
Starling: A Blockchain-based System for Coordinated Obstacle Mapping in
Dynamic Vehicular Environments

Daniel Miehle
Technical University of Munich

daniel.miehle@tum.de

Andreas Pfurtscheller
Technical University of Munich
andreas.pfurtscheller@tum.de

Bernd Bruegge
Technical University of Munich

bruegge@in.tum.de

Abstract

Current Vehicle-to-Vehicle solutions cannot ensure
the authenticity of safety-critical vehicle and traffic
data. Moreover, they do not allow malicious vehicles
to be detected and eliminated. However, this is
becoming mandatory, as more and more vehicles are
on the road and communicating with each other. We
propose a system called Starling, which focuses on
trusted coordinated obstacle mapping using blockchain
technology and a distributed database. Starling enables
vehicles to share detected obstacles with other vehicles
in a secure and verifiable manner, thus improving road
safety. It ensures that data was not manipulated,
changed, or deleted and is based on an open protocol
so that vehicles can exchange data regardless of their
manufacturer. In a case study, we demonstrate how
a consensus is reached among vehicles and conduct a
comprehensive evaluation of the Starling system using
Ethereum and the InterPlanetary File System.

1. Introduction

The world is becoming increasingly interconnected,
and so are vehicles. In recent years, science, industry,
and governmental institutions have explored approaches
to implementing reliable communication between
both, vehicular and non-vehicular systems, known
as Vehicle-to-Everything (V2X) communication [1].
V2X communication is paving the way for the
internet of vehicles, which allows for the gathering,
processing, and exchange of information pertaining to
vehicles, infrastructure, and their environment. Thereby,
Vehicle-to-Vehicle (V2V) communication is one of the
most important types of communication with regard to
road safety and efficient traffic flow in general.

Research on this topic dates back to the early 1970s,
when Rosen et al. [2] proposed a routing system for
Vehicle-to-Road infrastructures. In recent years, interest
in this subject has increased, driven in particular by
the advances in autonomous driving [1]. Autonomous

driving systems are designated to make decisions on the
basis of the data available to them. This emphasizes
the relevance of this topic for the future of connected
and autonomous vehicles. Access to more information
about the environment enables autonomous vehicles
to take early actions against imminent hazards out of
sight [3]. Hence, Vehicle-to-Vehicle networks such as
the Vehicle Ad-hoc Network (VANET) aim to enhance
the visibility of vehicles in situations that cannot be
detected by sensors such as cameras. However, current
Vehicle-to-Vehicle networks are unable to detect and
eliminate malicious vehicles [4] that have the potential
to cause accidents, especially in highly dynamic vehicle
environments. In addition, the solutions lack openness,
security, and data protection and are highly centralized,
so that entire systems can fail in the event of a failure.
This is unacceptable for safety critical systems of
vehicles as the exchange of vehicle and traffic data
between them and other services cannot be maintained.

The Starling system presented in this paper attempts
to address these challenges by providing trusted
vehicle and traffic data for coordinated obstacle
mapping using a distributed, peer-to-peer database and
blockchain technology for decentralized and verifiable
data storage. The goal of Starling is to build an open
Vehicle-to-Vehicle network that offers better visibility
of obstacles and makes this visibility more secure and
tamper-proof for all involved.

This paper is structured as follows. In Section
2, we present the foundations of obstacle detection
and mapping, blockchain technology, and distributed
databases on which the Starling system is based and
related works. We formalize the requirements and
architecture of the Starling system in Section 3. In a case
study, in Section 4, we describe the the implementation
of the Starling prototype. The Starling prototype is
evaluated regarding performance and scalability and the
results are discussed in Chapter 5 and 6, respectively.
Chapter 7 concludes the paper by summarizing the
contributions and future work.

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 4033
URI: https://hdl.handle.net/10125/64235
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

2. Foundations and Related Works

In the following section, we describe the foundations
of our approach and review related works to embed our
approach in the scientific background.

2.1. Obstacle Detection and Mapping

Research in the field of obstacle detection for
vehicles was carried out as early as the 1980s and 1990s,
long before the advent of autonomous driving. Articles
from this period (see [5, 6, 7]) mainly focus on obstacle
detection for collision and obstacle avoidance without
the exchange of obstacle data between vehicles. With
the emergence of high-resolution cameras and enhanced
sensor technology such as LIDAR, obstacle detection
techniques and algorithms have improved, increasing
their accuracy and reliability [8, 9, 10]. Wireless
communication makes it possible to share and map
information on obstacles detected by individual vehicles
so that vehicles cannot only predict the trajectory of
moving obstacles [11], but also extend the field of vision
of any vehicle [12, 13].

2.2. Distributed Ledger Technology

Distributed Ledger Technology (DLT) extends the
concept of distributed, peer-to-peer databases by
including features such as data immutability, fair access,
transparency, and the verifiability of transactions.
Following [14], a distributed ledger is a distributed data
structure whose entries are digital records of actions
written by the participants of a DLT system after
reaching a consensus on the validity of the entries.

One type of DLT is blockchain technology, which
stores entries in a linear growing chain of blocks that
are secured using cryptography [15]. The data structure
of a blockchain is an append-only linked list, which
includes a total order of its entities, starting with the
so-called Genesis block [16]. Each subsequent block
contains a cryptographic hash created using a uniform
hash function of the block itself and the previous block,
thus linking both blocks. This procedure ensures the
immutability of transactions stored in a blockchain,
since all subsequent blocks would have to be changed
and hashed again to change only one transaction within
a block. Verifying hashes is a relatively cheap process,
which is why the blockchain can be easily verified
by tracing the hashes of each block back to the
Genesis block [16]. A transaction can contain any
type of data, ranging from cryptographically signed
financial transactions, to hashes of digital assets, and
Turing-complete executable programs [14].

Blockchain networks can be either permissionless

or permissioned. In permissionless blockchains,
each participant can initiate transactions, perform
mining, and create smart contracts. In contrast,
not all participants in permissioned blockchains are
allowed to execute all operations. The consensus
mechanism ensures, that the nodes of the blockchain
network are consistent. It allows the participants
of the network to decide on the validity of entries,
preventing double-spending and sybil attacks. [17].
Double-spending describes the use of a single asset
twice (e.g., one Bitcoin). Sybil attacks address
attacks that use fake identities to gain the majority
in the system in order to inject faulty information
into the network [14]. The consensus mechanism
ensures that participants in the consensus process
behave honestly and reliably, as it would be more
effort in economic terms to do the opposite. [18].
The most common consensus mechanism for public
blockchains (e.g., Bitcoin [16], Ethereum [19], is the
Proof-of-Work consensus, which utilizes the processing
power of computers. Proof-of-Work is the solution
to a mathematical puzzle (i.e., mining), which is
easy to verify, but solving is both difficult and takes
effectively random time. Other consensus mechanisms
include Proof-of-Stake (PoS), where evidence is given
by providing economic power, and Proof-of-Authority
(PoA), where mining is performed by trusted and
pre-defined nodes.

2.3. Smart Contract

A smart contract is a computerized transaction
protocol that facilitates, executes, and enforces the terms
of a contract between untrusted parties without the
involvement of a trusted third party [20, 21]. By using
business logic implemented in smart contracts, it is
possible to access the distributed ledger, the processing
power of the system, and its storage [22, 18]. This
allows to reduce errors, fraud, and verification time
and costs, and to automate process executions [21,
23, 24]. Ethereum has established this concept of
distributed computing, which clearly differentiates it
from Bitcoin [14, 19, 22].

2.4. InterPlanetary File System

The InterPlanetary File System (IPFS) is a
distributed, peer-to-peer file-sharing system that
combines a distributed hash-table, an incentivized block
exchange, and a self-certifying namespace in order to
connect all computing devices with the same system of
files [25]. The advantages of IPFS are no single point of
failure and nodes do not need to trust each other.

Page 4034

2.5. Related Work

In literature, blockchain-based systems focusing on
different aspects of Vehicle-to-Vehicle communication
have been proposed.

For instance, Onishi [4] provides a report
on the advantages and limitations of Vehicle
Ad-hoc Networks and blockchain-based systems
for Vehicle-to-Vehicle communication. Rowan et
al. [26] propose an inter-vehicle communication by
using a blockchain-based public key infrastructure that
enhances interoperability between untrusted vehicles,
for example, for platooning vehicles. Buzachis et
al. [27] introduce an intersection management system to
manage negotiated agreement between vehicles crossing
through an intersection using blockchain technology
and smart contracts. Singh and Kim [28] present an
intelligent vehicle data sharing system using a custom
consensus mechanism called Proof-of-Driving. Rathore
et al. [29] propose the TangleCV, a decentralized
solution for secure data sharing and recording for
connected vehicles using a directed acyclic graph.
Ramachandran et al. [30] introduce MOTIVE, a
decentralized framework that allows vehicles to make
peer-to-peer micropayments for data, compute and
other services obtained from other vehicles or road
side infrastructure enabling autonomous operation
and trusted interactions between vehicles and nearby
entities. Hewlett Packard Enterprise and Continental
[31] announced a blockchain-based data monetization
platform for sharing vehicle and traffic data. The
platform is designed to allow for new digital services
that improve security while allowing manufacturers
to monetize data. In addition, there are various
articles addressing reputation and liability management
in vehicular environments (see [32, 33, 34]) and
Vehicle-to-Grid applications for peer-to-peer payments
(see [35, 36, 37]) based on blockchain technology.

However, the proposed solutions do not investigate
the feasibility of blockchain technology and distributed
databases for coordinated obstacle mapping.

3. Starling

In this section, we present the idea of establishing a
distributed, peer-to-peer system for coordinated obstacle
mapping in dynamic vehicular environments.

3.1. Problem

Vehicle-to-Vehicle networks such as VANET aim
to enhance the visibility of vehicles in situations that
cannot be detected by sensors. It is essential that
obstacle mapping data come in the correct order and

have not been manipulated or deleted, which could lead
to accidents. In addition, current Vehicle-to-Vehicle
solutions lack openness, security, and privacy and do not
allow malicious vehicles to be detected and eliminated
[4]. Only if this is ensured can vehicles improve their
systems by using verified obstacle mapping data.

3.2. Vision

The vision for Starling is to provide verified
and trusted vehicle and traffic data for coordinated
obstacle detection that can be used by vehicles. By
using blockchain technology and distributed databases,
Starling aims to provide greater visibility of obstacles
and make this visibility more secure and tamper-proof
for all stakeholders by verifying and matching obstacles,
which prevents data redundancy and double entries.
Vehicles would know of verified obstacles in their
environment without being able to detect them with
their own sensors. For example, autonomous driving
systems can consider obstacles much earlier in order
to avoid accidents and make road traffic more efficient.
In addition, Starling introduces the property reputation,
which is an indicator of how trustworthy a vehicle
is when reporting obstacles and is increased as other
vehicles recognize the same obstacles.

3.3. Requirements

In this section, we describe the functional and the
non-functional requirements of the Starling system. We
start with defining the functional requirements of the
Starling system, which aim to describe the interactions
between the system and its environment independent of
its implementation. The environment includes users and
other external systems Starling interacts with.

1. Provide Obstacle Repository: The system
must enable vehicles to persist mapping data
of detected obstacles for coordinated obstacle
mapping. This data represents obstacles in the
immediate neighborhood of the detecting vehicle.

2. Avoid Duplication: The system must ensure that
no duplicates of obstacles are persisted in the
system, i.e. in case two vehicles detect the same
obstacle, there should be a unique entry in the
repository.

3. Detect Faulty Obstacle Data: The system
must be able to detect manipulated or deleted
obstacle mapping data. Incorrect data stored
in the repository should be detected and not
accepted as valid. Moreover, vehicles should

Page 4035

have the property reputation, which indicates the
trustworthiness of a vehicle.

4. Provide Data Access: The system must provide
an interface for clients to retrieve obstacle
mapping data from the repository, to retrieve
traffic data, or to detect obstacles out of sight.

5. Provide Authority Access: The system must
ensure that authorities such as police, judiciary,
and insurance companies are able to comprehend
decisions about vehicles based on the coordinated
mapping data.

6. Provide Traceability: The system must ensure
the complete traceability of all actions in order to
reconstruct traffic accidents.

Next, we define the non-functional requirements,
which are so-called quality requirements.

7. (Supportability) Open Platform: The system
must be an open platform, which means that the
barriers to entry for both, car manufacturers and
users must be low. The open platform must create
transparency for all stakeholders involved.

8. (Reliability) High Availability: The system must
be available without downtime as it runs in
transport environments. A failure is unacceptable.

9. (Reliability) Data Integrity: The data in the
system must be stored so that it cannot be
manipulated. For example, traffic incidents must
be comprehended when they occur. Therefore,
the original data associated with such an incident
must be accessible.

10. (Usability) Protect Privacy: The system must
ensure that the tracking of vehicles and their
owners should not be possible for anyone other
than the vehicle owner and entitled authority
actors.

11. (Performance) Low Latency: The system should
be able to store and retrieve obstacles with low
latency, as the environment including obstacles
changes rapidly due to the high dynamics of
traffic. The storing of obstacles should not exceed
500 milliseconds. The verification and retrieving
of obstacle data should not exceed 1 second.

12. (Performance) High Throughput: The system
should be able to handle a high data throughput.
When scaling the system with many vehicles, the
data throughput (i.e., the number of transactions)
increases linearly with it.

3.4. Analysis

The analysis object model of the Starling system
is derived from the identified requirements as depicted
in Figure 1. The main actors of the Starling system
are Vehicles, the vehicle owners, and authorities
such as police officers, which can interact with
the system by means of the VehicleClient and
AuthorityClient, respectively. Their abstraction is
combined into the Client superclass, which provides
shared functionality such as retrieving obstacles. The
VehicleClient allows Vehicles to access the
Repository in order to store and retrieve obstacles.
It facilitates the use of the VehicleIdentifier,
which can be required by the authorities during
investigations. The AuthorityClient enables
authorities to view mapped obstacles and general traffic
information.

Client

+getObstacles(): Obstacle[*]

VehicleClient

+store(obstacle: Obstacle)
+getIdentifier(): VehicleIdentifier

AuthorityClient

+displayObstacles(obstacles: Obstacle)

Repository

+store(obstacle: Obstacle)
+get(): Obstacle[*]
+getByVehicle(id: VehicleIdentifier, report: Obstacle)
+authenticateClient()

Vehicle Obstacle

+position
+timestamp

StaticObstacle DynamicObstacle

+velocity
+bearing

VehicleIdentifier

VerificationService

+verifyObstacle() *

*

MatchingService

+matchObstacle()
*

**

ObstacleIdentifier

Figure 1. The Analysis object model depicts the

classes derived from the requirements. The repository

is the key component of the Starling system,

containing entity objects like vehicles and obstacle

reports. The vehicle and authority clients enable the

access to obstacles stored in the repositories.

The core function of the system is to store obstacles
in the Repository, where the obstacle mapping data
is persisted. It allows to read and write obstacles, to
register vehicles, and it provides operations such as user
authentication.

An Obstacle is initially identified and reported
by the sensors of a Vehicle. An obstacle can be
either static or dynamic and consists of a timestamp
and a position, which describes the location where

Page 4036

it has been detected by a vehicle. In addition, a
dynamic obstacle contains information on the velocity
and bearing of the physical obstacle represented.
Starling assigns the sensor readings to obstacles already
reported by other vehicles so that no duplication
of physical obstacles occurs. This association is
initiated by the VehicleClient and performed by
the MatchingService. The MatchingService
is called with information about the detected obstacle
and reacts with either a matched or a new obstacle.
After obstacles are retrieved from the Repository,
the VerificationService verifies them before
further processing.

3.5. Architecture

Starling is decomposed into six independent
subsystems. These subsystems are grouped into
three hierarchical layers, resulting in an open layered
architecture. An additional subsystem indicates services
provided by the vehicle’s autonomous driving system.
We explain the individual layers from bottom to top.

The Verification Layer provides
ObstacleVerification services to the upper
layers and does not depend on any other layer.
The subsystem VerificationStore is derived
from the VehicleRepository. Since the
Verification Store does not contain the
ObstacleRepository, we preserve the relationship
between the classes Vehicle and Obstacle from
the analysis object model. Therefore, we introduce
the HashRepository to our subsystem, which
contains permanent links to the Obstacles stored in
the ObstacleRepository subsystem in the layer
above.

The Obstacle Layer provides services for storing
and retrieving obstacle data as well as matching
obstacles. It encapsulates the Obstacle Store
that contains the ObstacleRepository with its
obstacle mapping data and the ObstacleMatching
subsystem accessible using the Obstacle API. They
use the services of the Verification layer below to verify
the obstacle data they are working with.

The Client Layer contains the client applications
Vehicle Node and Authority Node, which
provide system access for the actors Vehicle and
Authority, respectively. They use services provided
by subsystems from both, the Obstacle and the
Verification Layer.

4. Case Study

Here, we describe the implementation of the Starling
prototype using Ethereum and IPFS and present a

Layer 1: Clientcomponent

Layer 2: Obstaclecomponent

Layer 3: Verificationcomponent

Verification Services

VehicleClientAuthorityClient

ObstacleDetection

Detection API

Obstacle API

Verification API

RepositoryInterface

ObstacleVerification

Obstacle Services

RepositoryInterface

ObstacleMatching

VerificationStore

VehicleRepository

HashRepository

ObstacleStore

ObstacleRepository

Obstacles

Vehicles

Figure 2. The subsystem decomposition model

shows the six subsystems, which are organized into

three layers within an open layered architecture.

detailed analysis and discussion of the prototype.

4.1. Objective

The aim is to prove the feasibility of the
decentralized Starling system for coordinated obstacle
mapping. We implemented a prototype to gain further
insight into the advantages and limitations of combining
blockchain technology and distributed databases.

4.2. Hardware / Software Mapping

In the following, the decomposed subsystems
are mapped to commercially available software and
hardware components with which we implemented
the prototype. Considering the requirements and
constraints, we obtain the hardware-software mapping
as shown in Figure 3.

First, we explain the components that enable our
decentralized data storage, which is based on two
separate components. For the distributed databases,
we use the high-throughput, serverless, distributed, and

Page 4037

queryable database OrbitDB1. OrbitDB is based on
the peer-to-peer protocol IPFS 2 designed to create a
distributed database. To achieve consistency across all
nodes, OrbitDB uses an immutable, operation-based
conflict-free replicated data structure (CRDT) [38],
which was proposed by Shapiro et al. [39] in the context
of the increasing emergence of distributed systems.
CRDTs include, among others, an append-only log
that can be used to model a mutable, shared state
between peers in peer-to-peer applications meeting the
requirements for documentation quality, flexibility, and
throughput at the time of system design. We use the
official IPFS client implementation, which is written in
Go3 providing the IPFS HTTP API4 as an interface that
allows clients to interact with it and the stored data.

«unix device»
Vehicle

ObstacleDetection

«nodejs»
VehicleNode

VehicleClient

ObstacleMatching

web3.js

js-ipfs & orbit-db

«geth client»
VerificationStore

«go-ipfs client»
ObstacleStore

IPFS API

JSON RPC

«unix device»
StorageNode*

«geth client»
Verification Store

VehicleRepository

HashRepository

ObstacleVerification

«go-ipfs client»
ObstacleStore

ObstacleRepository

«Web Browser»
AuthorityNode

AuthorityClient

web3.js

js-ipfs & orbit-db

«unix device»
AccessNode*

«geth client»
Verification Store

VehicleRepository

HashRepository

ObstacleVerification

«go-ifps client»
ObstacleStore

ObstacleRepository

JSON RPC

IPFS API

* Multiple instances of storage- and access
nodes are deployed in the distributed network
** Decentralized Ethereum network
*** Decentralized IPFS network

Dec.Net.**

Dec.Net.***

Figure 3. The deployment diagram maps the

decomposed subsystems to commercially available

software and hardware components.

In order to build the blockchain test network,
we decided to use Ethereum with the Proof-of-Work
consensus mechanism. Ethereum is a general purpose
permissionless blockchain, which provides detailed
documentation, a high degree of decentralization, and
enables the use of smart contacts. To connect to the
Ethereum test network, one has the choice between

1https://github.com/orbitdb/orbit-db
2https://ipfs.io/
3https://github.com/ipfs/go-ipfs
4https://docs.ipfs.io/reference/api/http/

the official Ethereum client named Geth 5 and the
independently developed Parity client6. We use Geth
in Starling, as it is the reference implementation
of Ethereum that provides client access via the
standardized JSON RPC API7.

4.2.1. StorageNode and AccessNode The core
component of Starling is the distributed data storage
in which detected obstacles are mapped and stored.
The distributed data storage is separated into two
independent components, the distributed file system
IPFS, and the Ethereum blockchain.

4.2.2. VehicleNode The VehicleNode provides
the system with the actual obstacle mapping data.
For the case study, a Node.js8 environment was
chosen, in which the VehicleNode is executed.
It connects the ObstacleMapping service
with the decentralized ObstacleStore. This
component expects an interface provided by the
ObstacleDetection on-board system that allows
it to receive notifications of detected obstacles. The
ObstacleDetection on-board system is not part
of the Starling system and is therefore simulated.
The subsystem ObstacleMatching compares the
detected obstacles with those already stored in Starling.
These obstacles are then stored in IPFS using the
OrbitDB Javascript library, which connects to the local
IPFS Store via the IPFS Javascript library9. Once
an obstacle data set is stored in IPFS, a unique hash
value of this data set is generated and recorded on the
Ethereum blockchain. The hash value serves as the
immutable digital identity of the obstacle data and can
be verified at any time. The hash value is stored via the
local GethClient with web3.js10, which is a collection of
Javascript libraries that allow you to interact with a local
or remote Ethereum node over an HTTP or IPC socket
connection. VehicleNodes can retrieve mapped
obstacles via the OrbitDB Javascript library. Based
on this information, the autonomous driving systems
can, for example, make decisions such as initiating
a safety brake. The ObstacleVerification
subsystem is implemented by a smart contract running
on Ethereum, which contains the business logic for
obstacle verification. Once the verification process is

5https://github.com/ethereum/go-ethereum
6https://github.com/paritytech/

parity-ethereum
7https://github.com/ethereum/wiki/wiki/

JSON-RPC
8https://nodejs.org/
9https://github.com/ipfs/js-ipfs

10https://github.com/ethereum/web3.js/

Page 4038

completed, the VerificationStore service in the
ObstacleVerification subsystem can be used to
perform verification by call.

4.2.3. AuthorityNode The AuthorityNode
provides authority actors access to the obstacle mapping
data by means of a graphical user interface. It is a
Javascript application that runs in web browsers with
the same libraries that are used for the VehicleNode.
To access the mapped obstacle data, it connects to the
decentralized database over a public interface exposed
by a remote ObstacleRepository, which is
represented by the AccessNode.

4.2.4. Network All subsystems and devices of the
Starling system can be connected using an arbitrary
network. This can be a private network deployed in a
local environment or a public one like the internet.

5. Evaluation

We implemented viable subsystems in order to
evaluate the proposed Starling system.

5.1. Simulation

As the operation of Starling in a real scenario was not
possible, we simulated vehicles that reliably detected
obstacles on a selectable route. For the simulation, we
developed further subsystems (e.g., simulation manager)
that communicate with each other and were integrated
into the Starling system. The simulation manager
has access to all simulated vehicles as well as their
position, speed, and storage data, but is not aware
of the extended environment of the vehicles. The
data provided by the simulation manager represent the
obstacle data that a real vehicle would receive from
its sensors. Hence, the simulation manager can be
considered as the ObstacleDetection subsystem.

The graphical web interface depicted in Figure
4, shows the simulation using a map. Using this
interface, any information such as traffic conditions can
be displayed and the status of a specific vehicle can be
reproduced at a certain point in time.

5.2. Design

For the evaluation, ten equivalent virtual machines
were provisioned, each with 8GB RAM, 4 CPU cores
and 100GB hard disk space running Ubuntu 16.04 LTS
as the operating system. The machines operated in a data
center of a cloud hosting provider and were connected

Figure 4. Starling user interface showing the

simulation manager and the simulated vehicles.

with each other through a local network. The Docker
Engine was installed on all machines, enabling them
to be combined into a cluster using Docker’s swarm
mode. By running the simulation, the performance and
scalability of combining the Ethereum blockchain and
the decentralized, peer-to-peer data storage IPFS will
be quantitatively evaluated for the use of coordinated
obstacle mapping. Based on this data, it is verified
whether the requirements are fulfilled and if these
technologies are ready to be used for the purpose of
coordinated obstacle mapping.

5.3. Results

We have performed three simulation runs with
different objectives. In the first simulation run with
six vehicles, the verification process – using the hash
values stored in the blockchain – was disabled when
matching the detected obstacle with the already mapped
ones. The detected obstacles could be matched to the
obstacles returned by a query on OrbitDB. In addition,
towards the end of the simulation, when all six vehicles
were stuck in traffic jams, the exact number of six
obstacles were mapped, with the obstacles detected by
the vehicles always matching the stored ones. Observing
the state of the blockchain using the Ethereum Network
Status interface, an average of 13 transactions per block
are shown, which is approximately 1.6 transactions per
second with an average block time of 8 seconds.

In the second simulation run, we continued with
six vehicles over a 24-hour period to measure the
convergence behavior of the average block time, which
settled at 15.6 seconds, while 98% of the blocks
propagated in under one second. Another relevant time
interval is the average delay that occurs when OrbitDB
replicates data between its distributed nodes. Before

Page 4039

measuring this value, the internal clocks of the nodes
connected to OrbitDB were synchronized with the same
NTP time server, so that the replication delay could be
calculated without deviations due to inaccurate clocks.
Beyond that, the number of nodes involved was limited
to two, so that the actual replication time between these
nodes could be calculated. The simulation was started
and the timestamps at the time of saving on one node
and replication on the other node were extracted. This
data set was used to calculate the difference between
the two timestamps and their mean value, which is 197
milliseconds.

Finally, we tested the system regarding its scalability
in the third simulation run. For this purpose, the
number of vehicle nodes was increased to 20 while the
reaction of the system to this change was observed. It
could be seen that with a growing number of vehicles
the number of Ethereum and OrbitDB transactions
increases. While the vehicles were scattered across
the route to the accident site, the blockchain processed
an average of 26 transactions per block, which is
approximately 1.67 transactions per second with an
average block time of 15.6 seconds. This value increases
to up to 7 transactions per second as more vehicles
get into traffic jams. During this period, however, the
replication time of OrbitDB remained constant at about
200 ms.

6. Discussion

The Starling system is a successful proof of
concept and is capable of performing coordinated
obstacle mapping using Ethereum and IPFS in a
reliable way. However, due to the limiting properties
of the Ethereum virtual machine (e.g., support of
floating point numbers), the matching algorithm had
to be implemented in the vehicle node running in the
distributed database instead in the smart contract. The
results of our evaluation show that the average block
times using the Proof-of-Work consensus mechanism
are higher (approx. 15 seconds) than the needed
near-real time requirement for obstacle mapping (1
second). This means that the obstacles queried from
the distributed database are not validated, which is why
incorrect obstacle data could not be identified. However,
as soon as transactions are added to the blockchain,
obstacle reports can be traced and verified in retrospect.

Concerning data privacy, Ethereum provides
pseudo-anonymity in the form of addresses. However,
once the relation between an address and a vehicle is
uncovered, vehicle data can be associated to the vehicle
owner. Therefore, vehicles need to generate a one-time
address per-trip or per-event while persisting their used

addresses locally. In case a one-time address is needed,
an authorized actor such as the vehicle owner can access
these addresses stored by the vehicle.

Since deleting data from the blockchain is not
possible by design, a further challenge is the increasing
demand and costs for data storage, especially for
resource-limited vehicle nodes. As the majority of
data stored in vehicles will be obsolete in terms of
time or irrelevant based on their position, we propose
introducing so-called light nodes. Light nodes do not
download or verify the entire chain of blocks, instead
they rely on full nodes for sending transactions and
querying obstacle data. However, this could not be
realized in the course of our simulation, because the
still experimental light nodes of Ethereum were unable
to discover any full nodes, and OrbitDB was not yet
capable of this functionality. To tackle this issue
we trade decentralization for storage, which shifts the
control of the network towards the operators of full
nodes. This compromise could be accepted in the
Starling network, as full node operators will be a diverse
group of stakeholders including vehicle manufacturers,
governments, and insurance companies.

While blockchain technology can guarantee that the
obstacle mapping data is not tampered with, it does
not guarantee that the data recorded by the sensors is
accurate. Additional technical controls such as secure
sensor elements with unique private keys to ensure
increased data integrity may be required.

The second component that was evaluated was
the distributed data storage IPFS, which met our
requirements for storing obstacle data, even replicating
in half the time stated in the quality requirements. In the
future, the obstacle matching should be executed by the
blockchain and not by the vehicle, as it is implemented
in the current version of the Starling prototype.

7. Conclusion

In this paper, we successfully designed and
developed the Starling system, which allows vehicles
to map detected obstacles in a coordinated manner by
means of distributed ledger technology. Furthermore,
we implemented a reliable algorithm for matching
detected obstacles with already mapped ones, so that
the validity of the latter can be verified, duplicated
reports prevented, and their traceability ensured. The
use of a distributed ledger for the coordinated mapping
of obstacles in the context of road traffic embodies
a promising technology, especially when considering
the immutability and traceability of the data stored.
Decisions made by autonomous vehicles based on the
sensed surroundings can be comprehended in retrospect.

Page 4040

We addressed the functional and non-functional
requirements described in Section 3.2.: The
requirements of (1) Provide Obstacle Repository,
(2) Avoid Duplication, (3) Detect Faulty Obstacle
Data, (4) Provide Data Access, (5) Provide Authority
Access and (6) Provide Traceability were addressed
by introducing IPFS and our User Interface. (7) Open
Platform, (8) High Availability, and (9) Data Integrity
were archived using a public blockchain protocol based
on proof-of-work (i.e., Ethereum) allowing everyone
to connect to Starling. Starling is distributed among
several nodes fulfilling high availability in a way that
hardly any other ordinary database can. Finally, (10)
Protect Privacy, (11) Low Latency, and (12) High
Throughput could be partially fulfilled.

In order to ensure data privacy in the future, vehicles
need to generate a one-time address while persisting
its used addresses locally. In addition, as Starling
has to deal with several thousand transactions per
second, future work should investigate distributed ledger
solutions focusing on scalability (e.g., Tendermint,
IOTA, and Hedera Hashgraph), second layer solutions
(e.g., Raiden and Lightning Network), and the
use of light nodes for resource-limited vehicle
nodes. Furthermore, it should be investigated how
manufacturers and vehicle owners can monetize their
data to create new revenue streams.

References

[1] N. Lu, N. Cheng, N. Zhang, X. Shen, and
J. W. Mark, “Connected Vehicles: Solutions and
Challenges,” IEEE Internet of Things Journal,
vol. 1, no. 4, pp. 289–299, 2014.

[2] D. A. Rosen, F. J. Mammano, and R. Favout, “An
Electronic Route-Guidance System for Highway
Vehicles,” IEEE Transactions on Vehicular
Technology, vol. 19, no. 1, pp. 143–152, 1970.

[3] H. Hartenstein and K. Laberteaux, VANET:
Vehicular Applications and Inter-Networking
Technologies, vol. 1. John Wiley & Sons, 2009.

[4] H. Onishi, “A Survey: Engineering Challenges to
Implement VANET Security,” IEEE International
Conference on Vehicular Electronics and Safety
(ICVES), pp. 1–6, 2018.

[5] H. Endo, “Obstacle Detection System for Use in
Vehicles,” 1984. US Patent 4,477,184.

[6] K. Storjohann, T. Zielke, H. A. Mallot, and
W. von Seelen, “Visual Obstacle Detection
for Automatically Guided Vehicles,” in IEEE
International Conference on Robotics and
Automation, pp. 761–766 vol.2, 1990.

[7] Y. Asayama, “Obstacle Detecting Device for a
Vehicle,” 1995. US Patent 5,386,285.

[8] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real
Time Obstacle Detection in Stereovision on
non Flat Road Geometry Through ”v-disparity”
Representation,” in Intelligent Vehicle Symposium,
2002. IEEE, vol. 2, pp. 646–651, 2002.

[9] W. Fuzhong, L. Haibo, and Y. Fashan, “Obstacle
Avoiding Strategy of Mobile Robot via
Binocular Stereovision,” in 27th Chinese Control
Conference, pp. 457–461, IEEE, 2008.

[10] J. Han, D. Kim, M. Lee, and M. Sunwoo,
“Enhanced Road Boundary and Obstacle
Detection Using a Downward-Looking LIDAR
Sensor,” IEEE Transactions on Vehicular
Technology, vol. 61, no. 3, pp. 971–985, 2012.

[11] L. C. McNinch, R. A. Soltan, K. R. Muske,
H. Ashrafiuon, and J. C. Peyton Jones,
“Application of a Coordinated Trajectory Planning
and Real-Time Obstacle Avoidance Algorithm,”
in Proceedings of the 2010 American Control
Conference, pp. 3824–3829, 2010.

[12] S. Fujii, A. Fujita, T. Umedu, S. Kaneda,
H. Yamaguchi, T. Higashino, and M. Takai,
“Cooperative Vehicle Positioning via V2V
Communications and Onboard Sensors,” in IEEE
Vehicular Technology Conference (VTC Fall),
pp. 1–5, 2011.

[13] J. Ward, S. Worrall, G. Agamennoni, and E. Nebot,
“The Warrigal Dataset: Multi-Vehicle Trajectories
and V2V Communications,” IEEE Intelligent
Transportation Systems Magazine, vol. 6, no. 3,
pp. 109–117, 2014.

[14] M. C. Ballandies, M. M. Dapp, and E. Pournaras,
“Decrypting Distributed Ledger Design -
Taxonomy, Classification and Blockchain
Community Evaluation,” 2018.

[15] M. Swan, Blockchain: Blueprint for a new
Economy. O’Reilly Media, Inc., 2015.

[16] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic
Cash System,” 2008.

[17] U. Mukhopadhyay, A. Skjellum, O. Hambolu,
J. Oakley, L. Yu, and R. Brooks, “A Brief Survey
of Cryptocurrency Systems,” in 2016 14th Annual
Conference on Privacy, Security and Trust (PST),
pp. 745–752, IEEE, 2016.

[18] F. M. Benčić and I. Podnar Žarko, “Distributed
Ledger Technology: Blockchain Compared
to Directed Acyclic Graph,” in IEEE 38th

Page 4041

International Conference on Distributed
Computing Systems (ICDCS), pp. 1569–1570,
2018.

[19] G. Wood, “Ethereum: A Secure Decentralised
Generalised Transaction Ledger,” Ethereum
Project Yellow Paper, vol. 151, pp. 1–32, 2014.

[20] N. Szabo, “Formalizing and Securing
Relationships on Public Networks,” First Monday,
1997.

[21] M. Alharby and A. van Moorsel, “Blockchain
Based Smart Contracts: A Systematic Mapping
Study,” Computer Science & Information
Technology (CS & IT), 2017.

[22] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch,
L. Bass, C. Pautasso, and P. Rimba, “A Taxonomy
of Blockchain-Based Systems for Architecture
Design,” in IEEE International Conference on
Software Architecture (ICSA), IEEE, 2017.

[23] L. W. Cong, Z. He, and J. Zheng, “Blockchain
Disruption and Smart Contracts,” SSRN Electronic
Journal, 2017.

[24] M. Kõlvart, M. Poola, and A. Rull, “Smart
Contracts,” The Future of Law and eTechnologies,
2016.

[25] J. Benet, “IPFS-Content Addressed, Versioned,
P2P File System,” arXiv, 2014.

[26] S. Rowan, M. Clear, M. Gerla, M. Huggard, and
C. M. Goldrick, “Securing Vehicle to Vehicle
Communications Using Blockchain Through
Visible Light and Acoustic Side-Channels,” arXiv,
2017.

[27] A. Buzachis, A. Celesti, A. Galletta, M. Fazio,
and M. Villari, “A Secure and Dependable
Multi-Agent Autonomous Intersection
Management (MA-AIM) System Leveraging
Blockchain Facilities,” IEEE/ACM International
Conference on Utility and Cloud Computing
Companion, pp. 226–231, 2018.

[28] M. Singh and S. Kim, “Blockchain Based
Intelligent Vehicle Data sharing Framework,”
arXiv.

[29] Rathore, Heena and Samant, Abhay and Jadliwala,
Murtuza and Mohamed, Amr, “TangleCV:
Decentralized Technique for Secure Message
Sharing in Connected Vehicles,” Proceedings of
the ACM Workshop on Automotive Cybersecurity,
pp. 45–48, 2019.

[30] G. S. Ramachandran, X. Ji, P. Navaney,
L. Zheng, M. Martinez, and B. Krishnamachari,

“Micropayments for Trusted Vehicular Services
Using MOTIVE,” Proceedings of the 17th Annual
International Conference on Mobile Systems,
Applications, and Services, pp. 701–702, 2019.

[31] C. Hewlett Packard Enterprise Company, “Hewlett
Packard Enterprise and Continental launch
blockchain-based data monetization platform,”
2019.

[32] Z. Yang, K. Zheng, K. Yang, and V. C. M.
Leung, “A Blockchain-Based Reputation System
for Data Credibility Assessment in Vehicular
Networks,” in IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), pp. 1–5, 2017.

[33] Z. Lu, W. Liu, Q. Wang, G. Qu, and Z. Liu,
“A Privacy-Preserving Trust Model Based on
Blockchain for VANETs,” IEEE Access, vol. 6,
pp. 45655–45664, 2018.

[34] C. Oham, S. S. Kanhere, R. Jurdak, and
S. Jha, “A Blockchain Based Liability Attribution
Framework for Autonomous Vehicles,” arXiv,
2018.

[35] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang,
and E. Hossain, “Enabling Localized Peer-to-Peer
Electricity Trading Among Plug-in Hybrid Electric
Vehicles Using Consortium Blockchains,” IEEE
Transactions on Industrial Informatics, vol. 13,
no. 6, pp. 3154–3164, 2017.

[36] F. Gao, L. Zhu, M. Shen, K. Sharif, Z. Wan, and
K. Ren, “A Blockchain-Based Privacy-Preserving
Payment Mechanism for Vehicle-to-Grid
Networks,” IEEE Network, vol. 32, pp. 184–192,
2018.

[37] Z. Zhou, L. Tan, and G. Xu, “Blockchain and
Edge Computing Based Vehicle-to-Grid Energy
Trading in Energy Internet,” IEEE 2nd Conference
on Energy Internet and Energy System Integration
(EI2), pp. 1–5, 2018.

[38] OrbitDB Development Team, “OrbitDB:
Peer-to-Peer Databases for the Decentralized
Web,” 2019.

[39] M. Shapiro, N. Preguiça, C. Baquero, and
M. Zawirski, “Conflict-Free Replicated Data
Types,” in Symposium on Self-Stabilizing Systems,
pp. 386–400, Springer, 2011.

Page 4042

