
Formal Verification of Functional Requirements for Smart Contract
Compositions in Supply Chain Management Systems

Sarra Alqahtani, Xinchi He, Rose Gamble, Mauricio Papa
Tandy School of Computer Science

University of Tulsa
Tulsa, OK USA

{sarra-alqahtani, xinchi-he, gamble, mauricio-papa}@utulsa.edu

Abstract

The smart contract technology has increasingly
attracted the attention of different industries.
However, a significant number of smart contracts
deployed in practice suffer from several bugs, which
enable malicious users to cause damage. The research
community has shifted their focus to verifying the
correctness of smart contracts using model checkers
and formal verification methods. The majority of the
research investigates the correctness of systems built
on one smart contract. This paper proposes a
verification approach for systems composed of
interacting smart contracts developed and controlled
by different entities. We use the NuSMV model checker
and the Behavioral Interaction Priority tool to model
the behaviors of smart contracts and their interactions
with the aim of verifying their compliance with the
systems’ functional requirements. These requirements
are formalized by Linear Temporal Logic
propositions. The applicability of our approach is
illustrated using a case study from The American
Petroleum Institute and implemented using
Hyperledger Fabric.

1. Introduction

Blockchain first started with the cryptocurrency
Bitcoin, where it serves as a decentralized, distributed,
digital ledger to record all Bitcoin transactions [1]. In
the Bitcoin blockchain, there is a single layer of
distributed ledgers responsible for accomplishing all
computations related to transferring Bitcoins between
users. In order for the blockchain to be effectively used
in applications other than the cryptocurrency, two
layers are needed: (1) a layer for the distributed ledgers
to store immutable records of data and (2) a layer to
implement and run the business logic of the
application, typically called the smart contract. The
distributed ledgers can be kept at each stakeholder’s
local server or cloud so they can verify transactions
without a third party.

The mission of supply chain management (SCM)
is to guarantee the provenance of items being traded.
Typical supply chain systems include interactions
through messages to ensure the secure exchange of
information and synchronization among stakeholders.
Inconsistent system logic among stakeholders can lead
to inconsistent data and a lack of transparency,
potentially increasing the fraud rate within the supply
chain. Using the smart contract to implement the
system logic can presumably ensure a transparent,
secure, and immutable provenance, which could
benefit all parties in the supply chain by reducing
fraudulent and/or malicious behavior as it relates to the
supply chain goods. The definition of the smart
contract proposed in [2] refers to a digital protocol that
executes promises or terms that are predefined and
agreed upon by several parties. When the predefined
conditions occur, the corresponding contract terms are
automatically triggered. This process allows the
blockchain to evaluate contract clauses without third
party supervision. In their book, Tapscott and Tapscott
[3] refer to using blockchain technology for the end-
to-end SCM as a “Blockchain Revolution.” They
explain that smart contracts could enable companies to
contract for price, quality, and delivery dates with just
a few clicks of a mouse. However, much of the
discussion of the impact of blockchain on SCM
remains at a relatively conceptual level. It does not
explore in detail how blockchain could technically be
exploited to provide the expected functional outcomes.

One of the major challenges for using blockchain
in systems like SCM is related to the smart contract
design and implementation. In blockchain-based SCM
systems, smart contracts are controlled and
implemented by different entities using low-level
languages, exacerbating the system’s exposure to
different types of security and safety threats. Recently,
various attacks have succeeded to expose security
issues, such as the DAO attack [4] that resulted in the
loss of almost 60 million USD worth of Ether (the
digital currency in Ethereum). Another attack is the
Parity wallet bug that resulted in 169 million USD
worth of Ether to be locked forever [5].

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 5278
URI: https://hdl.handle.net/10125/64392
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326835813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To counter the aforementioned attacks and avoid
breaches, several approaches have been explored, such
as documenting vulnerabilities [6, 7] or model
checking using formal verification techniques and
game theory [8-11]. All of these approaches focus on
investigating the correctness of systems built on a
single smart contract. Little attention has been paid to
verifying the correctness of systems built on
interacting contracts. Such a research area is especially
vital for SCM systems, where different stakeholders
are expected to develop their own smart contracts to
interact with other contracts to accomplish different
business objectives. The same challenge can be faced
by ERP systems but with less risk, since the entities
involved in ERP systems are usually from the same
domain (i.e. internal departments of the same
company).

In this paper, we design a novel approach to verify
the functional requirements for blockchain-based
SCM systems that are built with interacting smart
contracts. The proposed approach models the detailed
implementations of the interacting smart contracts into
an abstract design that can be utilized to verify the
compliance of the overall functional requirements of
the system. This high-level verification method can
help the SCM experts decide if the initial design
satisfied their requirements without the need to test the
low-level code of each smart contract. We show our
approach using a case study based on the oil and gas
supply chain [12]. Although the approach is generic
and can be applied to various blockchain frameworks,
we use the Hyperledger Fabric framework to
demonstrate the implementation of the composed
smart contracts for our case study.
 This paper is organized as follows. The next section
further discusses the background and related work on
verification methods for blockchain smart contracts.
Section 3 explains the proposed approach and
discusses the investigated case study, Section 4
describes the implementation of the case study and
shows the verification results. Section 5 discusses the
conclusion and the future work.

2. Related Work

In this section, we present a brief overview of
related work. Magazzeni et al. [13] claim that it is
essential to validate and verify the smart contract
before deploying it to the blockchain due to security
and integrity concerns. Five questions have been
pinpointed regarding the assurance of smart contract
execution correctness: (1) whether the written contract
correctly and fully represents the understanding and
intentions of all the parties, (2) whether the smart
contract correctly encodes the written contract, (3)

whether the smart contract does its job, (4) whether the
smart contract does anything that it was not intended
to do, and (5) whether the platform holds its integrity
when multiple smart contract are used. The authors
suggest adopting formal verification methods with
model checking to address such questions. Much of
the current research focuses on answering the first four
questions. Our research focuses on answering question
5, which is the correctness verification of smart
contract interactions within one system.

The proposed approach in [10] models the smart
contract, blockchain execution environment, and the
users’ behaviors based on a formal model checking
language. The generated model is then used to analyze
the design vulnerabilities of the smart contracts using
an off-the-shelf statistical model checking tool. They
prove the applicability of their approach through a
simple case study of name registration smart contracts.

Nehai et al. [11] propose a verification method for
an Ethereum application based on smart contracts. The
proposed method has three layers: (1) kernel layer to
represent the behaviors of smart contracts, (2)
application layer to model the smart contract logic, and
(3) environment layer to model the execution
framework of Ethereum. A set of modelling rules are
used to translate Solidity code for the smart contract
into a model checking language. Then, the system
requirements and properties written in English are
formalized in a temporal logic language called
Computation Tree Logic (CTL) and applied to the
resulting checked model. The researchers illustrate the
applicability of their approach using a case study from
the energy market field.

Mavridou et al. [14] developed the VeriSolid
framework as a model-based, correct-by-design
approach for Ethereum Solidity smart contracts.
VeriSolid can be used as a tool by smart contract
developers to manually specify their requirements in
the abstract form of finite state machines
(FSMs).VeriSolid extracts the behavioral model of the
contract from the given FSMs using the Behavior
Interaction Priority (BIP) tool [15]. The system
requirements are specified using CTL. The model
checking tool (NuSMV) is used to verify the
correctness of the BIP behavioral model and the
specified CTL properties. After verifying the system
design, VeriSolid generates the Solidity code for the
system that can be deployed directly in the Ethereum
platform.

Bhargavan et al. [9] introduce a novel framework
for detecting flaws in Ethereum smart contract code by
translating Solidity and Ethereum Virtual Machine
(EVM) bytecode contracts into the functional
programming language F*. The aforementioned
approaches [9-11,13,14] are solely focused on a single
smart contract. In contrast, our paper investigates

Page 5279

verifying the functional compliance of interacting
smart contracts deployed in the Hyperledger Fabric
platform and written in the GO language.

3. Formal Verification of Interacting
Smart Contract

The proposed approach devised for smart contract
verification is depicted in Figure 1. Our smart
contracts are written in Go, which is one of the smart
contract coding languages for Hyperledger Fabric
besides Java and JavaScript. In step 2, a set of
modeling rules are adopted to separately translate each
smart contract into a finite state machine (FSM).

Then, the Behavior Interaction Priority (BIP)
framework [15] is used for its strong correct-by-design
feature to model the interactions between FSMs. BIP
has been used for constructing several correct-by-
design systems, such as robotic systems and satellite
onboard software [16-17]. In order to check the
behavioral compliance of the smart contract
interactions with the overall system functional
requirements, we use the BIP-to-NuSMV tool [18] to
translate our BIP models into NuSMV language,
which is the language typically used for model
checking. The expected behavior (i.e. functional
requirements) of the system is formalized into linear
temporal logic (LTL) properties and applied to the
generated NuSMV model. If any property does not
hold then the result is an error message with a counter
example to show the cause and source of the flaw.
Otherwise, the compliance of the interacting smart
contracts with their system requirements is formally
proved.

Figure 1: General approach

To illustrate our approach, we use a case study

from the oil and gas supply chain [12] implemented
using the Hyperledger Fabric blockchain framework.
However, the proposed approach is applicable for any
business system architecture built by using several
smart contracts that are owned and developed by
different entities in one blockchain-based system. We
focus in this paper on SCM in oil and gas industry
since this area falls in our research interests.

Figure 2: Blockchain Architecture of Oil and

Gas Supply Chain

3.1. Fuel Supply Chain Using Composed
Smart Contracts

In this section, we explain the involved smart
contracts in the fuel supply chain and how their
composition can be used to implement the supply
chain transactions (Figure 2). The original case study
is extracted from [12] then implemented on
Hyperledger for the purpose of this research. We show
pseudocode representations of smart contracts for
three stakeholders; the supply chain, vendor, and
point-of sale. We also reduce the supply chain into the
above stakeholders in the rest of the paper due to the
space limit. However, the same approach can be easily
applied to all stakeholders mentioned in [12].
1) Supply chain main smart contract (SCSC): The

SCSC has the core functions for the supply chain,
including stakeholders’ registration, fraud
detection, price and production limit
maintenance, and automatic payments between
stakeholders once the payment conditions have
been met. The pseudo code of the SCSC is shown
in Algorithm 1.

2) Vendor smart contract (VSC): The VSC logs
information about the produced oil batch in the
blockchain before transferring it to the refineries,

Page 5280

tracks the oil batch across the supply chain, and
receives the production daily limit from the
SCSC. The pseudo code of VSC is shown in
Algorithm 2.

3) Transportation smart contract (TSC): Crude
oil can be transported using trains, ships, trucks,
and pipelines. Assuming they all have embedded
sensors to measure the quantity of shipped oil, this
information can be kept in blockchain using the
TSC. This logged information can be used by the
SCSC to detect frauds related to stealing oil
during shipping (called pipeline tapping fraud).

4) Point of sale smart contract PoSSC: The PoSSC

logs information in the blockchain about the
received fuel from the refineries, as well as more
details about the sold fuel including the gallon
price and the demand level. The pseudo code of
PoSSC is shown in Algorithm 3.
Refinery smart contract (RSC): Refineries
transform crude oil into its various consumable
products, such as fuel oil, diesel oil, jet fuel, and
multiple essential manufacturing feedstocks.
Refineries can use their smart contracts to log
information about the received oil from vendors
and the produced refined fuel and track their
refined fuel to its point-of-sale destination.

5) Other smart contracts: Other smart contracts
developed and owned by regulators and banks can
be part of the supply chain.

Page 5281

Figure 3: FSM for SCSC in Algorithm 1

3.2. Smart Contract Modeling

We represent each smart contract as a finite state
machine (FSM), which comprises a set of states and a
set of transitions between those states. To model a
Hyperledger Fabric smart contract as an FSM, we
apply a minimum set of rules [14] to simplify the
overall process and reduce the errors. The rules
include the following.
1- Functions should be modeled as transitions, such

that invoking a transition by a user or another
contract forces the contract to execute the action
of the transition.

2- An action is a computation triggered by the
execution of the associated transition (i.e. the
function’s body).

3- A guard is a predicate on variables that must be
true to allow the execution of the associated
transition.

Modeling the smart contract as an FSM provides
an adequate level of abstraction for reasoning about
the contract behavior and interaction with other
contracts. Inspired by [14], we define the smart
contract as an FSM in Definition 1.

Definition 1. A smart contract is a tuple (S, s0, Sf, V,
T), where

- S is a finite set of states;
- s0 is the initial state;
- Sf is a set of final states;

- V is a set of contract variables (i.e., variable
names and types);

- T is a set of transition relations, where each
transition t ∈ T includes:

o Transition name tname;
o Source state tfrom ∈ S;
o Destination state tto ∈ S;
o Arguments tinput ⊂ V;
o Transition guard tguard;
o Return variables toutput ⊂ V.

Using Definition 1, SCSC in Algorithm 1 is
modeled as a FSM in Figure 4. The transition names
are identical to the function names in Algorithm 1,
while guards (i.e. conditions) are placed inside square
brackets. Each transition corresponds to an action that
the SCSC can perform as part of the supply chain
management. Please note that for better readability,
not all actions are shown in Figure 3.

The SCSC has 9 states:
1- Invoke: The supply chain stakeholders submit

their function calls to the Invoke state, which in
turn directs the input towards the appropriate state
based on the required transition, i.e. the called
function.

2- Registration: The stakeholders must first register
to the supply chain blockchain by giving its
information.

Page 5282

3- Prod_check: When a vendor logged information
about one batch of its oil production in the ledger,
the SCSC automatically checks whether that
vendor has already exceeded its daily limit.

4- Price_check: The SCSC checks if the point-of-
sale has adhered to the fixed price rule set by the
regulators when the POS contract logged
information about the sold batch of fuel.

5- Capacity_check: To maintain the relation
between the supply and demand of oil, SCSC
checks periodically if the total production by all
vendors has exceeded the demand by a specific
threshold defined by the regulators.

6- Update: If there is an overcapacity issue, the
SCSC updates the production limit and fixed price
until the market becomes stable again.

7- Fraud_check: Whenever a new record is logged
regarding an oil batch, the SCSC checks the
logged amount of oil to confirm the consistency
along the chain.

8- Alert: The SCSC triggers an alert once fraud, a
violation of the production limit or the fixed price,
has been detected. The alert is sent to the relevant
stakeholders with an appropriate message.

9- Payment: This state plays the escrow role of the
SCSC to transfer money between stakeholders
according to their initial agreements.

3.3. Interaction Modeling Using BIP

The BIP framework offers a strong software
architecture-based modeling formalism that can be
used to abstract complex systems for verification
purposes [18]. In this paper, we primarily adopt two
concepts from BIP framework: atomic components
and connectors.

An atomic component is used to model each smart
contract’s behavior. Each atomic component is a FSM,
extended with local variables and ports. Ports
represent the function names, which may be associated
with variables as arguments, to be used for interacting
with other components. A transition is a step, labeled
by a port, from one control location to another. It may
have an associated Boolean condition, called a guard,
and a set of one or more actions that are
computationally defined on local variables.

Connectors represent sets of ports that must be
synchronously executed. For every interaction, the
connector provides the guard and the data transfer to
exchange data across the ports involved in the
interaction between different contracts. Composite
contracts are defined by associating sub-components

(atomic or composite) using connectors. For more
details about BIP, the reader is referred to [17, 18].

After modeling the smart contracts as FSMs, we
translate each FSM into BIP atomic components. Each
component transition is labeled by a port (i.e.,
function’s name) specifying the transition's unique
name. The component interface is composed of ports,
which are used for interacting with other components
(i.e., FSMs). The BIP notation for VSC is detailed in
Figure 4 and its FSM is shown in Figure 5.

In the VSC implementation, the values of local
variables in lines 3-6 are directly retrieved from the
shared ledger. However, when we model smart
contracts using BIP, we use local variables to store and
communicate data with other contracts for the
verification purposes. Ports in lines 8-11 represent the
function names in the smart contract. The Place
keyword in line 13 is used to list the available states,
while initial in line 16 is used to identify the initial
state. To create the transitions between states,
keywords on, from, and to are used. The condition
preceded by provided represents the guard while
statements after do represent the actions or the
function’s body statement. The interactions between
contracts are modelled by assembling their FSMs
using connectors.

Figure 4: BIP notation for VSC

Page 5283

Figure 5: Interaction modeling between SCSC,
VSC, PoSSC using connectors

Figure 6: BIP notation for PoSSC

Connectors link ports from different contracts to
represent interaction patterns between them. For every
interaction, the connector provides the guard and the
data transfer to exchange data across the ports
involved in the interaction. We show the interaction
between the supply chain main contract SCSC and the
stakeholders’ contracts VSC and PoSSC using
connectors (circles) in Figure 5. A snippet of our BIP
code to synchronize the connectors between SCSC,
VSC, and PoSSC is shown Figure 6.

3.4. Model Checking Using NuSMV

We use BIP-to-NuSMV tool to generate the
NuSMV code for the composed contracts in Figure 6.
The functional requirements for the whole
composition are tested against the NuSMV model for
verification. The functional requirements are domain
specific and they are usually written in English. In this
paper, we use a set of simple requirements for fuel
supply chain and translate them into LTL. which is the
typical language used to verify the behavior of
NuSMV models. Our verification approach checks
whether the behavior of the composed contracts
modeled by NuSMV satisfies the required LTL
properties. In LTL, □ represents the safety property
that must be always maintained. ◊ represents the
liveness property that indicates that the following
property should eventually happen. Several
requirements for the fuel supply chain case study are
formalized into LTL logic as follows:

Property 1: Vendors must always maintain their
production under the daily limit set by the SCSC:

□ (VSC.production ≤ SCSC.production_limit)

Property 2: Vendors must always log their
productions into the ledger:

□ (VSC.create_batch ⇒ ◊ (VSC.log))

Property 3: Point-of-sales must always adhere to the
price set by the SCSC:

□ (PoSSC.price = SCSC.fixed_price)

Property 4: Once the point-of-sale receives the oil
batches from a vendor, the payment must be triggered
by the SCSC:

□ (PoSSC.create_batch ⇒ ◊ (SCSC.pay))

4. Implementation and Verification
Results

4.1. SCM Implementation

Page 5284

We implement our smart contracts following the
chaincode specifications in Hyperledger Fabric [19].
Hyperledger Fabric is an open-source permissioned
blockchain framework from the Linux Foundation.
We inherit the blockchain network architecture from
our previous work [20, 21], which have more details
about the implementation and performance of the
proposed architecutre applied in other applications.
Each smart contract is defined with a set of typed
variables and a set of functions. Every contract code
must implement its own interface whose functions are
called in response to received transactions.

There are two mandatory functions in Hyperledger
Fabric smart contract interface. The first function is
Init, which is called when the contract receives an
instantiate or upgrade transaction. The Invoke function
is called in response to receiving an invoke transaction
to process the application functions. The Invoke
function’s arguments are the name of the contract
application function to invoke along with its list of
arguments. A snippet of Invoke function from the
SCSC is shown in Figure 7.

Figure 7: Invoke function in Go chaincode

As shown in Figure 8, three organizations are
defined: (1) vendors that produce oil, (2) point-of-sale
nodes that consume and sell oil, and (3) a supply chain
consortium foundation that regulates functionality and
interactions throughout the entire supply chain. Hence,
three smart contracts are developed based on the
pseudocode for the proposed supply chain in Section
3. They are SCSC.go, VSC.go, and PoSSC.go.
Hyperledger Fabric Client, a Nodejs-based library, is
used to expose the blockchain network as RESTful
APIs. A shell script is built so that corresponding APIs
can be used to validate the deployment of the smart
contracts.

Figure 8: Hyperledger Fabric blockchain network

for the oil and gas supply chain

In Hyperledger Fabric, it is a mandatory

requirement to have corresponding smart contracts
installed on the same peer node if there are interactions
among different contracts. For example, in order for
the VSC to call the SCSC, the VSC’s peer node is
required to have both the VSC and SCSC installed.
Thus, the SCSC is installed on each peer node as it
serves as the base of the overall supply chain
functionality. This interaction between the contracts is
required because each contract can only access its own
state. Hence, the contracts involved in the supply chain
need to explicitly exchange their states upon request.
After verifying the design of the case study using the
proposed approach, we deployed our architecture and
tested the interactions between the contracts in
simulated actions. Since the verification is performed
offline, we did not investigate the performance of our
approach. As mentioned before, the performance
evaluation for the implemented architecture has been
already published in our previous work [20,21] for
different applications including Healthcare systems
and IoT firmware updates.

4.2. Verification Results

We ran the NuSMV model checker tool on our
NuSMV model and verified that the considered
implementation satisfies the four stated properties.
Then, we removed line 4 from the PoSSC algorithm
that consequently removed the connector between
PoSSC.create_batch and SCSC.pay from Figure 5.
This change is expected to result in Property 4 not
being satisfied. Hence, when we re-ran the model
checker using the modified PoSSC, it provided a
counter example that is shown in Figure 9. We can see
that in state 6 the PoSSC has created a new batch for
its sold fuel but without triggering the pay function in
the SCSC, which eventually falsified the functional
requirement defined by Property 4.

Page 5285

Figure 9: Counter example for Property 4

5. Conclusion and Future Work

 We present a workflow approach that applies
model-checking to a Hyperledger Fabric application
based on interacting smart contracts. We first
translated smart contracts written in Go into FSMs and
then modelled their interactions using BIP. To verify
behavior correctness of the smart contract
composition, we used a BIP-to-NuSMV tool to
translate BIP into the input language for the model
checker NuSMV. The functional requirements of the
behavior are specified using LTL and applied to the
generated NuSMV model. We tested our approach
using a supply chain system from the oil and gas
industry. In future work, we plan to extend our
approach to model security requirements for
verification purposes. Moreover, we intend to test our
approach on other blockchain platforms that have been
shown to be vulnerable to security issues such as
Ethereum.

6. Acknowledgement

 This work was partially supported by eLynx
Technologies – The University of Tulsa grant number
160115, https://www.elynxtech.com/, Tulsa, OK. We
would like to thank Stephen Jackson, President and
CEO of eLynx Technologies for his support.

7. References

[1] Swan, M., Blockchain: Blueprint for a New Economy,
O'Reilly Media, 2015.

[2] Szabo, N., "Formalizing and Securing Relationships on
Public Networks," First Monday.

[3] Tapscott, D., and A. Tapscott, Blockchain Revolution:
How the Technology Behind Bitcoin Is Changing Money,
Business, and the World. Portfolio; Reprint edition (May 10,
2016), p. 368.

[4] Gelvez, M. P. G., "Explaining the DAO exploit for
beginners in Solidity," Available:
https://medium.com/@MyPaoG/explaining-the-dao-
exploit-for-beginners-in-solidity-80ee84f0d470

[5] Thomson, I., "Parity: The bug that put $169m of
Ethereum on ice? Yeah, it was on the todo list for months,"
The Register, Available:
https://www.theregister.co.uk/2017/11/16/parity_flaw_not_
fixed/

[6] Atzei, N., M. Bartoletti, and T. Cimoli, "A Survey of
Attacks on Ethereum Smart Contracts SoK," Proceedings of
the 6th International Conference on Principles of Security
and Trust - Volume 10204, 2017.

[7] Delmolino, K., M. Arnett, A. Kosba, A. Miller, and E.
Shi, “Step by Step Towards Creating a Safe Smart Contract:
Lessons and Insights from a Cryptocurrency Lab”,
International Conference on Financial Cryptography and
Data Security, 2016, pp. 79-94.

[8] Bigi, G., A. Bracciali, G. Meacci, and E. Tuosto,
"Validation of Decentralised Smart Contracts Through
Game Theory and Formal Methods," Essays Dedicated to
Pierpaolo Degano on Programming Languages with
Applications to Biology and Security - Volume 9465, 2015.

[9] Bhargavan , K. et al., "Formal Verification of Smart
Contracts: Short Paper," Proceedings of the ACM Workshop
on Programming Languages and Analysis for Security,
Vienna, Austria, 2016.

[10]Abdellatif, T., and K. Brousmiche, "Formal Verification
of Smart Contracts Based on Users and Blockchain
Behaviors Models," IFIP International Conference on New
Technologies, Mobility and Security (NTMS), 2018, pp. 1-
5.

[11] Nehai, Z., P.-Y. Piriou, and F. Daumas, "Model-
Checking of Smart Contracts," IEEE International
Conference on Blockchain, Halifax, Canada, 2018.

[12] The American Petroleum Institute (API), "Energy:
Understanding Our Oil Supply Chain," Available:
https://www.api.org/~/media/Files/Policy/Safety/API-Oil-
Supply-Chain.pdf

[13] Magazzeni, D., P. McBurney, and W. Nash, "Validation
and Verification of Smart Contracts: A Research Agenda,"
Computer, vol. 50, no. 9, 2017, pp. 50-57.

[14] Mavridou, A., A. Laszka, E. Stachtiari, and A. Dubey,
"VeriSolid: Correct-by-Design Smart Contracts for
Ethereum," arXiv.org, Available:
https://arxiv.org/abs/1901.01292

Page 5286

[15] Bliudze, S. et al., "Formal Verification of Infinite-State
BIP Models," Cham, Springer International Publishing ,
2015, pp. 326-343.

[16] Basu, A. et al., "Incremental Component-Based
Construction and Verification of a Robotic System,"
Proceedings of 18th European Conference on Artificial
Intelligence, 2008.

[17] Basu, A., M. Bozga, and J. Sifakis, "Modeling
Heterogeneous Real-time Components in BIP," Proceedings
of the Fourth IEEE International Conference on Software
Engineering and Formal Methods, 2006.

[18] Basu, A. et al., "Rigorous Component-Based System
Design Using the BIP Framework," IEEE Software, vol. 28,
no. 3, pp. 41-48, 2011.

[19] Beckert, B., M. Herda, M. Kirsten, and J. Schiffl, "
Formal Specification and Verification of Hyperledger Fabric
Chaincode," 3rd Symposium on Distributed Ledger
Technology (SDLT-2018) co-located with ICFEM 2018: the
20th International Conference on Formal Engineering
Methods, 12 November 2018.

[20] X. He, S. Alqahtani, and R. Gamble, "Toward Privacy-
Assured Health Insurance Claims," International Conference
on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), Halifax, NS, Canada, 2018, pp. 1634-
1641.

[21] X. He, S. Alqahtani, R. Gamble, and M. Papa,
“Securing Over-The-Air IoT Firmware Updates using
Blockchain,” In Proceedings of the International Conference
on Omni-Layer Intelligent Systems (COINS '19), New York,
NY, USA, 2019, 164-171.

Page 5287

