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Abstract

This study describes a recommendation system em-
bedded in the double features extracted by convolutional
neural networks (CNNs). Several probabilistic models,
such as probabilistic matrix factorization (PMF)-based
approaches, have been utilized for recommendation
systems based on a CNN model. Each recommenda-
tion algorithm utilizes a single CNN model to extract
precise features about documents and pictures, and
the systems with CNN have contributed in improving
the performance in rating prediction. Meanwhile, the
systems for some items should consider at least two
precise features simultaneously, and the extension to
embed multiple CNN models is necessary. However,
methods that integrate multiple CNN-based features into
existing recommendation systems, such as PMF, are not
available. Thus, this study proposes a novel proba-
bilistic model that integrates double CNNs into PMF.
For apparel goods, two trained CNNs from document
and image shape features are combined, and the latent
variables of users and items are optimized based on
the vectorized features of CNNs and rating. Extensive
experiments demonstrate that our model outperforms
other recommendation models.

Index Terms – recommender system, deep learning,
image shape feature,convolutional neural network, prob-
abilistic matrix factorization

1. Introduction

The sparseness of useritem rating in e-commerce
services is a major data type. Traditional recommenda-
tion systems have been committed to predict the rating
prediction accuracy based on several supplemental fea-
tures, such as user demographics and social networks
[1–3].

The target of this study is apparels. Apparels are
different from other goods, such as books and movies.
Visual information is more important than document

information because generally,document information is
useful in improving recommendation accuracy [4–7].
Several methods, such as TFIDF, latent semantic anal-
ysis, and latent Dirichlet allocation (LDA), have been
utilized for treating item descriptions. Collaborative
topic regression is used together with LDA and prob-
abilistic matrix factorization (PMF) for recommenda-
tions, and their variants have been proposed [7].Wang et
al. proposed collaborative deep learning that integrates
PMF and deep learning to learn hidden representation
[6]. However, this method utilizes bag-of work, which
cannot treat contextual information. Kim et al. ad-
dressed this problem and proposed the combination of
convolutional matrix factorization (ConvMF) with PMF
and CNN [4].

For apparels, item descriptions are regarded as a
sub information. Thus, pictures and images are main
contents to express such items. Item descriptions are
insufficient for explaining the shape, texture, and design
of items because of the limitation of human imagination.
By contrast, images and pictures can deliver visual
features at ease. For example, in apparel and fashion
magazines, their contents are mostly pictures and im-
ages that convey the features of apparels to readers, such
as in the saying, A picture is worth a thousand words.

Several years ago, there were several fashion recom-
mender systems that did not use deep learning but used
visual feature [8, 9]. Liu et al. proposed a latent SVM
based recommendation model to incorporate the match-
ing rules among visual feature, attribute and occasion
within a unified framework [8]. Hu et al. proposed
a functional tensor factorization approach to generate
an outfit by modeling the interactions between user and
fashion items [9]. Subsequently, deep learning has made
rapid progress in the fields of image processing and
natural language processing. It can extract high-level
features and achieve better performance than traditional
methods.

Recently, several approaches have been proposed for
deep learning-based recommendation [4, 10–13]. As
previously mentioned, ConvMF [4] is a recommen-
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Table 1. comparison of typical recommendation system combining matrix factorization with deep learning
ConvMF [4] VBPR [15] ISFMF [16] Proposed

Relationship between model and deep learning Tight Loose Tight Tight
Recommended object Movie Apparel Apparel Apparel

Side information Text Image Image Text + Image
Prediction Rating(1-5) Binary(0-1) Rating(1-5) Rating(1-5)

dation model that uses CNN. Although the document
information and user-item rating of the ConvMF model
are tight, they do not fully utilize the document and
visual information. Here, tightly indicates that the
parameters of CNN and PMF are optimized simultane-
ously. Hidasi et al. [13] proposed a session-based rec-
ommendation model based RNN. Wang et al. used CNN
as a component for image feature extraction combined
with traditional POI recommender systems [12]. There
are several fashion recommender systems with deep
learning [14–17]. He et al. investigated the usefulness
of visual features for retrieval [14] and personalized
ranking tasks [15]. Duan et al. proposed a recommender
system that integrated the CNN into PMF to use image
shape feature of items [16]. Han et al. propose to
jointly train a Bi-LSTM model and a visual-semantic
embedding for fashion outfit recommendation [17].

However, We can know from Table I that there is no
tight recommendation models can utilize accurate side
information from visual and document information.

Thus, we propose a framework called double deep
feature matrix factorization (DDFMF), which is tightly
embedded in double CNNs with PMF for document
and visual information. We optimize the parameters of
PMF and the document and visual information simulta-
neously to integrate user-item rating into the information
seamlessly. We also utilize DeepContour, which is a
deep learning-based edge extraction algorithm similar
to Carny [18], to extract the visual information. We
confirm the accuracy of our proposed method via an
experiment using Amazon dataset.

The key contributions of this study are as follows.
This work introduces the first approach that models
not only user-item rating but also visual and document
information tightly. In addition, this work shows the
usability of visual information and its context extracted
by CNN.

The remainder of this paper is organized as follows.
Section II describes the preliminary knowledge about
PMF, CNN, and visual features. Section III introduces
the graphical model of DDFMF and the architecture of
our CNN. Section IV presents the experimental results
and model performance evaluation. Section V concludes
the study and presents the future works.

Figure 1. Graphical model of PMF

2. Preliminary

2.1. Probabilistic Matrix Factorization(PMF)

Salakhutdinov et al. [19] proposed the PMF, which
is a well-known approach for recommendation systems.
Table II summarizes the notations of PMF, and Fig. 1
shows the overview of the graphical model of PMF. We
suppose that M users, N items, and a rating matrix
R ∈ RN×M exist. Also, we demand the user latent
matrix R ∈ Rk×N and item latent matrix R ∈ Rk×M
to reconstruct the rating matrix R. The goal of the PMF
is to determine the optimal matrix U . V minimizes the
loss function E , as shown as follows:

min E(U, V ) =

N∑
i

M∑
j

Iij
2

(
rij − uTi vj

)2

+
λU
2

N∑
i

‖ui‖2 +
λV
2

M∑
j

‖vj‖2
(1)

2.2. Deep Features

In the last few years, deep learning has made sig-
nificant progress in natural language processing, image
processing and object detection, and we have been
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Table 2. Notations
Notation Description

R Rating matrix
N Number of users
ui Latent factors of user i
M Number of items
vj Latent factors of item j
rij Rating of item j given by user i
r̂ij Predicted rating of item j given by user i
U User latent factor
V Item latent factor
k Size of latent factor
I Indicator,Iij = 1 if rij 6= 0,otherwise Iij = 0

σ2,σ2
U ,σ2

V Variance
Sj Image shape feature of item j
Dj Contextual feature of item j
sj Complex feature latent factor of item j
W Internal weights in the CNNs
wd Each weight in the CNNs

able to extract high-level features using deep neural
networks. Meanwhile, these features are being applied
to the recommender system, and these deep features are
useful in improving recommendation accuracy [4].

Kim et al. [4] addressed limitations of the
bag-of-words model-based approaches and proposed
a novel document context-aware recommendation
model(ConvMF) that integrates CNN into PMF. This
models CNN can capture the contextual meaning of
words in documents and can even distinguish the subtle
contextual difference of the same word via different
shared weights. Duan et al. [16] used the deep feature
of the product image to improved the recommendation
accuracy of the apparel recommender system. This
deep feature is extracted by DeepContour. This method
is proposed by Shen et al. [18, 20–22], and compared to
the traditional method(Canny [23], Sketch tokens [24]),
it can extract more accurate image shape features. They
used CNN in learning contour features to improve the
accuracy of contour detection. They divided the contour
data into subclasses based on the contour shape, thereby
converting the contour versus non-contour classification
problem into a multi-class classification problem.
They also proposed a new loss function called positive
sharing loss function. This function focuses on the loss
of contours and non-contours rather than the loss of
each subclass and helps explore more discriminative
features compared with the softmax loss function.

Figure 2. Graphical model of DDFMF

3. Double Deep Features Matrix
Factorization( DDFMF)

3.1. Probabilistic Model of DDFMF

DDFMF is modified based on ConvMF [4]. We
simultaneously use the contextual information of items
and their image shape feature. Table II summarizes the
notations of the DDFMF, and Fig. 2 shows the overview
of the probabilistic model of the DDFMF. First, suppose
that N users,M items, and a user-item rating matrix
(R ∈ RN×M ) exist. In a probabilistic point of view,
the conditional probability of the observed rating matrix
R is expressed as follows:

p
(
R|U, V, σ2

)
=

N∏
i

M∏
j

[
N
(
rij |uTi vj , σ2

)]Iij (2)

where N
(
X|µ, σ2

)
is a Gaussian distribution of X

with mean µ and variance σ2. Subsequently, R is
matrix-decomposed into user latent model U ∈ Rk×N

and item latent model V ∈ Rk×M . However, different
from the traditional PMF, we assume that our item
latent matrix V depends on the following four variables:

These four variables allow the item latent model to
be further optimized for the ratings. Therefore, the
final item latent model consists of the item latent, image
shape latent factors, and contextual latent factors. The
item latent factor is obtained by PMF decomposition,
and the image shape and contextual latent factor are
obtained by our CNNs. The final item latent model is
expressed as follows:

vj = cnn (W,Sj , Dj) + εj (3)

εj = N
(
0, σ2

V I
)

(4)
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Figure 3. The architecture of our CNNs

Figure 4. The CNN for extracting image shape

feature

Figure 5. The CNN for extracting contextual feature

where cnn() represents the output of our CNNs archi-
tecture. For each weight wk in W , we place zero-mean

spherical Gaussian prior, the most commonly used prior.

p
(
W |σ2

W

)
=
∏
d

N
(
wd|0, σ2

W

)
(5)

The prior distributions of latent models U and V are

p
(
U |σ2

U

)
=

N∏
i

N
(
ui|0, σ2

U

)
(6)

p
(
V |W,S,D, σ2

V

)
=

M∏
j

N
(
vj | cnn (W,Sj , Dj) , σ

2
V I
)

(7)

3.2. Architecture of Our CNNs

Our CNNs generate an image shape and contextual
latent vectors from the images and documents of items
to compose high-precision item latent models with ep-
silon variables. Fig.3 shows our CNN architecture that
comprises two networks. The first CNN is for extracting
image shape features. We use transfer learning to place
a pre-trained CNN model (DeepContour [18] ) into our
structure for contour detection. This pre-trained model
has four convolutional layers and three fully-connected
layers. For our proposed model, we consider the
output of the first fully-connected layer. Then, we use
a three-channel image patch with a size of 45 × 45
as input and obtain a 128-dimensional feature vector
of the image shape (see Fig.4). The second CNN is
for extracting contextual features. We use the CNN
model from ConvMF and consider the output of the first
fully-connected layer. Then, we can use a raw document
as input and obtain a 300-dimensional contextual feature
vector (see Fig.5).

Finally, we concatenate the feature vector of the
image shape via the contextual feature vector and
use a conventional nonlinear projection to obtain a
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k-dimensional latent vector of complex features. Our
CNN model becomes a function that utilizes the images
and documents of item j as input and returns the latent
factor of the complex feature of item j as output, as
expressed as follows:

sj = cnn (W,Sj , Dj) (8)

3.3. Optimization

To optimize the variables such as U , V , W , we use
maximum a posteriori estimation as follows:

maxU,V,W
(
U, V,W |R,S,D, σ2, σ2

U , σ
2
V , σ

2
W

)
=

maxU,V,W
[
p
(
R|U, V, σ2

)
p
(
U |σ2

U

)
p
(
V |W,S,D, σ2

V

)
p
(
W |σ2

W

)
(9)

If we give a negative logarithm on Eq.(9), it can be
reformulated as follow:

min E(U, V,W ) =

N∑
i

M∑
j

Iij
2

(
rij − uTi vj

)2

+
λU
2

N∑
i

‖ui‖2

+
λV
2

M∑
j

‖vj − cnn (W,Sj , Dj)‖2

+
λW
2

|wd|∑
d

‖wd‖2

(10)
where λU is σ2

σ2
U

,λV is σ2

σ2
V

, and λW is σ2

σ2
W

.

Our model aims to find user latent and item latent
models to infer user preferences by minimizing function
E(U, V,W ). Partially differentiate Eq.(10) with ui and
vj respectively. Subsequently, by updating ui and vj
with the coordinate descent method, we can obtain the
optimum user latent matrix (U ) and the item latent
matrix (V ). The update formulas for ui and vj are
shown in Eqs.(11) and (12):

ui =
(
V IiV

T + λUIK
)−1

V Ri (11)

vj =
(
UIjU

T + λV IK
)−1

(URj

+ λV cnn (W,Sj , Dj))
(12)

where Ii is a diagonal matrix with Iij ,j = 1;...;M as its

diagonal elements and Ri is a vector with (rij)
M
j=1 for

user i. For item j, Ij and Rj are similarly defined as Ii
and Ri, respectively.

However, W cannot be optimized as we can do for
U and V . Because W is the weights and biases of
each layer, and it is closely related to the features in
our CNNs architecture such as max-pooling layers and
non-linear activation functions. Fortunately, when U , V
are temporarily fixed, loss function E becomes an error
function with regularized terms of neural net.

E(W ) =
λV
2

M∑
j

‖vj − cnn (W,Sj , Dj)‖2

+
λW
2

|wd|∑
d

‖wd‖2 + constant

(13)

To optimize W, we use the back propagation algorithm
with given target value vj (vj is temporarily fixed).
The overall optimization process (U , V and W are
alternatively updated) is repeated until convergence.
Finally, we can predict rating of user i on item j as
follow:

r̂ij = uTi vj = uTi (cnn (W,Sj , Dj) + εj) (14)

4. Experiment

4.1. Goal, Dataset, Environments, and
Criteria

In this experiment, we evaluate our proposed model
for apparels. We use the clothes, shoes, and accessories
as the category data from the Amazon product dataset
[14, 25]. The dataset consists of rating data and the
images and documents of items. We pre-processed the
dataset for the experiment as follows:

• We divide the dataset into three, namely clothes,
shoes and accessories to investigate the perfor-
mance of our model for different product types.

• We remove the items that do not have their images
or description documents from the three datasets.

• The matrix size of the training data is set similarly
to that of the original data to divide the training
and test data. However, the three original datasets
are not used in this experiment because they are
large and extremely sparse and cannot be split into
training and test data. Consequently, we remove
users that have less than two ratings. The statistics
of each datum validate that the three datasets
possess different characteristics (Table III).
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Table 3. Detail Statistics of the Three Datasets
Dataset Users Items Ratings Density
Clothes 8222 8513 19654 0.0281%

Accessories 3889 3507 8544 0.0626%
Shoes 622 749 1334 0.286%

Table 4. Hyperparameters

Model Clothes Accessories Shoes
λU λV λU λV λU λV

PMF 0.1 0.1 0.1 0.1 0.1 0.1
ConvMF 1 10 1 10 0.1 10
ISFMF 1 1 1 0.1 1 1

DDFMF 1 1 1 10 1 1

We compare the DDFMF with the following base-
lines:

• PMF [19]: PMF is a standard rating prediction
model for user ratings only.

• ConvMF [4]: This model was introduced by Kim
et al. It uses the contextual features of items to
improve the rating prediction accuracy.

• ISFMF [16]: This model is that we used transfer
learning to integrate DeepContour into the model
proposed by Duan et al.

4.2. Experiment Setup

Our experimental environment uses the Keras
Python library [26] with NVIDIA GeForce Titan X. The
parameter settings are as follows:

• The size of the latent dimension of U and V is set
at 50.(we set the same value of U and V for all
models)

• The size of the input image is set at 45× 45.(same
size as the pre-trained Deepcontour model and
ISFMF)

• The maximum length of documents and set the
size of vocabulary is set at 300 and 8000, respec-
tively.(same value as the convMF)

• Each dataset is randomly split into training, vali-
dation,and test sets.

We select the hyperparameters (λU , λV ) via grid search;
for different models, these hyperparameters may vary.
Table IV lists the best combination of hyperparameters
(λU , λV ). For the evaluation measure, we use the root
mean squared error (RMSE), as shown as follows:

RMSE =

√∑N,M
i,j (rij − r̂ij)2

ratings
(15)

For the reliability of our results, we repeat the evaluation
procedure 10 times and report the mean test errors of
each model.

4.3. Experimental Results

Table 5. Overall RMSE Test on Clothes Dataset

Model
Ration of training data

70% 80% 90%
PMF 1.646 1.603 1.592

ConvMF 1.327 1.272 1.261
ISFMF 1.21 1.165 1.177

DDFMF 1.168 1.131 1.129
Imp.1 12% 11.10% 10.50%
Imp. 2 3.50% 2.90% 4.10%

Table 6. Overall RMSE Test on Accessories Dataset

Model
Ration of training data

70% 80% 90%
PMF 1.724 1.602 1.641

ConvMF 1.459 1.398 1.450
ISFMF 1.363 1.302 1.389

DDFMF 1.342 1.283 1.331
Imp.1 8% 8.2% 8.1%
Imp. 2 1.5% 1.4% 4.1%

Table 7. Overall RMSE Test on Shoes Dataset

Model
Ration of training data
80% 90%

PMF 1.882 1.623
ConvMF 1.263 1.261
ISFMF 1.186 1.341

DDFMF 1.179 1.297
Imp.1 6.7% 0.7%
Imp. 2 0.6% 3.3%

Table 8. Results of T-test on Shoes Dataset (90%

training data)

Models P value
DDFMF versus ConvMF 0.143547 >0.05
DDFMF versus ISFMF 0.009217 <0.05

ISF versus ConvMF 0.028917 <0.05

4.3.1 Results on Clothes Dataset

Page 4423



Table V shows the overall RMSE of the PMF, Con-
vMF, ISFMF, and DDFMF on the clothes dataset. Imp.
1 and Imp. 2 denote the improvement, in which
our model outperforms the ConvMF and the ISFMF,
respectively. In comparison with the other three models,
DDFMF achieves significant performance on the clothes
dataset. The improvement of our model over the best
competitor, namely, ISFMF, increases consistently from
4.1% to 2.9%. Using document and visual information
simultaneously can produce accurate results. In addi-
tion, using visual information alone is better than with
document information.
4.3.2 Results on Accessories Dataset

Table VI shows the overall RMSE of the PMF, Con-
vMF, ISFMF, and DDFMF on the accessories dataset.
Imp. 1 and Imp. 2 denote the improvement, in
which our model outperforms the ConvMF and the
ISFMF, respectively. In comparison with the other three
models, DDFMF attains significant performance on the
accessories dataset. The improvement of our model
over the best competitor, namely, ISFMF, increases
consistently from 4.1% to 1.4%. However, when the
training set is 90%, the accuracy of all the models
decrease.
4.3.3 Results on Shoes Dataset

Table VII shows the overall RMSE of the PMF,
ConvMF, ISFMF, and DDFMF on the shoes dataset.
Imp. 1 and Imp. 2 represent the improvement, in which
our model outperforms the ConvMF and the ISFMF,
respectively. The performance of our model on the shoes
dataset is poor compared with the other three models,
as shown by the p value between the three models
(Table VIII). When the training set is 90%, the accuracy
of our model is almost the same as that of ConvMF.
Moreover, using visual information alone is worse than
with document information.

5. Conclusion

In this study, we determine whether the use of image
shape and contextual features of items can effectively
improve the rating prediction accuracy of an apparel
recommendation system.We also propose a novel proba-
bilistic model embedded in double CNNs for document
and visual information with PMF. Our experimental
results corroborate that the DDFMF significantly out-
performs the other competitors. However, our model
does not perform well in the shoes dataset. Possibly,
the image shape feature is not suitable for this dataset.

For future works, we intend to use different visual
information to investigate the accuracy of the recom-
mendation system. [27]
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