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Abstract

Documenting patient medical information in the
electronic medical record is a time-consuming task at
the expense of direct patient care. We propose an
integrated solution to automate the process of medical
reporting. This vision is enabled through the integration
of speech and action recognition technology with
semantic interpretation based on knowledge graphs.
This paper presents our dialogue summarization
pipeline that transforms speech into a medical report
via transcription and formal representation. We
discuss the functional and technical architecture of
our Care2Report system along with an initial system
evaluation with data of real consultation sessions.

1. Introduction

Electronic medical records (EMRs) are designed
to improve communication among providers within
and between healthcare organizations regarding the
collection, use and storage of patient information.
Thereby, the EMR facilitates guideline compliance
and decision support [1]; these tasks have become
increasingly relevant, as medicine has become more
evidence-based and care becomes more standardized for
quality improvement. As a result of these developments,
adequate recording and documentation of findings and
decisions have become more relevant over time.

However, thorough documentation comes
with notable negative side effects such as a
high administrative burden on care providers,
a well-recognized problem in many healthcare

disciplines, e.g., general practice, home care, trauma
surgery, medical specialities [2, 3, 4, 5]. A recent
time-motion study in the United States shows that first
year residents spend 43% of their time interacting with
the EMR [6], at the expense of time for direct patient
care. Further, it is estimated that in the Netherlands
alone, administration tasks in long-term care require
over 100,000 full-time positions, costing over 5 billion
euros per year [7]. In the United States, administrative
tasks are estimated to consume 13.5% of physicians’
time, valued at 15.5 billion dollars [8]. Clearly, a more
efficient way of reporting is required.

The use of speech recognition in medical reporting to
reduce documentation time has been studied extensively.
Most studies focus on dictation for reporting after a
consultation [9], although this is not often used in
practice [10]. Furthermore, initial work has been
performed to record patient care provider dialogues and
automatically extract clinical meaning, e.g., [11, 12].

Our Care2Report (C2R) research program
(www.care2report.eu) aims at automated
medical reporting. The enabler is a novel integration
of state-of-the-art speech and action recognition
technology with knowledge-based summarization of
the care provider-to-patient interaction. The aim is to
automatically generate a consultation report that the
care provider checks before uploading to the EMR.

Our computational approach to summarization
separates linguistic interpretation from sentence
generation. Interpretation encodes the core information
content of the dialogue as a set of semantic triples
following the Resource Description Framework (RDF)
data model [13, 14]. Reporting uses natural language
generation [15] techniques to convert a selected subset
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of triples into natural language text. In the long run,
this two-stage approach allows us to obtain an accurate
representation of the consultation by combining the
information in the dialogue (represented as RDF triples)
with the objects and actions recognized by other system
components (RDF triples, too). Practically, we build
on powerful existing language technology software,
both for triple extraction from text (e.g., [16]) and for
text generation from triples (e.g., [17]). The use of
these rule-based techniques is especially appropriate in
a medical (and hence fault-critical) context because it
maximizes the designer’s control over the summaries
produced, avoiding the opacity that still tends to
characterize most machine learning approaches.

Paper organization. Sec. 2 discusses related work.
Sec. 3 describes the C2R system and its design
principles, while its architecture is presented in Sec. 4.
The recording, interpretation and report generation
stages of the process are discussed in Sec. 5–7. Sec. 8
provides a preliminary evaluation of our prototype. We
draw conclusions and discuss future work in Sec. 9.

2. Related work

We review existing systems that assist medical
reporting. Due to space limitations, we do not present
research on each step of automated medical reporting.

Speech recognition in medical reporting has been
studied for a long time with a focus on dictation for
reporting after a consultation [9]. Despite its potential,
dictation is seldom used [10] as it requires care providers
to adjust their way of working, evoking resistance. As
an alternative, we aim to automate reporting without
affecting the regular working procedures.

Automated medical reporting was attempted in a
project at MIT, aiming to capture patient-care provider
interactions in one modality through text, speech, and
dialogue processing [11]. We go further and integrate
multimodal input, providing more complete, reliable
and unambiguous information about the consultation.
Chiu et al. developed a speech recognition system
for transcribing medical conversations, reaching a word
accuracy of 81% [18]. Most errors are conversational
and unrelated to medical terms; they perform well on
crucial medical utterances (92% precision, 86% recall).
This system was utilized for classification of symptoms
from transcripts of medical conversations, based on a
semi-supervised learning approach [19, 12].

The OR Black Box is a multi-channel data recording
system for prospective analysis of audiovisual and
patient-related data in a real-life operating room
(OR) [20]. This system captures structured and
unstructured data to identify event patterns and team

awareness in the OR [21]. The outputs of the OR Black
Box could be used as a rich input source when applying
automated medical reporting to the surgical domain.

Another related approach is the generation of
textual summaries of temporal clinical data from, e.g.,
physiological signals [22]. Results show that it is
possible to generate effective textual summaries of
complex continuous and discrete temporal clinical data.
These systems are developed for informative purposes;
presenting the data effectively supports clinical decision
making. Decision support is not the envisioned goal of
our work; instead, we focus on accurate reporting of
consultations for administrative purposes.

3. The Care2Report system

We are developing an integrated hardware and
software platform for automated medical reporting.
In this platform a non-intrusive device with camera,
microphone and sensor technology is combined with
state-of-the-art speech and video analysis and advanced
semantic interpretation through knowledge graphs.
Multimodal input is provided: audio, video, and
sensor modalities from medical measuring instruments
(also: healthcare domotics). Speech recognition allows
transformation of medical dialogues to text, action
recognition captures examinations and treatments, and
sensor data provide results of medical measurements.
Background information from medical guidelines and
patient history can be employed for a more accurate
interpretation of the data. Combining and interpreting
all information enables automatic preparation of a
medical report that is checked by the care provider
before uploading to the EMR. Summarizing, our
proposed process consists of three stages (Figure 1):

1. Recording. Preprocessing and transformation of
audio, video and sensor input data from medical
consultations into text using speech and action
recognition technology and a domotics analyzer.

2. Interpretation. Formal representation of
conversations, measurements and treatments
based on multimodal inputs combined with
semantic technology.

3. Report generation. Generation of medical reports
based on medical domain practices, followed by
report completion, checking by the care provider,
and uploading through a generic EMR-interface.

Our main challenge is to integrate state-of-the-art
multimodal recognition technology with knowledge
representation and reasoning into one software platform.
To achieve this, we designed a dialogue summarization
pipeline connecting several linguistic tools to go from
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Figure 1. Functional architecture of the Care2Report system with components based on microservices.

speech via transcript and formal representation to a
medical report. We will discuss design principles in
Sec. 3.1 and then describe the pipeline in Sec. 3.2.

3.1. Design principles

In cooperation with care providers in various
disciplines, we identified design principles for creating
a system with a high level of usability and extensibility
in the context of modern healthcare practice. These are
presented in Table 1 and will be described now. First
and foremost, the system must be simple in use and
non-intrusive. This means it must not interfere with
the current working procedures of care providers (P1).
In principle, the care provider must be able to press a
record button, get an indication per input modality to
check whether recording is enabled (P2), and proceed
with the consultation as usual. Meanwhile, the medical
report is to be generated in real time (P3). Note that this
is not a transcript, but a concise and complete summary
of the consultation (P4). The care provider remains
responsible for the final content of the report. He or
she must be able to edit the report if necessary before
approving to upload it to the EMR (P5). Of course, the
aim is to keep the necessity for adaptation by the care
provider to a minimum. To facilitate this, the system
will include a learning component to learn from personal
procedures and adaptations by care providers (P6).

Further, the system must be widely usable as
a solution for the widely recognized problem of
administrative burden (P7). Therefore it must be
designed to support multiple languages, but also

multiple healthcare disciplines (e.g., general practice,
home care, specialists in hospitals). These disciplines
may hold specific terminology, medical guidelines and
reporting conventions that vary over the disciplines.

Privacy is key for automated medical reporting, and
any solution has to be aligned with the rights and
obligations laid out in the General Data Protection
Regulation (GDPR) [23]. We aim for integrated security
and privacy by architecture that is compliant by design
through a modular architecture (P8). Data recorded
during consultations is not stored longer than necessary
to generate the medical report.

Table 1. Design principles of the C2R system
P1 No interference with current working procedures.
P2 Simple input control of all modalities.
P3 Report generation in real time.
P4 Complete and concise summaries of consultations.
P5 Care provider must check and possibly edit reports.
P6 System learns from corrections by care provider.
P7 Applicable for multiple healthcare disciplines and languages.
P8 Compliant with privacy regulations.

3.2. Dialogue summarization pipeline

For the complete process of automated reporting, we
designed a dialogue summarization pipeline connecting
six components. This pipeline goes from speech to
transcript via formal representation to report text.

1. Transcription of speech. Speech recognition
technology is currently flourishing. Our open
architecture interfaces with an off-the-shelf
package, which is currently handled by Google
Cloud Speech-to-Text service.
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2. Recognition of concepts and relations.
Python-Frog [16] is used for linguistic annotation
of Dutch text to extract concepts and relations
from the textual dialogue. In addition, the tool
FRED [24] is used for relation extraction.

3. Storing and manipulating triples. As will be
discussed in Sec. 6.2, semantic triples (〈subject,
predicate, object〉) are extracted from the free text
to populate the knowledge graph [14]. Triples are
stored and managed with Stardog [25].

4. Building ontologies. Protégé [26] facilitates
ontology development as the starting point for
the knowledge graph that represents the medical
consultation. Note that these are prebuilt
ontologies as input to the system, thus not as a
sequential step in the pipeline (see Sec. 6.2).

5. Populating ontologies. The ontology is populated
with the extracted triples to form the desired
knowledge graph. We are developing an
(rule-based) algorithm to match triples to the
ontology, as will be discussed in Sec. 6.2.

6. Generating natural language text. From the
knowledge graph, report text is generated by
means of sentence plans in a natural language
generation component of our system based on
the NaturalOWL system [17]. This component is
described in Sec. 7.

Most components rely on off-the-shelf technology,
either used as-is or with our extensions. The pipeline
is work-in-progress and some changes, especially
technological, may be applied in future research.

4. System architecture

Modularity and openness are the key architectural
dimensions for the C2R platform, both from a technical
perspective as well as from the medical application
perspective. We aim at a robust, plug-and-play
architecture that is able to deal with the interfacing
intricacies of the libraries of medical ontologies
and guidelines. In the following, we provide two
complementary views on our architecture. The
functional architecture structures the individual features
in a modular fashion according to the functional
usage. The technical architecture is meant for
the technological structures, formats, applications,
interactions (networking), and data storage.

4.1. Functional architecture

The functional components of the C2R system are
based on a microservice architecture [27], represented

in Figure 1. Splitting large components (e.g., audio,
video, and domotics analyzer) into smaller ones solves
interdependency complications while maintaining a
loosely coupled system. Each functional component
has a predefined input and output set, which allows for
simple configurability and future extensibility.

The recording stage concerns the input setting and
control of the modalities with subsequent preprocessing
for error and noise correction. The interpretation stage
transforms speech to a textual dialogue, recognizes
medical objects from video, and transforms sensor
signals to measurement data. The Action Recognition
Analyzer obtains words that describe medical actions
in order to execute their identification in the video
stream. The Analog Measurement Evaluator and the
Measurement Aggregator combine the data from the
modalities in order to determine the execution of a
medical treatment and the determinaton of a health
status. For example, the doctor measures blood pressure
and says “Your blood pressure is very good.” without
mentioning the actual blood pressure values of 120 over
80. The latter are automatically transferred into the
system. All this information is combined through triple
extraction by the Consultation Interpreter and ontology
population. During report generation, the consultation
knowledge is enriched by EMR patient history data,
and the consultation trigger from the patient planning.
The medical guideline enables to populate the ontology
by matching medical guideline concepts to consultation
data (see Sec. 6.2). The Information Classifier selects
relevant triples for the report based on the conventions
of the medical domain available in a library. The
Convention Sentence Composer generates the sentences
for the report, which can be improved by the Personal
Experience Learner.

More details on the feature realization of the
architecture are described in Sec. 5-7. Figure 1
shows the envisioned architecture and that not all
microanalyzers are developed yet. Interpretation and
report generation are implemented for a selected domain
(ear infections, see Sec. 6.2). In future versions
of the prototype, we will implement advanced action
recognition, such as the identification of emotions
from facial expressions (video) and intonation of voice
(audio), utilization of patient history information and
medical guidelines, and a learning component.

4.2. Technical architecture

The technical architecture of the C2R system
contains a collection of linguistic software components
(see Figure 2). The Web-app Client interacts with
the Server Controller at the Server Cluster, where the
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Figure 2. Technical architecture of the Care2Report system.

Microanalyzer Controller controls all analysis processes
and ensures that all execution constraints are satisfied.
Naturally, the Client manages the audio and video
interface. The Domotics section supports multiple
medical measurement sensors. We have chosen the
MySignals kit [28] for this C2R implementation (see
Sec. 5). The report generation operates via Windows
Forms for portability to EMRs on Windows, Linux and
MacOS platforms. Patient data is temporally stored
locally on the client, which enables that reporting
sessions can always be read back.

The Server Controller manages connectivity with the
Client and receives audio, video and domotics data.
These initial data are put on the consultation timeline
(see Sec. 6.1) and the Microanalyzer Controller invokes
the needed microanalyzer for further processing.
Microanalyzers are then triggered on the basis of when
the input and output are needed; these dependencies are
shown in Figure 2 by blue arrows.

The audio data follow the path through the
preprocessing. After transcription by the Speech to Text
Analyzer, linguistic open source software components
are utilized for annotated triple extraction by the
Triple Extraction Analyzer. The video data, after
preprocessing, are analyzed by the Action Recognizer
based on transfer learning applied to a convolutional
neural network (CNN). The audio and video streams
join at the Selection and Triple Matching Analyzer,
which is based on language independent matching
of ontology concepts. By selecting the appropriate
language lexicon the Report Generator can produce the
sentences in either Dutch or English (see Sec. 7).

Domotics data is fed into the Domotics to Triples
Analyzer to be put into the Selection and Triple

Matching Analyzer, where it is immediately selected
(because of the objectivity of the data) to be put in
designated data sections of the report, and possibly
as support data in the report sentences. The Report
Generator analyzer then finalizes the report, which the
Server Controller sends back to the Client.

5. The recording stage

In the recording stage, the medical consultation is
recorded in multiple modalities: audio, video, and
sensor modalities. The aim is to develop an integrated
device for high-quality multimodal recognition, but the
architecture will be designed such that it is independent
of input technology. Input devices are monitored
by the audio-video-sensor input controller (AVS Input
Controller) for modality control and quality check.

Off-the-shelf software is used for speech and
action recognition; although imperfect, this was the
best trade-off for a first prototype. Preprocessing
arrangements will be studied to enhance the recognition,
e.g., by optimizing speech rate and silence length [29].

In the current prototype, medical sensor input is
implemented via the MySignals Hardware kit, a shield
(expansion board) for the Arduino platform [28]. Using
this kit allows the development of a proof-of-concept
with medical instruments without concerns about
specific rules and protocols that would rise with medical
devices that are currently used in practice.

6. The interpretation stage

The observational signals from the multimodal input
need to be transformed into meaningful information.
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Utilizing multimodal input enables enhanced event
recognition in one modality by using information from
another modality. This is realized by a data structure in
the form of a timeline, a key artifact in our approach
(Sec. 6.1). To interpret the raw data recorded in a
consultation, we map it to a knowledge graph to enhance
semantic reasoning and querying [13]. As mentioned,
RDF triples are extracted and mapped to a prebuilt
ontology. The task of extracting information and storing
it as part of an ontology is best described as ‘ontology
population’ [30]. Our approach to formal knowledge
representation is described in more detail in Sec. 6.2.

6.1. Medical consultation timeline

To integrate the information from the multimodal
sources, a so-called medical consultation timeline
is generated to log a medical consultation (e.g.
measurements, treatments, diagnosis). This is illustrated
in Figure 3. The situations that stem from the
occurrence of events are stored along with their time
range, enabling enhanced event recognition utilizing
multimodal inputs. The integration of knowledge will
lead to the complete modeled consultation knowledge,
from which a report is generated based on reporting
conventions in the specific medical domain. Figure 3
illustrates the SOEP convention (often used by general
practitioners (GPs) to record medical input): Subjective,
Objective, Evaluation and Plan (also indicated as SOAP:
Subjective, Objective, Assessment and Plan) [31].

Word
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More Words

More Sentences

Audio Raw Data
Video Raw Data
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Object to look for:
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Figure 3. Medical consultation timeline (to be

viewed from bottom to top).

6.2. The patient medical graph

In our previous work, we introduced the Patient
Medical Graph (PMG) as a formal representation of
medical consultations [32]. Figure 4 presents the
reference graph that is the starting point for the PMG .
This knowledge graph represents human anatomical
entities (black), signs and symptoms (blue), medical

observations (green), diagnoses (red) and treatment
plans (orange). The human anatomy is the kernel
structure for the knowledge graph, built based on
existing ontologies such as the Foundational Model
of Anatomy [33]. Signs and symptoms associated
with specific anatomical entities follow from medical
guidelines. Interpretation of observations during a
consultation assigns values and other characteristics to
these signs and symptoms (e.g., presence, duration).
Diagnosis and treatment plan are determined by the
care provider and also follow from interpretation of the
data that is recorded during the consultation. Note that
the PMG serves as an internal representation of the
consultation knowledge; we do not intend to build an
ontology containing complete medical knowledge.
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Figure 4. Reference graph for the PMG.

We are currently building an ontology comprising
the human anatomy and medical signs and symptoms.
This is completed for a selected domain: medical
problems related to the ear. Starting with a small domain
provides the opportunity to study and test our methods
by specification of the ontology and it enhances data
interpretation due to specific background knowledge. To
populate this ontology with the observations, diagnosis
and treatment plans, interpretation of the consultation
is required. As mentioned, semantic triples (〈subject,
predicate, object〉) are extracted from the textual
dialogue. Grammatical annotation of dialogue sentences
is used to extract concepts and relations for triple
creation. Triples are then matched to the ontology by
the Consultation Knowledge Enricher (Figure 1).

Matching arbitrary triples to an ontology is generally
not an easy task, however given the currently
limited scope of the ontology, a breadth-first-search
(BFS) based algorithm has been developed, shown in
Algorithm 1. The ontology contains distinct classes
of entities, for example anatomy and symptom, which
always relate in the same way (predicate p would be
“hasSymptom” in this case). The algorithm takes a
set of unmatched triples T (bare triples without URIs;
words or word groups extracted from natural language)
and creates matched triples based on a set of subjects
S, a fixed predicate p and a set of objects O. Both
subjects and objects contain tuples consisting of an
entity URI and a set of natural language nouns, the
latter of which is used to match unmatched entities to
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the correct URI. In order to do this, T is regarded as
an undirected graph where each triple forms an edge
between subject and object. Each BFS search starts at
an object entity and attempts to find a connection with
a subject entity. During this search, only edges with
predicates in V are used to prevent irrelevant relations
from being considered. Once a pair is found, a triple
with predicate p is added to the output set T ′ and the
search is ended. A drawback of this method, however,
is that if multiple subjects relate to the same object,
only one of these will be found. The search could
be continued by replacing the break on line 15 with
a continue, but this increases the risk of finding
irrelevant pairs. This may be mitigated by limiting the
depth of the search, but this has not been studied yet.

Algorithm 1: BFS Triple Matching
input : T = set of input triples (sub, pred, obj)

S = set of possible subjects, which are tuples of the form (u,N)
where u is the uri and N a set of natural language nouns

p = output triple predicate uri
O = set of possible objects, same tuple format as for S
V = set of allowed search predicates

output: A new set of triples T ′

1 T ′ ← ∅;
2 for (obu, obN) ∈ O do // Search from each object
3 visited← ∅;
4 queue← makeQueue(obN ); // New queue with initial

content
5 while not empty(queue) do
6 ent← dequeue(queue);
7 if ent ∈ visited then // Do not visit entity twice
8 continue

9 add ent to visited;
10 found← false;
11 for (sbu, sbN) ∈ S do // Check if entity is subject
12 if ent ∈ sbN then
13 add triple (sbu, p, obu) to T ′; // Triple found
14 found← true;
15 break

16 if found then // Do not explore further
17 break

18 for (sub, pred, obj) ∈ T do // Find connected
entities

19 if not pred ∈ V then // Check allowed relations
20 continue

21 if ent = sub then
22 enqueue(queue, obj);
23 else if ent = obj then
24 enqueue(queue, sub);

6.3. Structure of medical consultations

The interpretation of unconstrained dialogue text
can be problematic, but fortunately detailed knowledge
about the context of the utterances is available. Medical
consultations follow a general structure: opening,
history taking, physical examination, evaluation,
treatment recommendations and closing [34]. During
history taking and physical examination the presence of
signs and symptoms is determined, which are evaluated
to determine a diagnosis and treatment plan. To support
this process, medical guidelines are designed that

improve the structure of care [35]. These guidelines
provide valuable information that can be utilized in the
C2R system to enhance interpretation. The structured,
computer-interpretable model of the relevant medical
guideline is retrieved and the text can be interpreted
in the context of the appropriate segment of this
guideline [36]. This helps to resolve ambiguity, detect
missing values, and filter noisy input.

Selecting information In generating medical reports,
it is crucial to identify which information from the
consultation is relevant to report. To gain some initial
insights in this reporting relevance, seven transcripts of
video recordings from medical consultations concerning
otitis externa and otitis media acuta (external and middle
ear infection) are analyzed. These recordings are
part of a study by Nivel (Netherlands institute for
health services research) and Radboudumc to improve
GP communication [37, 38]. The transcripts were
presented to a GP, who manually wrote a report of
each consultation as it would be written for the EMR,
following the SOEP convention (Sec. 6.1).

Each transcript is compared to both the
corresponding medical guideline and the SOEP
report. The transcripts are split in utterances and each
utterance is classified twice: in a guideline category and
a reporting category. We define an utterance as a speech
segment to which precisely one classification category
can be assigned. This segment may vary in length from
a single word to a lengthy sentence. A sentence is
considered one segment if it conveys only one thought
or relates to one category of interest. The guideline
categories are presented in Table 2. The reporting
categories are Subjective, Objective, Evaluation,
and Plan. An utterance is classified in a reporting
category if it contains information that contributes to the
information that is (manually) reported in that category;
otherwise it is classified as ‘Not reported’.

Table 2. Guideline classification categories.
Diagnosis Policy
- history taking - counseling
- physical examination - advice
- evaluation - non-pharmacological treatment

- pharmacological treatment
- schedule follow-up
- referral

Note. If an utterance does not belong to any category, it is classified as ‘Other’.

Based on these categories, we analyzed the course
of medical consultations in relation to the medical
guideline and report (see Figure 5 for an illustrative
example). For brevity, we provide a general description
of our findings. In general, there is a one-to-one
mapping from the guideline categories to the reporting
categories, where history takes maps to Subjective,
physical examination to Objective, evaluation to
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Evaluation, and all subcategories of policy in Table 2
to Plan. Therefore, the guidelines can support
both interpretation and automated classification of
information in one of the SOEP categories. However,
not every utterance that is classified in a reporting
category also has a guideline classification. This
mainly concerns parts of the history taking that are
not explicitly stated in the guideline but are reported
in the Subjective category (e.g., discussion of unrelated
symptoms, effects of previous treatment plans). Further,
if the medical professional gives counseling and advice,
this is reported in the Plan category as ‘Counseling and
advice’ without further substantive information. This
implies that in the process of automated reporting, it is
only required to recognize the occurrence of counseling
and advice and not the content of it.

Figure 5. Example of classification of utterances

during a medical consultation.

For each consultation, we calculated the proportion
of content that included information to be included in the
report, see Table 3. Around 60% to 85% of the dialogue
does not contain information that requires reporting, and
this percentage is higher for longer consultations. This
part of the dialogue may nevertheless contain crucial
information on the outcome of the consultation, e.g.,
in personalized care. Although discussion of feelings,
relationship building, patient participation and shared
decision making are not necessarily reported in the
EMR, these factors are important to align the provided
care with personal needs and possibilities.

In future work, we will study methods to filter out
relevant information based on a.o. knowledge from
the structure of medical consultations discussed above.

Table 3. Proportion of the medical consultation that

contains information for the reporting categories.
Length S O E P Not rep.

1 4478 8.8% 2.0% 0.8% 15.8% 72.3%
2 2324 13.6% 6.3% 5.9% 15.7% 58.5%
3 4932 10.9% 1.5% 0.0% 2.1% 85.5%
4 3344 20.1% 6.5% 1.4% 11.4% 59.9%
5 5847 7.4% 2.5% 1.8% 12.8% 75.4%
6 4500 7.7% 1.5% 4.3% 5.5% 81.0%
7 7449 8.2% 2.7% 0.0% 6.1% 83.0%

avg. 4696 11.0% 3.3% 2.0% 9.9% 73.7%
Note. Length is indicated in number of characters. Proportions are calculated
as the summed length of the utterances classified in each category divided
by the total length of the transcript.

Findings will enable efficiency gains of the algorithm
that is used for the ontology population.

7. The report generation stage

In the report generation stage, natural language
report text is composed. Natural language generation
is a fast-growing area of research and an emerging
technology in many domains, including healthcare [39,
15, 22]. The report generation stage in the C2R system
is based on the open source NaturalOWL software [17].
NaturalOWL is developed to generate fluent textual
descriptions of individuals or classes in an OWL
ontology. For this end, the ontology must be annotated
with linguistic resources: natural language names and
sentence plans. Natural language names describe the
representation of OWL individuals, i.e., subjects and
objects. Sentence plans describe word orders to create
a sentence from a single fact (triple).

The inputs in the processing stages are the ontology,
its linguistic resources, and the individual to describe.
First NaturalOWL determines which facts in the
ontology are relevant (Content Selection) and then
it orders these facts (Text Planning). Next, each
fact is converted into a short standalone sentence
(Lexicalisation), where some of these sentences are
aggregated into longer sentences (Aggregation). The
remaining sentences are connected by replacing some
of the nouns in the later sentences by references to their
mention in the earlier sentences (Referring Expression
Generation). Finally, NaturalOWL converts its internal
representation of the sentences to text and adds
punctuation and capitalization (Surface Realization).

Extending NaturalOWL to support Dutch medical
report text generation required the following changes:
adding static Dutch resources (articles, pronouns,
prepositions, etc.); adding internal representations for
dynamic Dutch resources (nouns, adjectives, verbs);
extending the Surface Realization for Dutch, e.g., if an
adjective is preceded by an indefinite article in Dutch,
always use the base form instead of the inflected form.
In addition to these linguistic changes, the structure of
the code has been refactored to allow the future addition
of new languages.

8. Preliminary system evaluation

We are building a large corpus of recordings
of simulated and real medical consultations.
Corresponding reports will be written by medical
professionals and constitute our gold standard. These
can be split into a training set and a test set, enabling
training and evaluation of the C2R system using text
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comparison metrics such as BLEU (bilingual evaluation
understudy) [40]. Also, we plan to evaluate, based on
human judgments, the correctness, completeness, and
fluency of the generated reports.

We present some preliminary reflections on the
performance of the system, although a detailed
evaluation is left to future work. As input for this early
evaluation, we used 8 (flawless) transcripts of medical
consultations regarding ear problems. We did not use
audio files due to the unavailability of high-quality
recordings from our medical partners. Test data included
transcripts of the real consultations of Sec. 6.3 and
of simulated consultations. An example result from
processing a simulated consultation transcript is shown
in Figure 6. It shows the feasibility of classifying the
generated sentences according to the SOEP categories.

Figure 6. Example of a report generated by the C2R

prototype based on a consultation transcript.

Considering the difficulty of the task, the generated
reports showed promising results. While 2 transcripts
were summarized correctly (i.e., containing all and
only relevant facts from the input transcript), other 6
transcripts showed mixed results, for important facts
were missing from the report. The root of this problem
lies in the intrinsic difficulty of triple matching (where
the words of the transcript are matched with concepts in
the ontology). In many cases, medical concepts that are
important for the subdomain at hand, and all the words
that can be used to express these concepts, had to be
added manually; in some cases this also necessitated
adding new sentence plans to the report generator.
We plan to address this by harvesting synonyms from
existing medical ontologies such as SNOMED [41],
avoiding the need to proceed by trial and error.

Moreover, due to the limitations in the state of the art
of natural language interpretation, negative statements
can sometimes appear positive (e.g., “I don’t suffer from
headaches” may accidentally be parsed into a triple that
asserts that the patient does suffer from headaches). In
the future, we aim to address this problem by performing
consistency checks on the triples extracted, trying to
detect triples that are inconsistent with other information
about the patient (e.g., other triples, patient history, etc.)

9. Conclusion and future work

We presented our vision for automated medical
reporting and an overview of the C2R system
that is under development. The stages in the
summarization process are discussed on the basis of the
dialogue summarization pipeline that we designed. In
principle, this pipeline is domain-independent, enabling
implementation in domains other than healthcare, e.g.,
for police reports, customer services.

In future work, we will study methods to extract
information from a medical consultation based on its
structure (Sec. 6.3) and on methods to populate the
PMG with this information (Sec. 6.2). Further, we
will focus on architecting a privacy warranting modular
integration for high-quality multimodal recognition.
Although more research is required to realize fully
automated reporting, our first results indicate that this
ambitious vision is achievable.
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