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Abstract 
 

The smart contract technology has increasingly 
attracted the attention of different industries. 
However, a significant number of smart contracts 
deployed in practice suffer from several bugs, which 
enable malicious users to cause damage. The research 
community has shifted their focus to verifying the 
correctness of smart contracts using model checkers 
and formal verification methods. The majority of the 
research investigates the correctness of systems built 
on one smart contract. This paper proposes a 
verification approach for systems composed of 
interacting smart contracts developed and controlled 
by different entities. We use the NuSMV model checker 
and the Behavioral Interaction Priority tool to model 
the behaviors of smart contracts and their interactions 
with the aim of verifying their compliance with the 
systems’ functional requirements. These requirements 
are formalized by Linear Temporal Logic 
propositions. The applicability of our approach is 
illustrated using a case study from The American 
Petroleum Institute and implemented using 
Hyperledger Fabric. 
 
1. Introduction  
 

Blockchain first started with the cryptocurrency 
Bitcoin, where it serves as a decentralized, distributed, 
digital ledger to record all Bitcoin transactions [1]. In 
the Bitcoin blockchain, there is a single layer of 
distributed ledgers responsible for accomplishing all 
computations related to transferring Bitcoins between 
users. In order for the blockchain to be effectively used 
in applications other than the cryptocurrency, two 
layers are needed: (1) a layer for the distributed ledgers 
to store immutable records of data and (2) a layer to 
implement and run the business logic of the 
application, typically called the smart contract. The 
distributed ledgers can be kept at each stakeholder’s 
local server or cloud so they can verify transactions 
without a third party.  

The mission of supply chain management (SCM) 
is to guarantee the provenance of items being traded. 
Typical supply chain systems include interactions 
through messages to ensure the secure exchange of 
information and synchronization among stakeholders. 
Inconsistent system logic among stakeholders can lead 
to inconsistent data and a lack of transparency, 
potentially increasing the fraud rate within the supply 
chain. Using the smart contract to implement the 
system logic can presumably ensure a transparent, 
secure, and immutable provenance, which could 
benefit all parties in the supply chain by reducing 
fraudulent and/or malicious behavior as it relates to the 
supply chain goods. The definition of the smart 
contract proposed in [2] refers to a digital protocol that 
executes promises or terms that are predefined and 
agreed upon by several parties. When the predefined 
conditions occur, the corresponding contract terms are 
automatically triggered. This process allows the 
blockchain to evaluate contract clauses without third 
party supervision. In their book, Tapscott and Tapscott 
[3] refer to using blockchain technology for the end-
to-end SCM as a “Blockchain Revolution.” They 
explain that smart contracts could enable companies to 
contract for price, quality, and delivery dates with just 
a few clicks of a mouse. However, much of the 
discussion of the impact of blockchain on SCM 
remains at a relatively conceptual level. It does not 
explore in detail how blockchain could technically be 
exploited to provide the expected functional outcomes.  

One of the major challenges for using blockchain 
in systems like SCM is related to the smart contract 
design and implementation. In blockchain-based SCM 
systems, smart contracts are controlled and 
implemented by different entities using low-level 
languages, exacerbating the system’s exposure to 
different types of security and safety threats. Recently, 
various attacks have succeeded to expose security 
issues, such as the DAO attack [4] that resulted in the 
loss of almost 60 million USD worth of Ether (the 
digital currency in Ethereum). Another attack is the 
Parity wallet bug that resulted in 169 million USD 
worth of Ether to be locked forever [5].  
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To counter the aforementioned attacks and avoid 
breaches, several approaches have been explored, such 
as documenting vulnerabilities [6, 7] or model 
checking using formal verification techniques and 
game theory [8-11]. All of these approaches focus on 
investigating the correctness of systems built on a 
single smart contract. Little attention has been paid to 
verifying the correctness of systems built on 
interacting contracts. Such a research area is especially 
vital for SCM systems, where different stakeholders 
are expected to develop their own smart contracts to 
interact with other contracts to accomplish different 
business objectives. The same challenge can be faced 
by ERP systems but with less risk, since the entities 
involved in ERP systems are usually from the same 
domain (i.e. internal departments of the same 
company). 

In this paper, we design a novel approach to verify 
the functional requirements for blockchain-based 
SCM systems that are built with interacting smart 
contracts. The proposed approach models the detailed 
implementations of the interacting smart contracts into 
an abstract design that can be utilized to verify the 
compliance of the overall functional requirements of 
the system. This high-level verification method can 
help the SCM experts decide if the initial design 
satisfied their requirements without the need to test the 
low-level code of each smart contract. We show our 
approach using a case study based on the oil and gas 
supply chain [12]. Although the approach is generic 
and can be applied to various blockchain frameworks, 
we use the Hyperledger Fabric framework to 
demonstrate the implementation of the composed 
smart contracts for our case study.  
 This paper is organized as follows. The next section 
further discusses the background and related work on 
verification methods for blockchain smart contracts. 
Section 3 explains the proposed approach and 
discusses the investigated case study, Section 4 
describes the implementation of the case study and 
shows the verification results. Section 5 discusses the 
conclusion and the future work. 
 
2. Related Work  
 

In this section, we present a brief overview of 
related work. Magazzeni et al. [13] claim that it is 
essential to validate and verify the smart contract 
before deploying it to the blockchain due to security 
and integrity concerns. Five questions have been 
pinpointed regarding the assurance of smart contract 
execution correctness: (1) whether the written contract 
correctly and fully represents the understanding and 
intentions of all the parties, (2) whether the smart 
contract correctly encodes the written contract, (3) 

whether the smart contract does its job, (4) whether the 
smart contract does anything that it was not intended 
to do, and (5) whether the platform holds its integrity 
when multiple smart contract are used. The authors 
suggest adopting formal verification methods with 
model checking to address such questions. Much of 
the current research focuses on answering the first four 
questions. Our research focuses on answering question 
5, which is the correctness verification of smart 
contract interactions within one system.  

The proposed approach in [10] models the smart 
contract, blockchain execution environment, and the 
users’ behaviors based on a formal model checking 
language. The generated model is then used to analyze 
the design vulnerabilities of the smart contracts using 
an off-the-shelf statistical model checking tool. They 
prove the applicability of their approach through a 
simple case study of name registration smart contracts.  

Nehai et al. [11] propose a verification method for 
an Ethereum application based on smart contracts. The 
proposed method has three layers: (1) kernel layer to 
represent the behaviors of smart contracts, (2) 
application layer to model the smart contract logic, and 
(3) environment layer to model the execution 
framework of Ethereum.  A set of modelling rules are 
used to translate Solidity code for the smart contract 
into a model checking language. Then, the system 
requirements and properties written in English are 
formalized in a temporal logic language called 
Computation Tree Logic (CTL) and applied to the 
resulting checked model. The researchers illustrate the 
applicability of their approach using a case study from 
the energy market field. 

Mavridou et al. [14] developed the VeriSolid 
framework as a model-based, correct-by-design 
approach for Ethereum Solidity smart contracts. 
VeriSolid can be used as a tool by smart contract 
developers to manually specify their requirements in 
the abstract form of finite state machines 
(FSMs).VeriSolid extracts the behavioral model of the 
contract from the given FSMs using the Behavior 
Interaction Priority (BIP) tool [15]. The system 
requirements are specified using CTL. The model 
checking tool (NuSMV) is used to verify the 
correctness of the BIP behavioral model and the 
specified CTL properties. After verifying the system 
design, VeriSolid generates the Solidity code for the 
system that can be deployed directly in the Ethereum 
platform.  

Bhargavan et al. [9] introduce a novel framework 
for detecting flaws in Ethereum smart contract code by 
translating Solidity and Ethereum Virtual Machine 
(EVM) bytecode contracts into the functional 
programming language F*. The aforementioned 
approaches [9-11,13,14] are solely focused on a single 
smart contract. In contrast, our paper investigates 
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verifying the functional compliance of interacting 
smart contracts deployed in the Hyperledger Fabric 
platform and written in the GO language.   

 
3. Formal Verification of Interacting    
Smart Contract  
 

The proposed approach devised for smart contract 
verification is depicted in Figure 1. Our smart 
contracts are written in Go, which is one of the smart 
contract coding languages for Hyperledger Fabric 
besides Java and JavaScript. In step 2, a set of 
modeling rules are adopted to separately translate each 
smart contract into a finite state machine (FSM).  

Then, the Behavior Interaction Priority (BIP) 
framework [15] is used for its strong correct-by-design 
feature to model the interactions between FSMs. BIP 
has been used for constructing several correct-by-
design systems, such as robotic systems and satellite 
onboard software [16-17].  In order to check the 
behavioral compliance of the smart contract 
interactions with the overall system functional 
requirements, we use the BIP-to-NuSMV tool [18] to 
translate our BIP models into NuSMV language, 
which is the language typically used for model 
checking. The expected behavior (i.e. functional 
requirements) of the system is formalized into linear 
temporal logic (LTL) properties and applied to the 
generated NuSMV model. If any property does not 
hold then the result is an error message with a counter 
example to show the cause and source of the flaw. 
Otherwise, the compliance of the interacting smart 
contracts with their system requirements is formally 
proved.  

 

 
Figure 1: General approach 

 
To illustrate our approach, we use a case study 

from the oil and gas supply chain [12] implemented 
using the Hyperledger Fabric blockchain framework. 
However, the proposed approach is applicable for any 
business system architecture built by using several 
smart contracts that are owned and developed by 
different entities in one blockchain-based system. We 
focus in this paper on SCM in oil and gas industry 
since this area falls in our research interests. 
 

 
Figure 2: Blockchain Architecture of Oil and 

Gas Supply Chain 
 
3.1. Fuel Supply Chain Using Composed 
Smart Contracts 
 

In this section, we explain the involved smart 
contracts in the fuel supply chain and how their 
composition can be used to implement the supply 
chain transactions (Figure 2). The original case study 
is extracted from [12] then implemented on 
Hyperledger for the purpose of this research. We show 
pseudocode representations of smart contracts for 
three stakeholders; the supply chain, vendor, and 
point-of sale. We also reduce the supply chain into the 
above stakeholders in the rest of the paper due to the 
space limit. However, the same approach can be easily 
applied to all stakeholders mentioned in [12]. 
1) Supply chain main smart contract (SCSC): The 

SCSC has the core functions for the supply chain, 
including stakeholders’ registration, fraud 
detection, price and production limit 
maintenance, and automatic payments between 
stakeholders once the payment conditions have 
been met. The pseudo code of the SCSC is shown 
in Algorithm 1. 

2) Vendor smart contract (VSC): The VSC logs 
information about the produced oil batch in the 
blockchain before transferring it to the refineries, 
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tracks the oil batch across the supply chain, and 
receives the production daily limit from the 
SCSC. The pseudo code of VSC is shown in 
Algorithm 2. 

3) Transportation smart contract (TSC): Crude 
oil can be transported using trains, ships, trucks, 
and pipelines. Assuming they all have embedded 
sensors to measure the quantity of shipped oil, this 
information can be kept in blockchain using the 
TSC. This logged information can be used by the 
SCSC to detect frauds related to stealing oil 
during shipping (called pipeline tapping fraud).  

 

 
 

 
 

 
 
4) Point of sale smart contract PoSSC: The PoSSC 

logs information in the blockchain about the 
received fuel from the refineries, as well as more 
details about the sold fuel including the gallon 
price and the demand level. The pseudo code of 
PoSSC is shown in Algorithm 3.  
Refinery smart contract (RSC): Refineries 
transform crude oil into its various consumable 
products, such as fuel oil, diesel oil, jet fuel, and 
multiple essential manufacturing feedstocks. 
Refineries can use their smart contracts to log 
information about the received oil from vendors 
and the produced refined fuel and track their 
refined fuel to its point-of-sale destination. 

5) Other smart contracts: Other smart contracts 
developed and owned by regulators and banks can 
be part of the supply chain.  
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Figure 3: FSM for SCSC in Algorithm 1 

 
3.2. Smart Contract Modeling  
 

We represent each smart contract as a finite state 
machine (FSM), which comprises a set of states and a 
set of transitions between those states. To model a 
Hyperledger Fabric smart contract as an FSM, we 
apply a minimum set of rules [14] to simplify the 
overall process and reduce the errors. The rules 
include the following. 
1- Functions should be modeled as transitions, such 

that invoking a transition by a user or another 
contract forces the contract to execute the action 
of the transition. 

2- An action is a computation triggered by the 
execution of the associated transition (i.e. the 
function’s body).  

3- A guard is a predicate on variables that must be 
true to allow the execution of the associated 
transition.  

Modeling the smart contract as an FSM provides 
an adequate level of abstraction for reasoning about 
the contract behavior and interaction with other 
contracts. Inspired by [14], we define the smart 
contract as an FSM in Definition 1.  

 
Definition 1. A smart contract is a tuple (S, s0, Sf, V, 
T), where 

- S is a finite set of states; 
- s0 is the initial state; 
- Sf is a set of final states; 

- V is a set of contract variables (i.e., variable 
names and types); 

- T is a set of transition relations, where each 
transition t ∈ T includes: 

o Transition name tname; 
o Source state tfrom ∈ S; 
o Destination state tto ∈ S; 
o Arguments tinput ⊂ V; 
o Transition guard tguard; 
o Return variables toutput ⊂  V. 

Using Definition 1, SCSC in Algorithm 1 is 
modeled as a FSM in Figure 4. The transition names 
are identical to the function names in Algorithm 1, 
while guards (i.e. conditions) are placed inside square 
brackets. Each transition corresponds to an action that 
the SCSC can perform as part of the supply chain 
management. Please note that for better readability, 
not all actions are shown in Figure 3. 

 
 

 
The SCSC has 9 states: 
1- Invoke: The supply chain stakeholders submit 

their function calls to the Invoke state, which in 
turn directs the input towards the appropriate state 
based on the required transition, i.e. the called 
function. 

2- Registration: The stakeholders must first register 
to the supply chain blockchain by giving its 
information.  

Page 5282



3- Prod_check: When a vendor logged information 
about one batch of its oil production in the ledger, 
the SCSC automatically checks whether that 
vendor has already exceeded its daily limit.    

4- Price_check: The SCSC checks if the point-of-
sale has adhered to the fixed price rule set by the 
regulators when the POS contract logged 
information about the sold batch of fuel. 

5- Capacity_check: To maintain the relation 
between the supply and demand of oil, SCSC 
checks periodically if the total production by all 
vendors has exceeded the demand by a specific 
threshold defined by the regulators.  

6- Update: If there is an overcapacity issue, the 
SCSC updates the production limit and fixed price 
until the market becomes stable again. 

7- Fraud_check: Whenever a new record is logged 
regarding an oil batch, the SCSC checks the 
logged amount of oil to confirm the consistency 
along the chain. 

8- Alert: The SCSC triggers an alert once fraud, a 
violation of the production limit or the fixed price, 
has been detected. The alert is sent to the relevant 
stakeholders with an appropriate message. 

9- Payment: This state plays the escrow role of the 
SCSC to transfer money between stakeholders 
according to their initial agreements. 
 

3.3. Interaction Modeling Using BIP 
 

The BIP framework offers a strong software 
architecture-based modeling formalism that can be 
used to abstract complex systems for verification 
purposes [18]. In this paper, we primarily adopt two 
concepts from BIP framework: atomic components 
and connectors.  

An atomic component is used to model each smart 
contract’s behavior. Each atomic component is a FSM, 
extended with local variables and ports. Ports 
represent the function names, which may be associated 
with variables as arguments, to be used for interacting 
with other components. A transition is a step, labeled 
by a port, from one control location to another. It may 
have an associated Boolean condition, called a guard, 
and a set of one or more actions that are 
computationally defined on local variables.  

Connectors represent sets of ports that must be 
synchronously executed. For every interaction, the 
connector provides the guard and the data transfer to 
exchange data across the ports involved in the 
interaction between different contracts. Composite 
contracts are defined by associating sub-components 

(atomic or composite) using connectors. For more 
details about BIP, the reader is referred to [17, 18]. 

After modeling the smart contracts as FSMs, we 
translate each FSM into BIP atomic components. Each 
component transition is labeled by a port (i.e., 
function’s name) specifying the transition's unique 
name. The component interface is composed of ports, 
which are used for interacting with other components 
(i.e., FSMs). The BIP notation for VSC is detailed in 
Figure 4 and its FSM is shown in Figure 5. 

In the VSC implementation, the values of local 
variables in lines 3-6 are directly retrieved from the 
shared ledger. However, when we model smart 
contracts using BIP, we use local variables to store and 
communicate data with other contracts for the 
verification purposes. Ports in lines 8-11 represent the 
function names in the smart contract. The Place 
keyword in line 13 is used to list the available states, 
while initial in line 16 is used to identify the initial 
state. To create the transitions between states, 
keywords on, from, and to are used. The condition 
preceded by provided represents the guard while 
statements after do represent the actions or the 
function’s body statement. The interactions between 
contracts are modelled by assembling their FSMs 
using connectors.  

 

 

Figure 4: BIP notation for VSC 
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Figure 5: Interaction modeling between SCSC, 
VSC, PoSSC using connectors 

 

 
Figure 6: BIP notation for PoSSC 

 

Connectors link ports from different contracts to 
represent interaction patterns between them. For every 
interaction, the connector provides the guard and the 
data transfer to exchange data across the ports 
involved in the interaction. We show the interaction 
between the supply chain main contract SCSC and the 
stakeholders’ contracts VSC and PoSSC using 
connectors (circles) in Figure 5. A snippet of our BIP 
code to synchronize the connectors between SCSC, 
VSC, and PoSSC is shown Figure 6. 

3.4. Model Checking Using NuSMV  
 

We use BIP-to-NuSMV tool to generate the 
NuSMV code for the composed contracts in Figure 6. 
The functional requirements for the whole 
composition are tested against the NuSMV model for 
verification. The functional requirements are domain 
specific and they are usually written in English. In this 
paper, we use a set of simple requirements for fuel 
supply chain and translate them into LTL. which is the 
typical language used to verify the behavior of 
NuSMV models. Our verification approach checks 
whether the behavior of the composed contracts 
modeled by NuSMV satisfies the required LTL 
properties. In LTL, □ represents the safety property 
that must be always maintained. ◊  represents the 
liveness property that indicates that the following 
property should eventually happen. Several 
requirements for the fuel supply chain case study are 
formalized into LTL logic as follows:  
 
Property 1: Vendors must always maintain their 
production under the daily limit set by the SCSC: 

□ (VSC.production ≤ SCSC.production_limit) 

Property 2: Vendors must always log their 
productions into the ledger: 

□ (VSC.create_batch ⇒ ◊ (VSC.log)) 

Property 3: Point-of-sales must always adhere to the 
price set by the SCSC: 

□ (PoSSC.price = SCSC.fixed_price) 

Property 4: Once the point-of-sale receives the oil 
batches from a vendor, the payment must be triggered 
by the SCSC: 

□ (PoSSC.create_batch ⇒ ◊ (SCSC.pay)) 

4. Implementation and Verification 
Results  
 
4.1. SCM Implementation 
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We implement our smart contracts following the 
chaincode specifications in Hyperledger Fabric [19]. 
Hyperledger Fabric is an open-source permissioned 
blockchain framework from the Linux Foundation. 
We inherit the blockchain network architecture from 
our previous work [20, 21], which have more details 
about the implementation and performance of the 
proposed architecutre applied in other applications. 
Each smart contract is defined with a set of typed 
variables and a set of functions. Every contract code 
must implement its own interface whose functions are 
called in response to received transactions.  

There are two mandatory functions in Hyperledger 
Fabric smart contract interface. The first function is 
Init, which is called when the contract receives an 
instantiate or upgrade transaction. The Invoke function 
is called in response to receiving an invoke transaction 
to process the application functions. The Invoke 
function’s arguments are the name of the contract 
application function to invoke along with its list of 
arguments. A snippet of Invoke function from the 
SCSC is shown in Figure 7. 

 
Figure 7: Invoke function in Go chaincode 

As shown in Figure 8, three organizations are 
defined: (1) vendors that produce oil, (2) point-of-sale 
nodes that consume and sell oil, and (3) a supply chain 
consortium foundation that regulates functionality and 
interactions throughout the entire supply chain. Hence, 
three smart contracts are developed based on the 
pseudocode for the proposed supply chain in Section 
3. They are SCSC.go, VSC.go, and PoSSC.go. 
Hyperledger Fabric Client, a Nodejs-based library, is 
used to expose the blockchain network as RESTful 
APIs. A shell script is built so that corresponding APIs 
can be used to validate the deployment of the smart 
contracts. 

 

 
Figure 8: Hyperledger Fabric blockchain network 

for the oil and gas supply chain 
 
In Hyperledger Fabric, it is a mandatory 

requirement to have corresponding smart contracts 
installed on the same peer node if there are interactions 
among different contracts. For example, in order for 
the VSC to call the SCSC, the VSC’s peer node is 
required to have both the VSC and SCSC installed. 
Thus, the SCSC is installed on each peer node as it 
serves as the base of the overall supply chain 
functionality. This interaction between the contracts is 
required because each contract can only access its own 
state. Hence, the contracts involved in the supply chain 
need to explicitly exchange their states upon request. 
After verifying the design of the case study using the 
proposed approach, we deployed our architecture and 
tested the interactions between the contracts in 
simulated actions. Since the verification is performed 
offline, we did not investigate the performance of our 
approach. As mentioned before, the performance 
evaluation for the implemented architecture has been 
already published in our previous work [20,21] for 
different applications including Healthcare systems 
and IoT firmware updates. 

 
4.2. Verification Results 
 

We ran the NuSMV model checker tool on our 
NuSMV model and verified that the considered 
implementation satisfies the four stated properties. 
Then, we removed line 4 from the PoSSC algorithm 
that consequently removed the connector between 
PoSSC.create_batch and SCSC.pay from Figure 5. 
This change is expected to result in Property 4 not 
being satisfied. Hence, when we re-ran the model 
checker using the modified PoSSC, it provided a 
counter example that is shown in Figure 9. We can see 
that in state 6 the PoSSC has created a new batch for 
its sold fuel but without triggering the pay function in 
the SCSC, which eventually falsified the functional 
requirement defined by Property 4.  
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Figure 9: Counter example for Property 4 

 
5. Conclusion and Future Work 

 
      We present a workflow approach that applies 
model-checking to a Hyperledger Fabric application 
based on interacting smart contracts. We first 
translated smart contracts written in Go into FSMs and 
then modelled their interactions using BIP. To verify 
behavior correctness of the smart contract 
composition, we used a BIP-to-NuSMV tool to 
translate BIP into the input language for the model 
checker NuSMV. The functional requirements of the 
behavior are specified using LTL and applied to the 
generated NuSMV model. We tested our approach 
using a supply chain system from the oil and gas 
industry. In future work, we plan to extend our 
approach to model security requirements for 
verification purposes. Moreover, we intend to test our 
approach on other blockchain platforms that have been 
shown to be vulnerable to security issues such as 
Ethereum.  
 
6. Acknowledgement 
 
      This work was partially supported by eLynx 
Technologies – The University of Tulsa grant number 
160115, https://www.elynxtech.com/, Tulsa, OK. We 
would like to thank Stephen Jackson, President and 
CEO of eLynx Technologies for his support.  
 
7. References  

 
[1] Swan, M., Blockchain: Blueprint for a New Economy, 
O'Reilly Media, 2015. 
 
[2] Szabo, N., "Formalizing and Securing Relationships on 
Public Networks," First Monday. 
 

[3] Tapscott, D., and A. Tapscott, Blockchain Revolution: 
How the Technology Behind Bitcoin Is Changing Money, 
Business, and the World. Portfolio; Reprint edition (May 10, 
2016), p. 368. 
 
[4] Gelvez, M. P. G., "Explaining the DAO exploit for 
beginners in Solidity," Available: 
https://medium.com/@MyPaoG/explaining-the-dao-
exploit-for-beginners-in-solidity-80ee84f0d470 
 
[5] Thomson, I., "Parity: The bug that put $169m of 
Ethereum on ice? Yeah, it was on the todo list for months," 
The Register, Available: 
https://www.theregister.co.uk/2017/11/16/parity_flaw_not_
fixed/ 
 
[6] Atzei, N., M. Bartoletti, and T. Cimoli, "A Survey of 
Attacks on Ethereum Smart Contracts SoK," Proceedings of 
the 6th International Conference on Principles of Security 
and Trust - Volume 10204, 2017.  
 
[7] Delmolino, K., M. Arnett, A. Kosba, A. Miller, and E. 
Shi, “Step by Step Towards Creating a Safe Smart Contract: 
Lessons and Insights from a Cryptocurrency Lab”, 
International Conference on Financial Cryptography and 
Data Security, 2016, pp. 79-94. 
 
[8] Bigi, G., A. Bracciali, G. Meacci, and E. Tuosto, 
"Validation of Decentralised Smart Contracts Through 
Game Theory and Formal Methods," Essays Dedicated to 
Pierpaolo Degano on Programming Languages with 
Applications to Biology and Security - Volume 9465, 2015.  
 
[9] Bhargavan , K. et al., "Formal Verification of Smart 
Contracts: Short Paper," Proceedings of the ACM Workshop 
on Programming Languages and Analysis for Security, 
Vienna, Austria, 2016.  
 
[10]Abdellatif, T., and K. Brousmiche, "Formal Verification 
of Smart Contracts Based on Users and Blockchain 
Behaviors Models," IFIP International Conference on New 
Technologies, Mobility and Security (NTMS), 2018, pp. 1-
5. 
 
[11] Nehai, Z., P.-Y. Piriou, and F. Daumas, "Model-
Checking of Smart Contracts," IEEE International 
Conference on Blockchain, Halifax, Canada, 2018. 
 
[12] The American Petroleum Institute (API), "Energy: 
Understanding Our Oil Supply Chain," Available: 
https://www.api.org/~/media/Files/Policy/Safety/API-Oil-
Supply-Chain.pdf 
 
[13] Magazzeni, D., P. McBurney, and W. Nash, "Validation 
and Verification of Smart Contracts: A Research Agenda," 
Computer, vol. 50, no. 9, 2017, pp. 50-57. 
 
[14] Mavridou, A., A. Laszka, E. Stachtiari, and A. Dubey, 
"VeriSolid: Correct-by-Design Smart Contracts for 
Ethereum," arXiv.org, Available: 
https://arxiv.org/abs/1901.01292 
 

Page 5286



 
[15] Bliudze, S. et al., "Formal Verification of Infinite-State 
BIP Models," Cham, Springer International Publishing , 
2015, pp. 326-343. 
 
[16] Basu, A. et al., "Incremental Component-Based 
Construction and Verification of a Robotic System," 
Proceedings of 18th European Conference on Artificial 
Intelligence, 2008.  
 
[17] Basu, A., M. Bozga, and J. Sifakis, "Modeling 
Heterogeneous Real-time Components in BIP," Proceedings 
of the Fourth IEEE International Conference on Software 
Engineering and Formal Methods, 2006.  
 
[18] Basu, A. et al., "Rigorous Component-Based System 
Design Using the BIP Framework," IEEE Software, vol. 28, 
no. 3, pp. 41-48, 2011. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
[19] Beckert, B., M. Herda, M. Kirsten, and J. Schiffl, " 
Formal Specification and Verification of Hyperledger Fabric 
Chaincode," 3rd Symposium on Distributed Ledger 
Technology (SDLT-2018) co-located with ICFEM 2018: the 
20th International Conference on Formal Engineering 
Methods, 12 November 2018. 
 
[20] X. He, S. Alqahtani, and R. Gamble, "Toward Privacy-
Assured Health Insurance Claims," International Conference 
on Internet of Things (iThings) and IEEE Green Computing 
and Communications (GreenCom) and IEEE Cyber, 
Physical and Social Computing (CPSCom) and IEEE Smart 
Data (SmartData), Halifax, NS, Canada, 2018, pp. 1634-
1641. 
 
[21] X. He, S. Alqahtani, R. Gamble, and M. Papa, 
“Securing Over-The-Air IoT Firmware Updates using 
Blockchain,” In Proceedings of the International Conference 
on Omni-Layer Intelligent Systems (COINS '19), New York, 
NY, USA, 2019, 164-171. 
 

 

Page 5287


