
Improving Wildlife Monitoring using a Multi-criteria Cooperative Target
Observation Approach

Sai Krishna Munnangi
IIIT Hyderabad

krishna.munnangi@research.iiit.ac.in

Praveen Paruchuri
IIIT Hyderabad

praveen.p@iiit.ac.in

Abstract

Monitoring of wildlife is very important for
maintaining sustainability of environment. In this
paper, we pose Wildlife Monitoring as a Cooperative
Target Observation (CTO) problem and propose a Multi
Criteria Decision Analysis (MCDA) based algorithm
named MCDA-CTO, to maximize the observation of
different animal species by Unmanned Aerial Vehicles
(UAVs) and to effectively handle multiple target types
and the multiple criteria that arise due to targets and
environmental factors, during decision making. UAVs
have uncertainty in observation of targets which makes
it challenging to develop a high-quality monitoring
strategy. We therefore develop monitoring techniques
that explicitly take actions to improve belief about
the true type of targets being observed. In wildlife
monitoring, it is often reasonable to assume that the
observers may themselves be a subject of observation
by unknown adversaries (poachers). Randomizing the
observers actions can therefore help to make the target
observation strategy less predictable. We then provide
experimental validation which shows that the techniques
we develop provide a higher (true positive/true negative)
ratio along with better randomization than state of the
art approaches.

1. Introduction

With the rapidly declining populations of wildlife,
sustainable wildlife management is an important
concern across the world. It is estimated that humanity
may have wiped out 60% of animal populations
since 1970 with dozens of species going extinct on
everyday basis [1]. Wildlife monitoring is therefore
a critical activity to sustain the populations which
involves tracking of animal movement patterns, habitat
utilization, population demographics, identifying
snaring and poaching incidents and breakouts [2].
Manual monitoring may not always be possible due to
the vast areas involved, different types of terrain and

distraction to animals. In recent times, many wildlife
conservation organizations started deploying Unmanned
Aerial Vehicles (UAVs) to monitor wildlife [3, 4, 5].
UAVs can monitor large areas at a time, transmit the
live feed, handle adverse climatic conditions and can
even operate at night without distracting animals. Due
to these significant advantages, UAVs are becoming a
viable option for wildlife monitoring. Tasks involving
UAVs such as species counting, surveying a region and
others, typically involve a human to operate the UAVs.
In this paper, we aim for better automation of wildlife
monitoring using a technique named Multi Criteria
Decision Aiding.

Our first step towards this, is to model wildlife
monitoring as a Cooperative Target Observation
problem. Cooperative Target Observation (CTO)
refers to a general class of problems where a set of
entities called Observers collectively try to observe
another set of entities called Targets. The CTO
problem has received attention in both multi-agents
[6, 7, 8, 9] and robotics literature [10, 11, 12, 13]
due to its ability to model a number of applications.
Depending upon the problem specifics, the observers
act independently or cooperate among themselves for
maximizing the target observation. The target entities
can be heterogeneous with different levels of importance
and behaviors. Existing works on CTO problems
focus on homogeneous target types and single criterion
based decision making. We propose a Multi Criteria
Decision Analysis (MCDA) based algorithm named
MCDA-CTO, to maximize the observation of targets
and to effectively handle multiple target types and the
multiple criteria such as altitude when observers are
modeled as drones.

2. Literature Review

Different variations of the CTO problem have been
studied in literature depending on the need of the domain
[14, 15, 16, 17]. The CTO problem as defined by [16]
is a tuple <S, O, X> where S is a two-dimensional,

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 5192
URI: https://hdl.handle.net/10125/64380
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326835810?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

bounded, enclosed spatial region, O is a team of k1
observer robots with observation sensors of limited
range (denoted by sensor range) and X is a set of k2
targets. Given this notation, let A(t) be a k1×k2 matrix
where, aij(t) is 1 if robot oi is monitoring target xj at
time t and is 0 otherwise. The logical OR operator over
a vector H is defined as,

k∨
i=1

hi =

{
1 if there exists an i such that hi = 1
0 otherwise

The goal of the problem is to maximize

T∑
t=0

k2∑
j=1

k1∨
i=1

aij(t), given
⋃

oi∈O

sensor range(oi)� S

In [14], the CTO problem is defined to allow
observers to cooperate to maximize the number of
targets being observed in an area of interest. [15]
presents an algorithm which proposes control law
for each observer robot considering the densities of
observers and targets. [16] introduces Cooperative
Multi-Robot Observation of Multiple Moving Targets
(CMOMMT) formalism similar to CTO and develops
online distributed control strategies that allow the robot
team to attempt to minimize the total time in which
targets escape observation. [17] studies a variant
of the CTO problem in which observers have global
knowledge of all the other observers and targets. The
paper presents centralized, partially-decentralized and
fully decentralized observer strategies using Mean Point
(referred to as k-means in the paper) and Hill Climbing
algorithms and shows that mean point algorithm is
robust to the degree of decentralization. [18] builds
upon the mean point algorithm algorithm presented by
[17] to develop multiple strategies for observers in a
CTO problem who have local knowledge. The paper
also presents an adjustable randomization algorithm
for observers named BRLP-CTO for surveillance
applications.

The CTO problem modeled in our work is
a decentralized version, where each observer acts
individually trying to maximize its reward. There
is no communication among the observers and when
multiple observers simultaneously observe one target,
only one of them gets the reward. Across the different
variations for the CTO problem proposed in literature,
the objective function is to maximize performance of
the observers under various environmental settings.
Different solutions have been proposed for each setting,
with no universal solution to the problem.

Limitations of existing techniques: Prior works
consider targets to be homogeneous agents with uniform

behaviors and the decision making process to be a
single criterion based on the position of targets. The
assumption that all targets are of same type might not
be true for all applications. In real world, targets can
often be heterogeneous with different type of targets
having a different level of importance. For example
in disaster response, children maybe higher priority
targets compared to adults who may in turn be of higher
priority over animals. Existing works cannot handle
heterogeneity and do not arrive at a decision based
on reasoning over target types. Along with reasoning
about multiple target types, observers would often need
to arrive at a decision based on other environmental
factors, such as battery power, distance from command
center etc. Existing works are limited in these aspects
and cannot be modified effectively to handle these
issues. We use the BRLP-CTO algorithm presented in
[18] as a benchmark for performance comparison and
hence modify it appropriately to encode the wildlife
monitoring domain. While BRLP-CTO cannot handle
multiple criteria in general, we tailored the algorithm to
incorporate multiple target types.

3. BRLP-CTO: Handling multiple target
types

The BRLP-CTO algorithm presented in [18]
comprises of two steps: (a) Destination Di for the
observer i is computed using mean point algorithm
based on the positions of the targets in the observers
sensor range. (b) Using a linear program a
new destination D′

i which maximizes entropy while
maintaining threshold amount of reward is computed,
from the previously calculated destination Di. The
mean point algorithm of BRLP-CTO algorithm is
derived from the unsupervised clustering algorithm
K-means, that clusters N data points into K clusters.
In the K-means algorithm, the K cluster centers are
randomly generated first, and each data point is assigned
to the cluster closest to it. After the assignment, the
cluster center is updated to the mean position of data
points in its cluster. Considering all the targets within
the sensor range of an observer as a single cluster, the
mean point algorithm calculates the mean position Mi

of all the targets in observer’s sensor range and updates
the observer’s destination position Di as,

Di ← (1− α)Pi + αMi (1)

where Pi is the current position of observer i and α is
the weighing factor. To handle multiple target types,
we replace the computation of mean position Mi with

Page 5193

weighted mean position WMi, which is calculated as:

WMi =

l∑
j=1

ωtj ×Mtj (2)

where Mtj is the mean position of targets of type tj
within the observer i’s sensor range, l is the number of
different target types in the sensor range of the observer
and ωtj is the weight associated with the target type tj .
The weight (ωtj) for each target type tj is calculated as,

ωtj =
Rtj × ntj∑l

k=1Rtk × ntk
(3)

where Rtj is the reward obtained for observing a target
of type tj while ntj is the number of targets of type tj
in the observer’s sensor range. This equation weighs
the reward obtained due to a target with the number of
targets of that type observed and normalizes to compute
the weight for that target type.

3.1. Example

Oi

T1

T1

T1

T2

T2 T3

Figure 1. An

example scenario

Consider an example in
which there are 3 different
target types 〈T1, T2, T3〉 with
rewards 〈1, 2, 3〉 respectively.
Assume that there are 3
T1, 2 T2 and 1 T3 type
targets in the sensor range
of an observer i. Let the
positions for these targets be
Po1, Po2, Po3, Po4, Po5, and
Po6 respectively and let M1,

M2 and M3 represent the mean positions of each target
type. The observer would then calculate weights for
each target type as,

ωt1 =
Rt1 × nt1∑3
i=1Rti × nti

=
1× 3

1× 3 + 2× 2 + 3× 1
= 0.3

Similarly, ωt2 = 0.4 and ωt3 = 0.3. The observer
would then calculate the weighted mean position WMi

through equation 2 and compute the destination by
plugging WMi in equation 1 (note that Mi is replaced
with WMi).

3.2. Limitations of the extension

While we extended the mean point algorithm to
handle multiple target types, there is a single mean
point computed (for all the targets within sensor range)
in the model using the equation 2 that does not allow
for combinatorial reasoning over clusters of targets (8

combinations possible if 3 targets present), e.g., should
the observer consider high valued targets or only the low
valued ones? It also doesn’t allow to make decisions
optimizing other criteria e.g., with the remaining 10%
battery power should the observer go to recharge point
or continue pursuit of the targets?

4. The MCDA-CTO Algorithm

To handle the multiple criteria that arise due to
combinatorial reasoning over multiple target types and
environmental factors, we develop the MCDA-CTO
algorithm based on the MCDA Clustering algorithm
presented by [19]. MCDA refers to Multiple Criteria
Decision Analysis, a technique that helps to evaluate
the multiple conflicting criteria a decision maker may
have. In particular, the decision maker (DM) has a set of
m criteria {h1, h2, . . . , hm} using which each possible
decision (action) is evaluated and the final decision is
reached. We now present the MCDA-CTO algorithm,
Algorithm 1, and demonstrate it’s working for the
CTO problem in subsequent sections. MCDA-CTO
comprises of four steps, summarized as follows: Step
1: Generating actions, Step 2: Clustering actions, Step
3: Evaluating actions and clusters, Step 4: Decision
making.

4.1. Generating Actions

Actions are possible decisions that the DM can
make. Depending on the problem, actions can be finite
or infinite in number and they can either be generated
or sampled from the solution space. The scale of
measurement for each criteria can be different. An
action set A = {a1, a2, . . . , an} consisting of possible
decisions is created in this step.

4.2. Clustering Actions

This is the key idea behind the MCDA clustering
algorithm [19] which we reproduce here. This
step begins with initializing τ clusters and randomly
assigning each action to one of the clusters. Profiles
are created for each action in A and using a voting
procedure the cluster profiles are created next. Using
a multi-criteria distance metric, each action is then
reassigned to the nearest cluster. Next, the profile
of each cluster is updated by means of the voting
procedure. The last two steps are repeated until the
cluster membership no longer changes resulting in a
homogeneous partition of τ clusters.

Profile: The preference structure (P, I, J)
representing Preference (P), Indifference (I) and
Incomparability (J), captures the order of preference

Page 5194

Algorithm 1 MCDA-CTO Algorithm
Input: τττ desired number of clusters, preference structure
(P, I, J)(P, I, J)(P, I, J) and the evaluation function efefef

1: Generate possible actions and create the set A.
2: Create Profile Pr(al) for every action al ∈ A.
3: Initialize τ clusters (C1, C2, . . . , Cτ) and randomly

allocate each action to one of the clusters.
4: For each clusterCj compute the profile of cluster Pr(Cj).
5: repeat
6: for all actions al ∈ A do
7: Assign al to the nearest cluster Ci, i.e.
8: d(al, Ci) ≤ d(al, Cj) i, j ∈ {1, . . . , τ}
9: end for

10: for all clusters Cj , where j ∈ {1, . . . , τ} do
11: Update the profile of cluster center Pr(Cj).
12: end for
13: until the cluster membership no longer changes
14: For each a ∈ A, calculate expected reward through ef .
15: Pick an action a′ ∈ A to execute through one of the four

notions.
return a′

among the criteria and is defined by the DM. The
relations are derived as a result of comparison of two
actions ai and aj ∈ A as follows:

• aiPaj if ai is preferred to aj ,

• aiIaj if ai is indifferent to aj ,

• aiJaj if ai is incomparable to aj .

The notion of profile for each action is introduced
using P, I, J , to determine the potential
similarity between actions. The profile Pr(ai)
of an action ai ∈ A, is defined as the vector
〈Pr1(ai), P r2(ai), P r3(ai), P r4(ai)〉, where:

• Pr1(ai) = {aj ∈ A | aiPaj}

• Pr2(ai) = {aj ∈ A | ajPai}

• Pr3(ai) = {aj ∈ A | aiIaj}

• Pr4(ai) = {aj ∈ A | aiJaj}

Distance: If n is the total number of actions in A,
then the distance between ai and aj is defined as:

d(i, j) = 1−
∑4
k=1 |Prk(ai) ∩ Prk(aj)|

n

Voting Procedure: The profile for a cluster is
created by placing each action into one of the four sets
with the condition that the action appears in the same set
for a majority of the actions of that cluster. That is,

aj ∈ Prl(Ci) ⇐⇒ l = argmax
t∈1..4

|{aj ∈ Prt(ak)}|

∀ak ∈ Ci,∀aj ∈ A and i ∈ {1, 2, . . . , τ}

The output clusters are characterized on the basis of
similarity among actions in terms of reward, resulting in
actions of each cluster having similar outcome. The DM
would then need to choose the cluster that optimizes his
objectives and execute an action from the chosen cluster.

4.3. Evaluating Actions

Action evaluation is a step in the process to identify
the Best Cluster among τ clusters. The DM has an
evaluation function (ef), that calculates the expected
reward of an input action. To identify the Best
Cluster, the expected rewards for all the actions in each
cluster are calculated and aggregated. Next the average
expected reward per action of each cluster is calculated
by dividing the aggregate expected reward with size of
that cluster. Best Cluster would be the cluster whose
average expected reward per is the highest.

4.4. Decision Making

To randomize the final actions, we define the
following 4 notions of decision making: (a) Best
Cluster, Random Action (RABC): an action is
randomly picked from the Best Cluster, (b) Best
Cluster, Best Action (BABC): the action with highest
expected reward from the Best Cluster is identified and
chosen, (c) Quantal Response Model (QR): an action is
chosen from the Best Cluster following the probability
distribution eri∑

eri calculated for every action i in best

cluster with expected reward ri, (d) Best Action of
All (BAA): the action with highest expected reward is
chosen. An action is chosen using one of the four
notions and is executed.

5. Wildlife Monitoring as a CTO problem

We now model wildlife monitoring as a CTO
problem, where the goal is to improve observation
of targets (i.e., different species of animals) despite
having a limited number of observers i.e., UAVs and
demonstrate the working of MCDA-CTO algorithm.
While MCDA-CTO is adaptable to variety of criteria,
we present the algorithm for using altitude as a criterion
along with modeling each target in sensor range as a
separate criterion. Targets here are animals of different
species, which are in different numbers and have
different reward values e.g., monitoring an endangered
species can result in higher reward than a common
species while the number of endangered species can be
much lower. We assume observers to have information
about the possible target types they may encounter
during monitoring and the rewards they obtain.

Page 5195

Unlike ground based observers, UAVs have an
additional degree of freedom namely altitude. We model
this into the CTO problem by allowing the observers to
alter their altitude between certain limits. In particular,
we assume that there are H different altitude levels that
the UAVs can make observations from and the sensor
range (i.e., radius of circle with UAV as the center)
increases with increase in altitude. However, the key
issue here is that the observers (UAVs) have uncertain
observations i.e. if the observer spots an animal of
species c, it may identify that the animal belongs to c
with a probability p ≤ 1 i.e. the observer will have
a probability distribution over the type of species the
animal may belong to. Each altitude level has a specific
observation uncertainty associated with it which is
proportional to the altitude of the observer. We set
uncertainty as 10% (i.e. p set to 0.9) at the lowest
altitude level and as 50% at the highest. Hence, an
observer at the lowest altitude would have a belief state
of 〈0.9, 0.1〉 for target types 〈c,¬c〉 where ¬c refers to
rest of target types i.e., any target type other than c.

To handle the problem using MCDA-CTO, each
target within sensor range of an observer (UAV)
is modeled as a criterion for the following reason:
Observers can have different beliefs about two targets of
the same type due to uncertainty. Modeling as separate
criteria facilitates the observer to reason about different
target combinations and compute the weights separately
for each target. Altitude is an additional criteria, as
the observer needs to optimize among different altitude
levels.

5.1. Generating Actions:

The observer first generates multiple vectors
(proportional to number of targets in sensor range), each
of size equal to the number of targets within the sensor
range. Each element of a vector has a value between
0.0 and 1.0 corresponding to the weight associated to
a particular target, hence the vectors are referred to as
weight vectors. In each weight vector, sum of all the
elements is 1.0. Change in weight of one target will
force change in the weight of other target(s) due to the
constraint that sum should be 1.0, hence the vectors
are Pareto optimal. An action is defined as a weight
vector appended with altitude level, hence referred to as
action vector. Size of action vector is one more than the
number of targets within the sensor range of observer.
Altitude level varies between 0.0 (lowest altitude) and
1.0 (highest altitude). For experimentation, we assume
that the observer has only 4 altitude levels, restricting the
values of last element of the vector to one of {0.0, 0.33,
0.66, 1.0} e.g., if an observer has 3 targets in sensor

range (say t2, t5, and t7), then one action vector could
be 〈0.25, 0.5, 0.25, 0.33〉 corresponding to weight vector
〈0.25, 0.5, 0.25〉 and altitude of 0.33. Hence, there will
be three additional action vectors corresponding to the
other altitude levels for the same weight vector. We
also assume that the observer is aware of the amount
of uncertainty present at each altitude level. Action
vectors are then clustered into τ clusters, either by
using ELECTRE [20] or PROMETHEE [21] method
(preference structure) for profile creation.

5.2. Evaluating Actions:

There can be different evaluation functions (ef) that
provide optimal solution while satisfying all the criteria,
hence the choice of picking one is left to the DM.
Since the observers in our case are trying to maximize
observation over a weighted function of the true type of
targets, we choose the ef as follows: Let cH denote the
current altitude of the observer o and aH denote altitude
of the action being evaluated. Let ccHo denote the
certainty in observation at the current altitude level and
ucHo denote the uncertainty, where ccHo + ucHo = 1.0.
The evaluation function ef is given by,

ef =
{
ER1 + P1 + P2, for aH ≥ cH
ER2 + P1 + P2, otherwise (4)

where ER1, ER2 are the expected reward and P1, P2

are the penalties. The expected rewards ER1 and ER2

are given by,

ER1 =
∑
i

ωi × (caHo ×Rtai
+ uaHo ×Rtbi

) (5)

ER2 =

∑
i

ωi × [caHo × (ccHo ×Rtai
+ ucHo ×Rtbi)

+ uaHo × (ucHo ×Rtai
+ ccHo ×Rtbi)]

(6)

where, for each target i in the sensor range of o, tai

and tbi are the possible target types that the observer
classifies target i as, ωi is the weight associated with
target i in that action and Rt denotes the reward for
observing target of type t.

An observer at a higher altitude level believing tai

to be the true type of target i based on the observation
〈tai

, tbi〉 of the target, may realize its true type to
be tbi , after moving to lower altitude levels where it
typically has higher accuracy observations. Hence,
when the observer is evaluating lower altitude level
actions, it accounts for this possibility by calculating
both the expected rewards, i.e. (ccHo × Rtai

+ ucHo ×

Rtbi
), (ucHo × Rtai

+ ccHo × Rtbi
) and combines them

Page 5196

using the probability with which each of them can
be true. However in the case where the observer is
evaluating higher altitude level actions, since it knows
the true target type with greater certainty, it calculates
the expected reward based on its current beliefs. The
penalties P1 and P2 are given by:

• P1: |cH−aH|×(−3) [To discourage the observer
from changing its altitude frequently.]

• P2: aH × (−3) [To discourage the observer
from staying at higher altitudes continuously and
enable the observer to know better regarding the
ground truth of the target it is observing.]

Evaluation function ef which is the sum of expected
reward of each target and the penalties, is used by
the observer to calculate the expected reward of each
action, based on which the observer makes it’s decision.
We provide results for the evaluation function and its
variants in subsequent section.

5.3. Decision Making:

Once the expected reward is calculated for each
action (action vector), the Best Cluster is identified and
the observer picks an action to execute using one of the
four notions described earlier. For the chosen action,
the destination of the observer is computed as WMo

using equation 2. The entries of the chosen action
vector (except the last entry) act as ω’s in computation
of WMo. The observers destination altitude is set as the
last entry of the chosen action vector. Action selection
using MCDA-CTO can result in higher randomness than
the BRLP-CTO algorithm [which explicitly introduces
randomness into the mean point algorithm procedure
for CTO] from the perspective of an adversary trying
to learn the strategy of the observer due to: (a)
Randomness in cluster generation (b) Randomness in
picking the Best Cluster and (c) Randomness in picking
the action from the cluster.

Scoring Methods: We calculate four different
scores to measure the performance of observers across
the two algorithms.

1. Actual Score: This score is the sum of rewards
for every target that is in the sensor range of
the observer. It is awarded by the system post
the surveillance operation, irrespective of the
beliefs the observer has about the target types.
Essentially this is the ground truth score.

2. Expected Score: This is the score the observer
calculates based on its belief of the target types. If
〈p, (1− p)〉 are the beliefs about 〈ta, tb〉, then the
expected score is, p×Rta + (1− p)×Rtb .

3. True Negative Score: This score represents the
mis-belief the observer has about the target type
(i.e. classification as false target type). (1 −
p)×Rtb in the expected score formula is the True
Negative component.

4. True Positive Score: This score represents
the belief the observer has about the target type
(i.e. classification as true target type). p × Rta

in the expected score formula is True Positive
component.

6. BRLP-CTO: Handling observation
uncertainty

In section 3, we modified BRLP-CTO to handle
multiple target types but there is no simple way to handle
criteria other than targets e.g., altitude related decisions
when UAVs are observers. While determining the best
altitude using BRLP-CTO maybe a challenge, we can
still perform reasoning about observational uncertainty
which is an indicator for altitude. We now present the
Stochastic belief update model to handle observation
uncertainty.

Stochastic belief update model: The observer
accounts for uncertain observations in its equation
and calculates the expected reward, which is used to
calculate the weight for each target. If n is the total
number of targets in sensor range of the observer, weight
ωj for each target j is calculated as:

ωj =
ERj∑n
k=1ERk

(7)

where ERj = p×Rtj + (1− p)×Rtq .
ERj is the Expected Reward for each target j

and 〈p, (1− p)〉 is the presented uncertainty between
the target types 〈tj , tq〉. The weights calculated from
equation 7 would then be used in equation 2 to calculate
the weighted mean of the targets. Note that Mtj in
equation 2 would then correspond to the position of a
particular target of type tj and l corresponds to total
number of targets. The observer i’s destination position
is updated as below, where each time a new value for α
is given by BRLP-CTO.

Pi ← (1− α)Pi + αWMi (8)

6.1. Example continued

In the example presented in section 3.1, let observer
i be a UAV operating at an altitude h from where the
target can be identified correctly with a 60% probability.
Let the beliefs for each of the 6 targets be:

Page 5197

Table 1. Parameters used in Markov Chain model

Target Type Destination Direction Probabilities Herd Probabilities
pintended pleft pright popposite pjoin pleave

Type 1

Home 0.6 0.2 0.2 0.0
Forage 0.52 0.16 0.16 0.16 0.7 0.1
Random 0.25 0.25 0.25 0.25

Type 2

Home 0.9 0.05 0.05 0.0
Forage 0.8 0.1 0.1 0.0 0.7 0.3
Random 0.25 0.25 0.25 0.25

Type 3

Home 0.6 0.2 0.2 0.0
Forage 0.8 0.1 0.1 0.0 0.5 0.5
Random 0.25 0.25 0.25 0.25

1 : 〈0.6, 0.4〉 for 〈T1, T2〉 2 : 〈0.6, 0.4〉 for 〈T1, T2〉
3 : 〈0.6, 0.4〉 for 〈T1, T3〉 4 : 〈0.6, 0.4〉 for 〈T2, T3〉
5 : 〈0.6, 0.4〉 for 〈T2, T1〉 6 : 〈0.6, 0.4〉 for 〈T3, T2〉

Observer calculates the expected rewards for the
Stochastic belief update model using equation 7, as
follows:

ER1 = 0.6× 1 + 0.4× 2 = 1.4
ER3 = 0.6× 1 + 0.4× 3 = 1.8

Similarly ER2 = 1.4, ER4 = 2.4, ER5 = 1.6
and ER6 = 2.6. Using these Expected Rewards, the
weights for each target are calculated using equation 7
as follows:

ω1 = 1.4
1.4+1.4+1.8+2.4+1.6+2.6 = 1.4

11.2 = 0.125.

Similarly ω2 = 0.125, ω3 = 0.16, ω4 = 0.214, ω5 =
0.143 and ω6 = 0.233. From the calculated ωi’s, using
the target positions Poj , the weighted mean WMi

is computed as follows and plugged in equation 8 to
compute the observer’s destination.

WMi =

6∑
j=1

ωj × Poj , (9)

Although we incorporated multiple target types and
uncertainty into mean point algorithm, computing
optimal altitude level for the observer is not feasible
since BRLP-CTO calculates the observer’s destination
through update equation 1 which solely depends on
mean position of targets. Observer related attributes like
altitude and remaining battery power cannot be modeled
as mean positions (or other target related information).
In general, including such observer related attributes
into decision making would require satisfying multiple
objectives and constraints. Hence the algorithm can only
decide on the new destination, while the observer stays
at the same altitude level. For the case when the observer
is not observing any targets, the observer gets to choose
a random position and a random altitude level.

7. Experiments

7.1. Target Modeling

We build two different target models namely
Random Model and Markov Chain Model for target
behavior. In the Random Model, all animals move
randomly from one point to another. Animals get
to pick their next destination and once they reach
the destination, they compute a new point to reach.
Hidden Markov Models are commonly used to model
animal behaviors [22, 23] and can be complex in nature
depending on the purpose. We present here details of a
simpler Markov Chain model used in our experiments.
The model consists of 3 states, Go Home, Go Forage
and Go Random. Home and Food locations are
randomly generated for each animal type at the start of
the simulation. Animals choose to move in the direction
of home/food, if the state is Go Home/Go Forage. When
the state is Go Random, animals move in a random
direction. To handle navigation uncertainty in animals,
we use another set of Markov Chains to compute the
actual direction in which animals would move based on
their current state and the intended direction. Animals
can move individually or form a herd. For simulation
purposes, a herd is treated as a single entity and the
animals of a herd act in unison. A lone animal can join
a herd with a probability if the herd type is same as its
type and the distance between the herd and itself is less
than a predefined constant ε. Similarly, an animal in a
herd can leave the herd anytime with certain probability.
Maximum herd size is limited to 4 animals.

The parameters we used in Markov Chain model
are summarized in Table 1. An animal or a herd
identifies its destination using the two Markov Chains.
While the first Markov Chain decides the next state
animal should reach to, the second Markov Chain then
decides whether the animal or herd should proceed in
the intended or some other direction. In the first Markov

Page 5198

Table 2. Observer scores for Markov Chain based target model
Observer Strategy Actual Score Expected Score True Positive

Score (TP)
True Negative
Score (TN)

Ratio (TP/TN)

SM + BRLP-CTO 67570.96 92250.92 37829.07 54421.85 0.69
MCDA-CTO RABC 41056.06 58237.71 27955.96 30281.74 0.92
MCDA-CTO BABC 55516.37 78837.13 39813.6 39023.52 1.02
MCDA-CTO QR 40615.93 52371.8 29230.53 23141.26 1.26
MCDA-CTO BAA 60372.26 90613.56 45879.98 44733.58 1.02

Chain, all states are equi-probable from a given state,
i.e. the next state (Go Home, Go Forage or Go Random)
for the animal or herd is picked with the probability
〈 13 ,

1
3 ,

1
3 〉. Once next state is decided, the required

direction is identified and labeled as intended. The
pintended, pleft, pright, popposite values for each target
type are as summarized in Table 1 where pleft and pright
indicate left and right directions w.r.t. the intended
direction, pjoin captures the probability with which an
animal joins a herd and pleave captures the probability
with which an animal leaves the herd. Animal herds,
their home and food locations are randomly generated.

7.2. Experimental setup

For purposes of experiments, we assume that the
observers and targets are operating in a rectangular field
with a width and height of 150 × 150 units. Observers
have 4 different levels of altitudes, with sensor range
at lowest level being 10 units and 20 units at the
highest. The total number of observers are 10. We
assume 3 different types of targets with total number
of targets to be 25, with a distribution 〈12, 8, 5〉 across
the three types. The reward values for the target types
are 〈1, 5, 10〉 respectively i.e. the observer receives 1
unit of reward for observing a target of type 1 while it
receives 5 and 10 units for observing targets of type 2
and 3 respectively. Maximum time for targets to reach
their destination is 100 time-steps. If a target reaches
its destination within the time limit, it computes a new
destination and moves towards it. Observers compute
their destination once in every 10 time-steps even if they
have reached their destination beforehand, to ensure that
all observers make decisions at same time (needed when
communication between the observers is possible). The
speed of observers and targets is assumed to be 1 unit
per time-step. We set the time required for the observer
to shift from an altitude level to its next level as 2
time-steps, during which the observer cannot make any
observation. Hence, the maximum time the observer
needs to shift altitude levels is 6 time-steps.

Each experiment consists of 1500 time-steps and is
simulated 30 times. Positions of observers and targets

are randomly generated at the start of simulation. For
each simulation run we calculated all the four scores and
the mean of each score across the 30 runs is presented.
A target observed by multiple observers is counted only
once. All the experiments were performed on MASON
simulation toolkit [24], exploiting its internal threading
mechanism to run the observers and targets in parallel.

7.3. Results

We present simulation results in Table 2, where
the target uses the Markov Chain model. For brevity
purposes, we omit results for Random Target model,
but the observers performance remains similar for both
the models. The table compares the performance of
the four action picking strategies for MCDA-CTO with
the BRLP-CTO algorithm (note that SM + BRLP-CTO
refers to stochastic belief update model). We present five
scores in total: four scores for each observer strategy
namely Actual, Expected, True Positive (TP) and True
Negative (TN) score and the ratio of True Positive to
True Negative (i.e. TP/TN) as the fifth score. A higher
(TP/TN) ratio implies a higher level of awareness i.e.
the observer knows better the true type of the target it
is observing. We focus here on the Actual Score and
(TP/TN) since Actual Score reflects the ground truth
while the (TP/TN) ratio reflects the belief observer has
about ground truth. The table shows that Actual Score is
significantly higher for BRLP-CTO since a BRLP-CTO
observer typically ends up staying for a long time in
higher or highest altitude levels where the sensor range
is higher and has the best chance to observe more targets.
However the observer has a much higher uncertainty in
the observations which do not get reflected in the Actual
score. We also tested the case where the observer always
stays in the lowest altitude for both BRLP-CTO and
MCDA-CTO and found that the MCDA-CTO (BABC
and BAA in particular) has a higher Actual score (results
omitted for space reasons).

We also presented TP scores in Table 2 and
found that deterministic versions of MCDA-CTO are
better than BRLP-CTO implying that the MCDA-CTO
observer observed the targets with a better knowledge

Page 5199

Table 3. Penalties vs Performance

Penalty
MCDA-CTO RABC MCDA-CTO BABC MCDA-CTO QR MCDA-CTO BAA

Actual
Score

Ratio Actual
Score

Ratio Actual
Score

Ratio Actual
Score

Ratio

None 46137.66 0.97 781037.7 1.02 49911.20 1.05 80648.26 1.05
P1 45147.83 0.95 89368.20 0.91 58152.50 0.83 90651.06 0.95
P2 45205.73 0.99 43680.16 2.40 43120.96 1.80 43247.80 2.24
P1 + P2 46059.90 0.95 62161.93 1.03 45490.30 1.25 64797.86 1.01
P2/2 45767.73 0.96 43316.13 2.35 44463.13 1.38 43083.53 2.20
P1 + (P2/2) 46525.16 1.00 91674.30 0.93 49289.83 0.99 90172.23 1.00

Table 4. MSE of different adversaries
Adversary Model SM +

BRLP-CTO
MCDA-CTO
RABC

MCDA-CTO
BABC

MCDA-CTO
QR

MCDA-CTO
BAA

Linear Regressor 7.73 12.64 14.55 10.01 17.32
Elastic Net 7.92 13.21 15.54 10.62 18.21
Logistic Regression 16.87 27.79 25.10 22.67 33.51
Neural Net Regressor 6.58 13.51 10.16 10.26 11.49

of their true types. This is also reflected in the
(TP/TN) ratios, where the ratio is significantly higher
for MCDA-CTO (all the versions) than for BRLP-CTO.
This shows that MCDA-CTO takes actions with a lot
more certain information. As monitoring applications
become automated, observers need to have a better
knowledge of true target type since their course of action
depends on it (unlike when human is in loop).

To summarize, there is a trade-off between the
Actual Score and the (TP/TN) ratio i.e., improving one
seems to deteriorate the other. By changing the penalty
value or levying some instead of all, MCDA-CTO
algorithm can be tailored to achieve desired results
(Note that BRLP-CTO solution is invariant to these
penalties and hence is not affected). We summarize the
penalty terms used and the performance of MCDA-CTO
algorithm in Table 3. In the table, None corresponds
to no penalty i.e. observer takes decisions solely
based on expected reward calculations. P1 implies
only penalty P1 is levied, that discourages the observer
from changing altitude. Hence the observer stays
longer in higher altitudes resulting in better score than
BRLP-CTO, but has a poor ratio. Similarly, P2 implies
only penalty P2 is levied, that forces the observer to
stay in lower altitude and hence has better ratio but poor
score. (P2/2) implies that only half the penalty of P2 i.e.
aH× (−1.5) is levied. Likewise, P1 + (P2/2) is another
penalty setting while P1 + P2 is the presented original
setting (different simulation run).

7.4. Adversary Modeling

To show that MCDA-CTO indeed does better
randomization than BRLP-CTO, we modeled different

adversaries (using different regression methods) that
try to predict the destination of the observer based
on the observer’s position and the targets within its
sensor range. We assume that the adversaries have
global knowledge of all the targets and observers at
any point of time. Each adversary is trained on more
than 6000 instances of decision making by the observers
and tested on 1000 new instances. We calculate Mean
Squared Error (MSE) which is the mean of sum
of squared distance between the destination predicted
by the adversary and the actual destination chosen
by the observer. Table 4 generated using the Scikit
library [25], summarizes the results. The table shows
that deterministic procedures MCDA BAA and MCDA
BABC perform better than MCDA RABC and MCDA
QR which randomize over the randomness generated by
the clustering algorithm. This maybe because, the best
action is chosen from the set of n actions where as the
random action is chosen from the best cluster of say q
actions (q < n). Note that all variants of MCDA-CTO
have a higher MSE than BRLP-CTO, implying that the
adversary is unable to predict the observer’s destination
as well as when the observer uses BRLP-CTO, showing
that a better randomization was achieved.

8. Conclusions and Future Work

We present here a clustering based algorithm for
wildlife monitoring named MCDA-CTO, to handle
multiple criteria that arise due to reasoning over
the different clusters of targets and also due to
environmental factors such as altitude, battery power
etc. We then modified the MCDA-CTO algorithm
for the scenario where UAVs are observers to perform

Page 5200

a high quality observation of targets in the presence
of observational uncertainty along with a better
randomization. We then provided comparison results
against state of the art algorithm BRLP-CTO. In order
to generate these results we first had to extend the
BRLP-CTO algorithm to enable handling of multiple
target types and observation uncertainty resulting in the
Stochastic belief update model. The extensions still
do not allow for combinatorial reasoning over different
clusters that MCDA-CTO performs. Our experiments
show that MCDA-CTO provides significant benefits in
terms of rewards and randomization.

Future Work: In the future, we plan to explore
Reinforcement Learning based techniques for the
wildlife monitoring problem with the aim arrive at an
optimal solution with minimal inputs from the DMs.

References

[1] W. W. F. for Nature, “A warning sign from
our planet: Nature needs our support,” 2018.
https://www.wwf.org.uk/updates/living-planet-report-
2018.

[2] WildlifeACT, “Wildlife tracking and monitoring,” 2012.
https://wildlifeact.com/about-wildlife-act/wildlife-
tracking-and-monitoring.

[3] J. Linchant, J. Lisein, J. Semeki, P. Lejeune, and
C. Vermeulen, “Are unmanned aircraft systems (uass)
the future of wildlife monitoring? a review of
accomplishments and challenges,” Mammal Review,
vol. 45, no. 4, pp. 239–252, 2015.

[4] E. Bondi, F. Fang, M. Hamilton, D. Kar, D. Dmello,
J. Choi, R. Hannaford, A. Iyer, L. Joppa, M. Tambe,
et al., “Spot poachers in action: Augmenting
conservation drones with automatic detection in near real
time,” 2018.

[5] O. M. Cliff, R. Fitch, S. Sukkarieh, D. Saunders,
and R. Heinsohn, “Online localization of radio-tagged
wildlife with an autonomous aerial robot system.,” in
Robotics: Science and Systems, 2015.

[6] T. França da Silva, J. L. Alves Leite, R. J. Campos
Ferro Junior, L. Ferreira da Costa, R. Pinheiro de
Souza, J. P. Bernardino Andrade, and G. A. Lima de
Campos, “Smart targets to avoid observation in cto
problem,” in Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent
Systems, pp. 1958–1960, International Foundation for
Autonomous Agents and Multiagent Systems, 2019.

[7] J. Hu, L. Xie, K.-Y. Lum, and J. Xu, “Multiagent
information fusion and cooperative control in target
search,” IEEE Transactions on Control Systems
Technology, vol. 21, no. 4, pp. 1223–1235, 2013.

[8] S. Jacobi, C. Madrigal-Mora, E. León-Soto, and
K. Fischer, “Agentsteel: An agent-based online
system for the planning and observation of steel
production,” in Proceedings of the fourth international
joint conference on Autonomous agents and multiagent
systems, pp. 114–119, ACM, 2005.

[9] C. V. Goldman and S. Zilberstein, “Optimizing
information exchange in cooperative multi-agent
systems,” in Proceedings of the second international

joint conference on Autonomous agents and multiagent
systems, pp. 137–144, ACM, 2003.

[10] A. Khan, B. Rinner, and A. Cavallaro, “Multiscale
observation of multiple moving targets using micro aerial
vehicles,” in Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, pp. 4642–4649,
IEEE, 2015.

[11] R. Rysdyk, “Unmanned aerial vehicle path following for
target observation in wind,” Journal of guidance, control,
and dynamics, vol. 29, no. 5, pp. 1092–1100, 2006.

[12] B. B. Werger and M. J. Matarić, “Broadcast of local
eligibility for multi-target observation,” in Distributed
autonomous robotic systems 4, pp. 347–356, Springer,
2000.

[13] L. E. Parker, “Cooperative robotics for multi-target
observation,” Intelligent Automation & Soft Computing,
vol. 5, no. 1, pp. 5–19, 1999.

[14] A. Kolling and S. Carpin, “Cooperative observation
of multiple moving targets: an algorithm and its
formalization,” The International Journal of Robotics
Research, vol. 26, no. 9, pp. 935–953, 2007.

[15] B. Jung and G. S. Sukhatme, “Cooperative multi-robot
target tracking,” in Distributed Autonomous Robotic
Systems 7, pp. 81–90, Springer, 2006.

[16] L. E. Parker, “Distributed algorithms for multi-robot
observation of multiple moving targets,” Autonomous
robots, vol. 12, no. 3, pp. 231–255, 2002.

[17] S. Luke, K. Sullivan, L. Panait, and G. Balan,
“Tunably decentralized algorithms for cooperative target
observation,” in Proceedings of the fourth international
joint conference on Autonomous agents and multiagent
systems, pp. 911–917, ACM, 2005.

[18] R. Aswani, S. K. Munnangi, and P. Paruchuri,
“Improving surveillance using cooperative target
observation,” in Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[19] Y. De Smet and L. M. Guzmán, “Towards multicriteria
clustering: An extension of the k-means algorithm,”
European Journal of Operational Research, vol. 158,
no. 2, pp. 390–398, 2004.

[20] J. R. Figueira, V. Mousseau, and B. Roy, “Electre
methods,” in Multiple Criteria Decision Analysis,
pp. 155–185, Springer, 2016.

[21] J.-P. Brans and B. Mareschal, “Promethee methods,”
in Multiple criteria decision analysis: state of the art
surveys, pp. 163–186, Springer, 2005.

[22] I. L. Macdonald and D. Raubenheimer, “Hidden markov
models and animal behaviour,” Biometrical Journal,
vol. 37, no. 6, pp. 701–712, 1995.

[23] R. Langrock, R. King, J. Matthiopoulos, L. Thomas,
D. Fortin, and J. M. Morales, “Flexible and practical
modeling of animal telemetry data: hidden markov
models and extensions,” Ecology, vol. 93, no. 11,
pp. 2336–2342, 2012.

[24] S. Luke, C. Cioffi-Revilla, L. Panait, and K. Sullivan,
“Mason: A new multi-agent simulation toolkit,” in
Proceedings of the 2004 swarmfest workshop, vol. 8,
p. 44, 2004.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

Page 5201

