplace in which the capability to adapt to changing
conditions has become fundamental for companies to
survive and to successfully compete against their rivals.

Those conditions require more and more the
collaboration between different stakeholders for
improving the quality of software applications while
being able to develop them more quickly and reliably.
New software development methodologies such
as agile practices [1], DevOps [2] and continuous

delivery [3] of containerized applications emerged
from this development. One architecture style that
gained popularity in the last years is microservices
[4]. Microservice architecture is a variant of the
service-oriented architecture (SOA) style that structures
an application as a collection of loosely coupled
services that run in their processes. Many well-known
companies promote microservices such as Amazon,
Spotify, Linkedin, and Uber. By using this architectural
style, these companies claim to have achieved high
scalability, agility and reliability [5]. Microservice
architectures support heavily the aforementioned
collaboration aspect by releasing the rigid structure of
monolithic systems towards independent deployments
of single applications. Hence, microservices embed
easily into the agile environment and continuous
delivery approach.

Enterprise architecture (EA) management (EAM)[6]
has been established as an important instrument
for managing the complexity of the IT-landscape
and enabling enterprise-wide transparency. EAM
is typically conducted to document and analyze the
status-quo of the current EA in order to define
requirements and plans for transformations to an
architecture that enables the business strategy, optimizes
the business processes and therefore reduces costs. IT
landscape modelling as a subarea of EAM aims to
discover and visualize the artifacts and relationships of
the company’s IT landscape. It is typically conducted
manually by people within one organization having
different technical and nontechnical backgrounds. This
activity is mandatory for analyzing transformation
strategies.

Unfortunately, even though microservices have
several advantages in contrast to monolithic systems,
this architecture style introduces a high level of
complexity with regard to IT landscape modelling [7].
For instance, due to agile practices new microservices
or communication paths between microservices can be
introduced very quickly into the current infrastructure
or removed when they are no longer needed. Hence, it
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is crucial to keep track of the emerging IT landscape,
which raises the documentation overhead.

The consequences are out–of–date EA models which
lead to decisions made on wrong data or bad data quality
[8]. Farwick et al. [9] and Hauder et al. [10] identified
runtime data as a promising information source for
delivering EA relevant information. Hence, a few
research endeavours [11, 12, 13] leverage runtime data
for automating IT landscape modelling. However, the
presented solutions did not allow to capture the complete
IT landscape: An important aspect which is missing
in most of the solutions are the proper identification
of communication dependencies from an end-to-end
perspective, i.e. the communication paths between
runtime artifacts and the used interfaces (API) for the
information exchange. Although there exists a plethora
of commercial and open-source monitoring vendors
that provide powerful agent-based instrumentations to
gain insights from an end-to-end perspective via tracing
[14], those tools were primarily developed for i.a.
monitoring application performance (APM) and not
for documentation purposes. For instance, many
monitoring solutions are event based [15], i.e. they
provide runtime data as soon as a specific event occurs
like a user request or a system failure. Those events
are traced and kept in the database for a certain period
of time. Within an event, the communication behavior
between IT components is unveiled. Outside of events
only the state (running, paused, down, etc.) of IT
components is captured. As a consequence runtime
data provide only the IT architecture within a specific
point of time which does not mean it is complete at
all. In order to capture the entire as-is IT landscape
with all identified communication paths a request of
the complete runtime history is required which is
mostly not possible due to performance reasons and
resource limitations. In addition, old components and
communication paths would also be extracted that were
already removed several sprints ago.

In this work, we present a solution that leverages
runtime instrumentation for continuously reconstructing
and documenting the as-is microservice-based IT
landscape in any given point of time. The contribution of
our work is threefold: 1) First, we describe an approach
for continuously tracking architecture changes and
applying those changes to our maintained architecture
in order to ensure an up–to–date IT landscape
documentation. 2) We store every change to the
architecture as snapshots in our database and visualize
this emerging behaviour based on a timeline. The
visualization of the information exchange dependencies
is built upon a graph-based scheme provided by
GraphQL as the query language. 3) We allow users

to manually refine the reconstructed architecture and
save those refinements in our database. We evaluate
our prototype in a big automotive company located in
Germany.

The remainder of the paper is organized as
follows: Section II presents related academic work
that influenced our design decisions. In Section III,
we describe the concept in more detail, whereas in
Section IV, we dive deeper into the implementation
aspects. Afterwards, we continue in Section V to discuss
our evaluation results. We finish the paper with our
limitations and a conclusion in Section VI and VII.

2. Related work

There exist a few concepts on how to integrate
runtime data from existing data sources for IT landscape
modelling. Holm et al. [13], as well as Alegria et
al. [16] make use of network analysis tools in order to
infer information on the IT infrastructure. Buschle et al.
[12], on the other hand, interpret the configuration of an
Enterprise Service Bus (ESB) to include knowledge on
communicating information systems in the EA model.
These approaches have in common that they are limited
to a specific layer of the EA and the authors do
not consider communication paths between runtime
artifacts. In addition, they are not appropriate for
microservice-based architectures.

O’Brien et al. [17] provide a state-of-the-art report
on several architecture recovery techniques and tools.
The presented approaches aim to reconstruct software
components and their interrelations by analyzing source
code and by applying data mining methods.

Cuadrado et al. [18] describe a case study of the
evolution of an existing legacy system towards SOA.
The proposed process comprises architecture recovery,
evolution planning, and evolution execution activities.
Similar to our approach, the system architecture is
recovered by extracting static and dynamic information
from system documentation, source code, and the
profiling tool. This approach, however, does not analyze
communication dependencies between services, which
is an outstanding feature of our prototype.

Van Hoorn et al. [19][20] propose a framework
Kieker for monitoring and analyzing the run-time
behaviour of concurrent or distributed software systems.
Although the framework focuses on application-level
monitoring, the authors also present a way how
Kieker could be used to recover microservice-based IT
landscapes via analyzing the profiled traces. Unlike
us, Kieker does not store and process architectural
changes in runtime. In addition, it remains unclear how
communication deletions are processed.
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MicroART, an approach for recovering the
architecture of microservice-based systems is presented
in [21][22]. The approach is based on Model-Driven
Engineering (MDE) principles and is composed of two
main steps: recovering the deployment architecture of
the system and semi-automatically refining the obtained
system. The architecture recovery phase involves all
activities necessary to extract an architecture model
of the microservices, by finding static and dynamic
information of microservices and their interrelations
from the GitHub source code repository, Docker
container engine, Vagrant platform, and TcpDump
monitoring tool. However, the tool does also not
track architectural changes and remain imprecise what
happens when communication between microservices
are deleted.

3. Architecture discovery concept

3.1. Monitoring techniques

Our algorithm for discovering microservice-based
IT landscapes is based on the combination of three
monitoring concepts:

A best practice pattern1 for building microservice
architectures is the usage of service discovery [23]
that serves as a repository to find the network location
of a specific microservice dynamically. Microservices
frequently change their status and IP-address due to
reasons like updates, autoscaling or failures. In
order that the microservices are still able to find each
other in the network, the service discovery serves as
a gateway that always provides the current network
locations. In case a change in the architecture (removed
service, added service, updated service) is detected, this
alteration is reflected in the repository of the service
discovery. By retrieving this information, we are able
to reveal the current status of each service instance.

The service discovery mechanism already provides
useful data about the status of the microservice but
lacks in reporting detailed infrastructure information
and interrelationships. For that reason, an additional
monitoring agent is required that delivers 1)
infrastructure-related data, like host, container type
and address, database type and address, operating
system or information about the cloud provider. 2)
Interrelationships unveil schematic connections between
microservices and other infrastructure elements, like
on which host the microservice is running, in which
specific container or operating system the microservice
is deployed, or with which database the microservice is
communicating. The repository data is enhanced with

1https://microservices.io

this information.
Both concepts discover the status of

running microservices in run-time and unveil
infrastructure-related information. However, the real
communication behaviour between the microservices
still remains unknown. For that reason, it is necessary
to instrument each microservice with a monitoring
probe that tracks request flows through the system.
This technique is called distributed tracing [14]
and adapted by many commercial, or open-source
monitoring solutions2. Distributed tracing tracks all
executed HTTP requests in each service by injecting
tracing information into the request headers. The main
purpose of tracing is to analyze application performance
(APM) and to troubleshoot latency problems. In
addition, it also provides capabilities to add further
information in the form of annotations to each request.
These annotations contain additional infrastructure and
software-related information like executed endpoint
address, class and method name, requested port, etc.
We leverage distributed tracing in order to unveil the
communication behaviour between microservices.

Last but not least, huge microservice infrastructures
are load balanced to avoid single points of failures.
Tracing data or monitoring agents also provide service
instance information. Each instance of a service has
the same name but distinguish itself in IP address and
port. Therefore, the uniqueness of a service instance is
defined by the service description in combination with
the used IP address and the service port. In order to
discover all instances that belong to a specific service,
we aggregate the information based on the service
description.

It is mostly not required to instrument the
IT-landscape with three different monitoring agents.
This would increase the administration and resource
overhead unnecessarily. Modern monitoring tools like
Dynatrace, AppDynamics or Instana already integrate
all mentioned monitoring techniques in one monitoring
agent which is a huge benefit from a DevOps point of
view.

3.2. Process description

Even though the combination of the aforementioned
monitoring techniques discovers most architecture
elements of an IT landscape, it only unveils a snapshot
of the current architecture which created runtime
data for a defined period of time. This is mostly
enough for analyzing the general existence of an IT
element. However, it cannot be ensured that the
communication structure is uncovered completely, as it

2https://openapm.io/landscape
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would require all possible communications between the
applications happened in the considered period of time.
Consequently, we also have to analyze historical runtime
data. Hereby, we face the following four challenges:
1) In order to reduce network overhead, most tracing
techniques are based on sampling, i.e. only a percentage
of requests is traced and forwarded to the monitoring
server. In the worst case, specific communication paths
are rarely seen. 2) Due to resource limitations, most
monitoring tools can only provide a small timeframe
of runtime data, e.g. last 6 hours, depending on
the frequently incoming data volume. A request for
runtime data for a longer duration would be too resource
intensive and cannot be served. 3) Most monitoring
tools store runtime data for only a specific period of time
and archive or even delete older data in order to ensure
free storage capacity is always available. 4) The history
does also contain old components and communication
paths that were already removed several sprints ago.
This legacy data must be filtered in order to unveil the
real architecture. This can be easily performed with
the general existence of IT artifacts, as they frequently
provide health data. If no health data is coming from
a component anymore, it was certainly removed from
the architecture. However, it is a different case with
communication paths, as they only get visible by request
events. No communication does only mean there have
been no events reported.

Considering the listed challenges, we developed a
concept that discovers the architecture of the current
IT landscape based on a three-step process. First,
we reconstruct the architecture by analyzing historical
data. We developed the backwardDiscovery algorithm
for this purpose. This algorithm runs recursive and
retrieves in every iteration historical tracing data (tD)
with a timeframe of T = t1 - t0. In case no
further data is available the discovered architecture is
returned for manual refinement. In the second step, we
support the user with a visualization for adapting the
architecture manually, i.e. the user is able to change
the structure of the communication paths. Finally, the
algorithm forwardDiscovery gets triggered on a fixed
time interval and consumes new incoming runtime data
for continuously adapting the final architecture.

3.3. Algorithms description

We execute two algorithms in a chronological order
to unveil the complete IT landscape architecture. We
assume the architecture A(E,C) is a directed graph
with runtime artifacts E and communication paths C,
whereas C ⊆ E × E on a finite set E.

The algorithm backwardDiscovery analyzes the

available historical runtime data and reconstructs the
architecture A′(E′, C′) from the last reported time t-1
until the present time t0. It excludes communications
that did not occur in the regarded history yet or
includes communications between microservices that
were already removed in last sprints. Both scenarios
must be handled accordingly. Hence, we define
A′(E′, C′) as

E′ = E :⇐⇒ ∀e(e ∈ E′ ↔ e ∈ E)

C′ := {c | (c ∈ E′) ∧ (c ∈ E′ ∩ E)}

The algorithm is executed one time. Due to resource
limitations, we need to provide a timeframe T that
represents the maximum time period that is accepted
by the monitoring tool to go back in history. First,
we instantiate the architecture A′(E′, C′) based on the
repository data rD(E) (line 3 and 4) most monitoring
tools provide in order to identify running IT artifacts.
We use the function REPOSITORYDATA() for this
purpose. The communication paths C remain empty.
Next, we retrieve the tracing data tD(E,C) for the last
considered timeframe via the call TRACEDATA(t0, t1)
(line 7). If the tracing data tD is not empty (line
8), we iterate through all elements e ∈ tD(E) and
validate whether the elements e are also included in the
repository data (line 9 and 10). If this is the case, we
add all communication paths assigned to this runtime
element to the architecture (line 11) and start over with
the next timeframe (line 12). If no data is received
from the monitoring server, the algorithm returns an
incomplete architecture (line 14) which can be used as
a basis for further refinements. Line 9 to 11 can also
be described as an intersection between the elements e
in tD(E,C) and rD(E), but for simplicity reasons we
use the imperative representation.

The next algorithm forwardDiscovery is executed
after backwardDiscovery and the manual refinement.
It runs continuously based on a defined frequency
and is eventually returning the complete architecture
of the instrumented IT landscape. As an input, the
forwardDiscovery function consumes 1) a timeframe
T for retrieving the monitoring data, 2) the deletion
threshold τ which defines how old a communication
path is allowed to be, before it gets removed
and 3) the incomplete architecture returned by the
backwardDiscovery function or the manual refinement.
First, the function fetches both the current content of
the repository (line 3) and the trace data (Line 4) for
a specific period of time. Based on the retrieved data
the architecture A′′ is refined accordingly. For the
runtime elements, we apply the intersection (line 5) and
for the communication paths, we use the union (line 6)
to return the complete architecture which is eventual
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consistency in case the missing communication paths
were available in the tracing data. However, we are
still facing the issue that removed communications are
not recognized without any manual input. Hence, we
incorporate a threshold τ > 0 that defines the maximum
period of time how long communications are allowed to
be invisible in the tracing data. In case the threshold
is exceeded (line 8), the particular communication path
is marked as deleted (line 9). Hereby, we use the
last seen timestamp of each communication. We never
remove communications from the current architecture
as we never can make sure that the communication is
not appearing in future traces again. Finally, we store
the current snapshot of the discovered architecture (line
10). The algorithm itself is designed to be idempotent
as long as no changes have occurred in the architecture,
therefore running it multiple times has no further impact
on the result.

Algorithm 1 Backward Discovery
Require: T > 0

1: function BACKWARDDISCOVERY(A, t0, T)
2: if A = ∅ then
3: rD(E)← REPOSITORYDATA
4: A′ ← A(rD(E), C)

5: t1←t0
6: t0←t1 − T
7: tD(E,C)← TRACEDATA(t0,t1)
8: if tD 6= ∅ then
9: for all e ∈ tD(E) do

10: if e ∈ rD(E) then
11: A′′ ← A′(E,C ∪ tD(Ce))

12: BACKWARDDISCOVERY(A′′, t0, T )
13: else
14: return A′

Algorithm 2 Forward Discovery
Require: T > 0, τ > 0

1: function FORWARDDISCOVERY(A, τ , T)
2: t1←t0 + T
3: rD(E)← REPOSITORYDATA
4: tD(E,C)← TRACEDATA(t0,t1)
5: A′ ← A(E ∩ rD(E), C)
6: A′′ ← A(E′, C ∪ tD(C))
7: for all c ∈ A′′(C′) do
8: if c(lastSeen)+τ ≤ t0 then
9: c(deleted)← true

10: V (i+ 1)← A′′
11: return A′′

The forwardDiscovery algorithm can also be
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Figure 1: Tracing data of sample version
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adjusted in a way it does not trigger the architecture
modification based on defined time intervals but on
specific events that occur in the organizations. When
the trigger is aware of changes immediately when they
occur, this could potentially give birth to the concept
of ”real-time” IT landscape architecture documentation.
An overview of potential trigger events is shown in the
following:

• Scheduled trigger: Default trigger running on a
defined schedule

• Pipeline trigger: Triggers the algorithm as soon
as changes are deployed to production via a
continuous delivery pipeline

• Manual trigger: Allows further external tools or
a user to trigger the forwardDiscovery algorithm
manually

4. Implementation

The architecture of the prototype is built on four
main components: 1) the server receives the runtime
data from the monitoring agents and reconstructs the
architecture, 2) the database stores the architecture
snapshots and the references to the runtime artifact,
3) GraphQL interface communicates with the server
and provides a query language to traverse through
the discovered IT-landscape architecture, and finally
4) a client application for visualizing the architecture
and enabling manual refinements. The corresponding
component diagram is illustrated in Figure 1.

4.1. Data model

The data model of our prototype is depicted in
Figure 2: The class ”Snapshots” contains all snapshots
made for the IT landscape architecture during the
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Figure 2: Architecture reconstruction data model
figure

time. Every snapshot version represents a defined
timeframe that is appropriate for the used monitoring
tool starting at ”datefrom” to ”dateto”. A version
number is an incrementing number meaning that the
highest version number represents the latest stored IT
landscape architecture version.

The tracing data are stored in the classes
”TracingComponent” and ”TracingEdge”. Tracing
edges describes the communication paths between the
tracing components. For every record in those classes,
a hash is generated as the primary ID. The attribute
”lastSeen” indicates the snapshot version in which the
tracing data have been seen the last time.

The repository data retrieved from the monitoring
tool is stored in the class ”RepositoryData”. Unlike the
tracing data, monitoring tools mostly does not provide
history about the runtime artifacts, hence we version this
information by our own through frequently pulling the
data from the monitoring tool. The attribute ”lastSeen”
contains the version as an integer in which the repository
items last existed.

Due to performance and implementation reasons, a
version class was integrated for every mentioned IT
artifact (component, edges and repository items). These
version classes (VersionComponents, VersionEdges and
VersionRepositoryData) are related to the created
particular snapshots.

4.2. Graph-based visualization

With the support of GraphQL, we are able to
provide stakeholders with a query language that enables
them to retrieve all information about the IT landscape
and to traverse through the discovered IT landscape
architecture. In order to allow data to be queried,
resolvers have to be defined and implemented on the root

Figure 3: Refinement menu for manual adaptation
figure

level. Resolvers such as ”database”, ”microservice”,
”host”, etc allow to query for an artifact or collections
of artifacts and work in a similar manner to Remote
Procedure Calls (RPC). The client application primarily
calls the resolvers and retrieves a JSON-based response
with all IT landscape elements. The IT landscape
architecture itself is visualized as a directed graph
with nodes and edges. Nodes represent the runtime
artifacts. The node types are identified with different
colors. Edges visualize the communication paths
between runtime artifacts. The direction of the edges
indicates request calls via TCP or HTTP. An example
of this visualization is depicted in Figure 4. Red color
indicates microservices. Blue color represents databases
and green color describes file storages.

4.3. Architecture refinement support

Our frontend application does not only visualize the
IT-landscape architecture based on stored snapshots but
also provides features for a manual refinement of the
architecture. The user can adapt the following elements:

• Add new and remove legacy communication paths
between runtime artifacts

• Add and remove runtime artifacts in case they are
not instrumented

• Add annotations to runtime artifacts and
communication paths

• Provide a detailed view of a runtime artifact
incorporating more information

Figure 3 presents a screenshot of the refinement
menu. It appears when the user clicks on an element
or a communication path.

4.4. Architecture comparison support

In order to analyze how the IT landscape emerged
over time, we integrate a visual comparison between
two architecture snapshots. Same runtime artifacts and
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Figure 4: IT landscape visualization with different color
codings.
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communication paths that occur in both snapshots are
highlighted accordingly. The comparison of different
snapshots enables a number of use cases. 1) It can be
used to get instant feedback about architectural changes,
like new or deleted runtime artifacts or communication
paths. 2) A comparison also enables feedback regarding
the fulfilment of architecture-related requirements and
3) it supports the analysis of the emerging behavior of
the architecture. Hence, architects are able to intervene
in a timely manner in order to prevent bad design
decisions.

5. Evaluation

5.1. Environment description

The company from which we got access to their
instrumented IT landscape for evaluating our concept is
located in the automotive industry. The company hosted
the microservice architecture on the cloud provider
Amazon Web Services (AWS). The microservices use
the NoSQL database DynamoDB for storing their
transaction data. Data streams are realized via Kinesis
streams. The streams are processed in Kinesis
Firehose and forwarded to all subscribed microservices.
The architecture itself provides services for other
departments realizing and contributing to various
business use cases. The Enterprise Architect keeps
the main responsibility regarding overall architectural
design decisions and documentation.

AWS provides monitoring data in three different
forms. 1) All runtime artifacts are registered in the
AWS repository and their health status is frequently
reported. In order to remove a specific service, the
artifact must be unregistered and deleted accordingly.
2) A further monitoring probe (CloudWatch) creates
infrastructure and application logs that record failure
events or hardware related data like CPU, memory or
network utilization. 3) The tool X-Ray enables tracing
for analyzing requests from an end-to-end perspective.
For automating the documentation of the microservice
architecture, we combine the output of the monitors
from the AWS repository and X-Ray via the unique ID.

Due to performance issues and configuration
settings, the monitoring tools restricts the access to
runtime data to a timeframe of 6 hours and only the last
30 days can be retrieved. In addition, the repository
does only store the set of artifacts that are currently
running. No history is kept in the database. The
accessed microservice-based IT landscape contains 279
runtime artifacts and 34 communication paths. The
artifacts consist of 50 microservices, 46 dynamoDB
tables, 8 kinesis streams and 175 S3-Buckets that
represent simple data storage. The image on the right
in Figure 8 shows the final architecture with all runtime
artifacts. Due to space limitations, we only show those
runtime artifacts that correspond to one product. We
ignored the rest.

5.2. Accuracy calculation

After implementing our prototype, we created
316 snapshots representing the last 79 days. The
forwardDiscovery algorithm was executed at snapshot
version 203. After the 79 days, our architecture
discovery result was validated by our evaluation partner.
Modifications have to performed on the Kinesis streams
in order to achieve a complete and accurate model,
which we call base model. The evaluation itself is done
in an iterative process. For each iteration, we compare
the reconstructed architecture model against the base
model and calculate the accuracy acc.

acc =
(TPEi + TPNi)− (FPEi + FPNi)

(TPEi + TPNi + TNEi + TNNi)
(1)

TPE = Edges are found both models
TPN = Nodes are found in both models
FPE = Edges are found in the reconstructed model but
are not available in base model
FPN = Nodes are found in the reconstructed model but
are not available in base model
TNE = Edges are not found in the reconstructed model
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but are available in base model
TNN = Nodes are not found in the reconstructed model
but are available in the base model

1. Iteration: After analyzing the complete history
the backwardDiscovery algorithm finally discovered in
total 279 correct runtime artifacts. 36 communication
paths were unveiled out of 5 are reconstructed that
are not present in the base model anymore. 3
communications are missing. Hence, the accuracy is
acc = 82, 4%

2. Iteration: After receiving the result of the
backwardDiscovery, we execute the forwardDiscovery
algorithm with a deletion threshold of τ = 168 hours
(28 snapshots) representing the sprint length of 1 week.
Hence, the algorithm ran in total 113 snapshots that
equals approximately 28 days. Overall, the second
algorithm improves the accuracy to acc = 91.2%. After
28 days, 279 correct runtime artifacts were discovered
in total. 33 correct communication paths were unveiled.
1 communication was still not found that is available
in the base model and 2 communications are marked
as deleted although they are still available. Further 2
communications were correctly marked as removed.

We recognized after the second iteration, that an
overall threshold for all communication paths cannot be
applied as the communication behavior between runtime
artifacts differ significantly. Hence, we modified the
forwardDiscovery to ensure every communication path
gets an individual threshold that is recalculated from
snapshot to snapshot. We define the threshold as the
maximum time in which the communication was not
visible regarding the considered timeframe. As an
example, Figure 6 illustrates the profile of two different
communication paths. Whereas the communication
1 is marked as deleted after 11 snapshots (τ1 =
N [247; 258]), communication 2 can be removed already
after 7 snapshots (τ1 = N [259; 266]). The adapted
algorithm could not be executed again due to resource
restrictions of the evaluation partner. Hence, we were
content with the last 28 days. Unfortunately, the present
data pool did not allow an improvement of the accuracy.

5.3. Deletion threshold discussion

The selection of an appropriate deletion threshold
strategy is fundamental to keep a high architecture
discovery accuracy. In the following, we discuss
different approaches on how to define the threshold for
deleting potentially removed communication paths:

Manual definition: The period of time of how long
the algorithm has to wait until specific communication
paths should be highlighted as removed could be based
on simple manual input. That means the user defines the

number of days as the threshold based on experience.
The advantage of this option is the simplicity of this
approach. However, it is rather inflexible and does
probably not conform to development behavior.

Machine learning based: The drawbacks of the
manual method could be neglected by a machine
learning approach. Hereby, we create a model that
learns the behavior of the developers and predicts
future communication removals accordingly. However,
the creation of the prediction model is challenging to
perform as it depends on the availability of labelled data,
i.e. each communication removal must be recorded.

Event based: Specific events that describe a
situation in which selected communication paths must
be deleted can be leveraged for defining an event based
threshold. However, the threshold is not a period of
time anymore but represents rather a boolean value that
triggers the deletion workflow. An advantage of this
option is a resource optimization and near real-time
documentation. On the contrary, the definition of
possible events is challenging.

Tool support: In the last option, no threshold
calculation is performed at all. The removal of
obsolete communications is achieved by tool support.
Based on an application that visualizes the IT
landscape architecture the developers can decide which
communication path is obsolete and must be removed.
That means, the decision is outsourced to a manual task,
which realizes a high accuracy if developers maintain
the communications via the tool. As a disadvantage, no
automation mechanism is achieved.

5.4. Snapshot comparison

Figure 8 illustrates the microservice-based IT
landscape from two different snapshots. Version
145 was created during the execution of the
backwardDiscovery algorithm and version 316 was
the last created during forwardDiscovery. Again, we
only visualize the runtime artifacts that correspond to
one product. Both images unveil how architecture has
changed after 42 days. In total, 37 new runtime artifacts
were added to the landscape.

6. Limitations

In the course of the development of this paper a few
assumptions have been made that lead necessarily to
the following limitations: First, every runtime artifact
must be instrumented. Otherwise, the IT landscape
cannot be discovered completely. To this end, some
capabilities from the monitoring tool has been seen as
given. Especially, the report of distributed traces and the
propagation of APIs for reading runtime data.
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Figure 6: Communication behavior between two microservices. The y-axis represent the number of recognized
communications within one day, i.e. 4 snapshots. A snapshot is created every 6 hours.
figure

Figure 8: Comparison of two different snapshots of the same microservice-based IT landscape. Left: Discovered
architecture after snapshot 145. Right: Final architecture discovered after snapshot 316 with manual refinement.
figure

Second, we mainly focus on runtime artifacts. If the
related process is not running and the monitoring agent
is not providing data anymore it is interpreted as deleted,
which might be wrong.

Third, the evaluation was conducted within a
timeframe of 79 days. To this end, some of the concepts
as explained in Section 3 should be tested for a longer
time especially when it comes to the proper inclusion
in the workflows of teams and architects as well as the
calculation of the correct deletion threshold.

Fourth, we evaluate the developed algorithms by
calculating the related accuracies. However, we did not
incorporate the stakeholders to evaluate the provided
visualizations based on structured or semi-structured
interviews. Hence, the visualizations were not adapted
accordingly. This is part of our future work.

Last but not least, we use CloudWatch and
X-Ray as the monitoring providers, as those tools are
natively integrated in AWS. However, our proposed
algorithms were not evaluated on different environment
configurations. Hence, in this current research phase,

we cannot confirm a global applicability of our concept.
Nevertheless, we are convinced that our approach is
also applicable in other technological environments.
For instance, further APM vendors like Dynatrace,
AppDynamics, NewRelic, or Instana just to name a few
also provide powerful instrumentations to gain insights
from an end-to-end perspective. Those tools expose
several APIs for extracting the application repository
and communication behaviour between microservices,
and yet show the same issues regarding to IT landscape
documentation described in Section 1. Hence, the usage
of those tools in other technical environments should not
reduce the applicability of the presented algorithms and
visualizations.

7. Conclusion

The trend of developing larger applications in the
form of microservices as well as the accompanying
agile practices expose new challenges to the practices
of IT landscape documentation. In order to support
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this process, we developed two algorithms that discover
continuously the IT landscape by analyzing runtime
data. The results are stored as snapshots in our database
and visualized via a graph library. Each different
runtime artifact is coloured accordingly. We evaluated
our prototype in the automotive industry. In total, we
created 316 snapshots within 79 days. Our algorithms
were capable to discover the IT landscape architecture
on the accuracy of acc = 91.2%. One of the biggest
challenges we faced was the accurate reconstruction of
communication behaviors between microservices.

The proposed approach works well if one important
prerequisite is fulfilled: Each runtime artifact has to
be instrumented by a monitoring solution that supports
distributed tracing and service discovery. In case one
of those tools is not installed, the prototype will not
become fully operational, which presents our most
significant limitation.
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