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Abstract* 
 

We study the geographical patterns of scientific 
collaboration from a large sample of research papers 
and letters written by two authors that appeared in the 
magazine Nature over two sub-periods, before and 
after the popularization of Internet use. We report 
three results: First, the distance distribution of co-
authors is fat-tailed, in agreement with other studies 
that find a gravitational law in collaboration networks. 
Second, in the later period the distance distribution 
dominates the range of commute-distance and beyond 
(>50km), which renders the city the atomic unit for 
statistical testing. Last, strong geographical clustering 
remains a major generative factor in this network. 
Assuming the universality of this law, we estimate the 
gravitational constant from the pull between scientists 
in the network. We find that this constant has 
decreased two-fold over the last three decades while 
the other coefficients remain stable. This may indicate 
that the gravitational constant absorbs changes in the 
environment that render distances easier to cross, 
namely a “lighter world” 
 
1. Introduction  
 

Collaboration networks have been the focus of 
many studies in recent years [1-7].   Without exception, 
these studies have found that geography plays an 
important role in science, where the collaboration 
strength follows a gravitational law. Gravitational laws 
apply also to other complex networks such as social 
networks [13], mail exchanges [14], mobile phone 
communication [15,16], and blogs [15]. For example: 
in a study of inter-city telecommunication [8] the 
strength of communication was found to be inversely 
related to the square of the distance between the cities 

                                                
* Present addresses: GK - Lawrence Berkeley National Laboratory. 
EM - Ben-Gurion University of the Negev 

and positively related to the product of their population 
masses. 

 
The prominent elements that gradually transformed 

our communication patterns include the invention of 
Internet-based communication tools such as Email, 
Social Networks, the reduction in airfare, and the 
collapse of the iron curtain. 

 
Indeed, the Internet era has brought dramatic 

changes into everyday life, breaking territorial 
boundaries and enabling fast, cheap and reliable 
communication from afar, while allowing large-scale 
data flow between distant individuals at a single mouse 
click. the globalization of markets and the blossoming 
of cybermediaries and e-commerce attest to this 
“global village” transformative impact of the Internet. 

 
Also, the Internet has profoundly changed many 

attributes of the scientific production process. 
Background literature is much easier to trace and 
retrieve, journal turnaround is quicker, and papers can 
gain immediate worldwide reach by becoming 
available online. The main questions in this paper are 
therefore - Has the nowadays casual means of 
communication transformed the way which scientists 
form collaborations? How about at long geographical 
distances? Last, what can be said about the quantitative 
and qualitative nature of this change? 

 
In this paper we capitalize on the fact that the 

emergence of the Internet - an important means of 
long-distance communication - serves as a before-after 
experiment to study the responsiveness of 
collaboration networks to changes in 
communication patterns.  Our analysis allows us to 
investigate whether or not the scientific community 
was brought closer together over the two periods 
before and after the popularization of Internet use. The 
results of this estimation lend strong support to the 
existence of a gravitational law in the network, 
wherein the strength of a link is proportional to the 
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product of the masses of its connecting nodes and 
inversely proportional to the square of the geographical 
distance between them. The gravitational constant of 
the collaboration network appears two-fold greater in 
the “before” sub-period, meaning it was harder to 
bridge distances back then. This we may attribute to 
changes in underlying communication media that were 
apparently brought over by the Internet and other 
concurrent changes in communication costs, such as 
the drop in airfare.  

As a testing ground, we chose data on full papers 
and letters which appeared in Nature and were co-
authored by two collaborators. We examined two sub-
periods: 1984-1994 and 1995-2015. These correspond 
to the pre-Internet and the post-Internet breakthrough, 
respectively. The years 1993-1995, when e-commerce 
giants Amazon and eBay opened for business and the 
NCSA released its first version of Mosaic, later to be 
repurposed as Microsoft Internet Explorer, lend 
themselves as natural candidates for the cutoff year. 
After which the use of the Internet became global. We 
also tried different cutoff years in the range 1992-1999 
to find that they did not profoundly affect the results 
(see Methods). We focus on papers that were written 
by two authors, mainly in order to avoid excessive 
noise emanating from unknown contribution weights 
and distance measures connecting more than two 
authors. The dataset we use is made of 3,718 letters 
and full research articles written in the journal Nature, 
which identify a total of 7,256 unique author affiliation 
addresses. Our choice to rely on papers appearing 
in Nature is grounded in the following two 
considerations: First, Nature is a general interest 
journal, which deems unnecessary the need to account 
for heterogeneity in publication standards and culture 
between different academic disciplines. Second, 
considered to be amongst the most prestigious 
academic journals, Nature adheres to high and 
meticulous peer-review and publication standards. 
Moreover, a publication in this journal may well 
translate into immediate impact on academic 
promotion. As such, articles in Nature are often the 
result of prolonged endeavors and long-standing 
collaboration that require efficient communication. On 
balance, therefore, the focus on Nature helps us avoid 
excessive noise and is consistent with the cost-
effectiveness principle. 

 
The rest of the paper is organized as follows: We 

present the results of this analysis in the Results 
section. Next, we discuss the findings in the Discussion 
section, and lay out the conclusions. Last, we detail our 
workflow in the Methods section. 

 2. Results  
Table 7 presents a summary of the network analysis 

performed on the full sample of 25k papers written by 
any number of coauthors, and the down-sample to two 
coauthors. It is notable that the 2-author dataset 
represent a network below the percolation threshold. 
This means that the giant component does not compose 
roughly >90% of the network, namely that it is not 
“giant.” We focus on network analysis of the full 
dataset and later discuss geographical implications on 
the 2-author subset for the reasons that were outlined 
above. Over the two periods, the number of papers has 
risen by 25%, and respectively the number of distinct 
authors (nodes) grew. Every co-authorship is a fully-
connected clique of authors, and due to the nature of 
this design the number of links grew squared. 
Assortativity decreased with time and so did the 
diameter and average path length. This means that the 
network is easier to cross. Now, importantly, the 
clustering coefficient became smaller in contrast with 
the geographical clustering which became more 
appreciable. However, we note that this is an artifact of 
the growing teams in the sense that we are likely to 
find more authors connecting with high between-ness 
among 400 coauthors than among two.  

Figure. 1. Probability density functions for the two 
time frames on a double-logarithmic scale. The red 
line is a power-law reference fit.  
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Moving forward, Table 8 presents summary 
statistics on our downsampled papers and letters data. 
The number of paired collaborations is almost two-fold 
greater in the first period, with the overall number of 
papers being close to equal across the two periods of 
interest. This suggests that the number of papers with 
more than two co-authors is almost two-fold greater in 
the second period (in the full sample, the modal value 
of the number of authors is 2 in the first period and 3 in 
the second). The change in team size is also visible in 
the network analysis above. We speculate that this shift 
is motivated by the growing demand to facilitate 
teamwork and multi-campus projects that encourage 
global spread. Clearly there are competing 
explanations. One alternative is the increased 
competition in science and the resulting rise in tenure 
and promotion criteria, which forced academics into 
diversifying by collaboration. Another alternative is the 
“knowledge explosion” which has been a driving force 
for specialization, again fostering collaboration. The 
evolving trend in recent decades towards multiple 
authorship across many scientific disciplines is in fact 
well-documented in the literature. [9-12] 

 
 

Figure 2. The slope of the distance-probability 
distribution (in absolute value) as a function of the 
year at the center of the 10-year window. 

 
Throughout our analysis we focus on paired 

collaborations only. This choice is motivated primarily 
by the absence of a natural definition of distance 
between more than two collaborators. Further, it 
enables us to focus on simple, high impact projects 
rather than complex problems that require large 
consortia of resources. A similar approach was taken 
by Chandra et al. [3] 

 
 
Figures 1 and 2 show the probability density of 

forming a paired collaboration with distance. The 
probability distributions exhibit similar decay across 
five orders of magnitude, with similar slopes. 

While the slope is slightly smaller in the “after” 
period - the difference in slopes is not statistically 
significant.  

 
To test the choice of the cutoff year for before vs. 

after we repeat the analysis in a 10-year moving 
window. Figure 2 displays the slope as a function of 
the year at the center of the 10-year window. It is 
evident that the slope does decrease systematically 
after 1995, indicating that the second period opened 
opportunity to form collaborations with less 
dependence on distance. Namely, that the reduction in 
communication costs driven mainly by the 
globalization of the Internet has been successful in 
spanning the geographical reach of scientific 
collaboration. 

 
To gain further insight, Figure 3 plots the 

cumulative distance distributions of the two periods 
back to back. A first-order stochastic dominance of the 
first period is evident in the following sense: for any 
given distance !"  , the probability of co-authorship at 
distances ! ≥ !#   is at least as high in the “after” period 
as it is in the “before” period. In other words, if  
! " , $(")   denote the “before” and “after” CDFs 
respectively, then !(#) ≥ & #    for every ! ≥ 0  .  

 
 

Figure 3. Cumulative distance distributions in 
the two time-frames 

 
A more discerning interpretation of this figure is 

that the range 1-10km in the “before” period exhibits 
increased probability to find an occurrence of a pair of 
authors, whereas the range 10-50km does this for the 
“after” period. These distances are familiar as a range 
that spans the city’s boundary and up to the commute 
distance, which haven’t changed in the last 5 decades 
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[20]. For distances greater than 50km, there is greater 
chance to form pair collaborations in the “after” period. 

 
Thus, we could sketch the following: For any given 

distance, there is a difference between the earlier and 
the later time frames. For the super-distant pairs we 
notice only a minute change in their probability to 
occur across the two periods. In the small distances, 
i.e., intra-organization distances and up to the commute 
distance we do notice a shift in the probabilities to 
form paired collaborations that favors the earlier 
period. The most obvious departure between the curves 
makes a set of pairs that are 10km - 200km apart. This 
span of distances could be considered the commute 
distance and going up to the boundary of a region or a 
county [21,22]. 

 
The law of gravity 

After establishing the existence of a gravitational 
law in our geographically-layered collaboration 
network, we wish to estimate how well does our data 
conform with this gravitational law. We linearize 
Newton’s law of universal gravitation so we first write 
it log-transformed  
 
(1)     log(F) = log(G) + log(Mi) + log(Mj) – 2log(r) 
 
then, we perform a multivariate regression analysis to 
recover the gravitational constant G and estimate the 
correspondence of the other parameters, namely Mi, Mj 
and r. 
 

The masses Mi and Mj are the number of people 
holding faculty position in the respective interacting 
institutes i and j. The distance r is like in previous 
analyses of this paper. The regression analysis 
aggregates masses and distances by city location. 

The equation we estimate is 
 

(2)    log(Fij) =α+β1log(Mi) +β2log(Mj) + 2γlog(r) 
 
and, in line with the theory, we hypothesize that β1= 
β2 and γ<0. 
 

The regression results appear in Table 1. The 
negative impact of distance is well captured and so is 
the symmetrical influence of the main effects Mi, Mj 
and r. The proportion constant is estimated as 
exp(0.72) = 2 and each main effect contributes to a 
[((101/100)0.05) -1] * 100 = 0.05 percent change in the 
force. 
 

Continuing along this line of investigation we want 
to estimate whether there was a significant change in 
the equation’s coefficients over time. In Table 2 we 

visualize side by side, two models that can be 
described by (2), each carries data from another time 
frame: “before” (<1995) and “after” (>=1995). The 
models give similar estimates to the main effects, 
however the intercept, or the “gravitational constant” is 
halved over time. It is noteworthy that the effects not 
described by the formula are essentially encapsulated 
into this constant. We could again imagine what is 
factored in: transportation and communication costs. 
Thus, before 1995 the geographical reach of 
collaboration was limited because it was harder to 
bridge distances, both long and short. To finalize, we 
estimated the sensitivity of G to sub-periods outside of 
the internet era frame. The result indicates that G does 
not change over periods preceding the mid-‘90s. Thus, 
these results make G likely to incorporate the 
environmental effects of the ‘90s as discussed above. 
(See Table 9 and supporting text in Methods) 

 
 
Table 1: The gravitational law (1) estimated from our 
data using linear models of the main effects Mi, Mj (the 
number of faculty on the flanks of a collaboration link), 
and the geographical distance across the link, r. 

  log(Force) 

Coefficient Estimates Conf. Int (95%) P-Val 

Intercept 0.72 0.52 – 0.92 <0.001 

log (1+Mi) 0.05 0.02 – 0.07 0.001 

log (1+Mj) 0.05 0.03 – 0.08 <0.001 

2 log(r) -0.06 -0.06 – -0.05 <0.001 

Observations 538 

R2 / adjusted R2 0.419 / 0.416 
 

 
3. Discussion  

 
A growing body of literature in complex networks 

has shown that social ties, be it in social Networks [13] 
mail exchanges [14] mobile phone communication 
[15,16] and blogs [15] follow a gravitational law. 
Namely, that the probability for a social tie between 
agents decays with a power of their distance. Focusing 
on scientific collaboration, Hoekman et al. [2] used 
data on publications between 313 regions in 33 
European countries for the period 2000–2007 and 
found that the bias to collaborate with geographically 
close partners did not decrease, while the bias towards 
collaboration across territorial borders did decrease 
over that period. From the same time, Kumar et al. find 
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a similar pattern for scientific collaboration [1]. In this 
setting, our paper contributes to supporting a notable 
change in geographic collaboration as it is the first 

attempt to directly compare between the pre- and post-
Internet eras. 
 

 
 
 
Table 2: Similar to Table 1, two linear models were estimated for two time periods: before 1995 and after. 
The greatest difference between the models is the intercept (0.69 vs. 0.38). This difference is highlighted 

 log(Force) before 1995  log(Force) after 1995 

Coefficient Estimates Conf. Int (95%) P-Val  Estimates Conf. Int (95%) P-Val 

Intercept 0.69 0.45 – 0.93 <0.001  0.38 0.11 – 0.66 0.006 

log (1+Mi) 0.04 0.00 – 0.07 0.029  0.05 0.00 – 0.09 0.042 

log (1+Mj) 0.04 0.01 – 0.07 0.021  0.05 0.01 – 0.09 0.021 

2 log(r) -0.05 -0.06 – -0.04 <0.001  -0.04 -0.05 – -0.03 <0.001 

Observations 397 242 

R2 / adjusted R2 0.345 / 0.340 0.367 / 0.360 
 
 
Several key attributes of the scientific production 

process suggest a strong tendency for geographical 
clustering. Clustering allows scientists to exploit 
spillovers and peer effects, which is in large part what 
motivated the emergence of scientific hubs such as the 
Silicon Valley, the Silicon Fen around Cambridge, 
England, or Tsukuba Science City in Japan. Moreover, 
scientific projects are social endeavors that share 
similar attributes to other, more tangible production 
processes. Hence, they rely on division of labor, entail 
repeating and ongoing interactions between 
collaborators, and require efficient management and 
monitoring. These ingredients are greatly facilitated 
with geographical clustering. Moreover, the ever-
increasing competition for scientific recognition, the 
abundance of scientific fraud, and the rapid expansion 
of many scientific disciplines resulted in increased 
heterogeneity of core capabilities among scientists. 
Thus, issues of asymmetric information and distrust 
began to play role. In fact, the inability to establish 
trust within research teams was found to be among the 
most important factors that seal projects’ fate to failure 
[16] In the Organization Science literature [17-19] it is 
well known that teams and organizations are plagued 
with policing, monitoring, and coordination costs, 
which are the result of the need to control and 
minimize these problems. Geographical proximity is 
therefore helpful in alleviating issues related to 
asymmetric information. 

 

Against this backdrop, we explore a collaboration 
network at the individual level and support it with city-
level analysis. The social, organizational and economic 
forces reviewed above promote geographical 
concentration of scientific collaboration. Next, we fit 
Newton’s gravitational equation (1) onto the 
collaboration network using (2). The collaboration 
network’s nodes, i and j, are aggregated per city, the 
number of professors in a city is a proxy for the node’s 
mass, Mi and Mj, the distance between nodes, r, is the 
geographical distance, and the force, F, is the link 
strength. In this context a comparative estimation of 
two time periods is given: before and after the 
popularization of Internet use. We find that: (i) the 
goodness of fit is relatively high, (ii) the structural 
parameters, which measure the partial elasticity of 
collaboration strength with respect to distance and 
mass, remain stable over time, and (iii) the entire effect 
of the presumed environmental change brought over by 
the emergence of the Internet is bore by the intercept 
term, G. 

 
Moreover, G, which is also the proportion of F over 

MiMj/r2 decreases over time as distances between 
collaborators expand while not affecting the median 
geo-distance between nodes. We argue that this change 
corresponds to reduction in communication costs, 
including airfare, that followed the popularization of 
the Internet. 
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Limitations and points to consider in the future 
In future research, we aim to generalize this study 

by investigating multi-author (>2) collaboration 
patterns, and adding information sets to tie further the 
connection between collaboration and communication 
costs. 

Next, the current design cannot fully capture a 
cause and effect of the internet. Creating a time series 
analysis where the explanatory variable is internet use 
should be the design of choice. That design will 
provide insight in two main realms: determining (a) the 
causal effect of the introduction of the Internet, and (b) 
the cutoff year range. 

Also, as we did not perform direct analysis of 
internet utilization among collaborating scientists, we 
believe that to a first approximation our results provide 
good estimation of this effect. Conducting a 
complementary analysis with proper variables might be 
useful to further support our findings. Last, since G is a 
black box variable it encapsulates many latent effects. 
In a future study we will focus on decomposing this 
coefficient. 
 
4. Methods 
 

Our dataset is made of research articles and letters 
written in English, which appeared in the weekly 
edition of Nature over the period 1984 through 2015, 
enabling a direct comparison between two periods, 
immediately before and after the technological leap we 
collectively term “the Internet”. Out of 3,207 articles 
and 24,121 letters published in this period we cleared 
away misclassification of author counts, missing 
authors’ affiliations and geocoding problems to end up 
with 3,718 2-author titles, 6,626 authors and 2,426 
uniquely identified addresses. The data retrieval 
procedure is summarized in Table 8. In our data, each 
title appears in context of a time span. For this reason, 
we extracted the affiliations of the authors particular to 
each paper, such that over time authors may not have 
accumulated old and redundant affiliation addresses. In 
cases where authors had more than one affiliation 
under a single title, we chose the first one. 

 
Using the publicly available geocoding services of 

Google Maps, Bing, googlePlaces, and opencage we 
determined the geographic coordinates of each specific 
address. During the geocoding process, many queries 
returned no results, primarily for addresses in the 
former Soviet Union, old naming conventions like the 
Free Republic of Germany, and other countries where 
institutions have relocated since the 1990s, which 
preceded the Google era. The overall number of 
undirected links is 1,855,384, across which we 
computed distances on a great circle, using Napier rule. 

Thus, the natural weight for this collaboration network 
is the geodesic distance metric on the sphere. The 
frequency of papers in the 1990’s has decreased 
drastically, while the frequency of letters is on a 
constant decline from 1000 in 1984 to about 700 in 
2015. So, a cut in any year 1992-1999 will have 
generated roughly the same amount of papers and 
letters in the “before” and the “after” groups (Figure 
4). 

 
 
 
 
 
 

 
Figure 4.  The number of Nature papers (top) 
and letters (bottom), including number of pages 
per year. 

 
 
From this set of pairs, we generated distance 

distributions sliced by time periods 1984-1994, the 
“before”, and 1995-2015, the “after” period. The 
probability density and cumulative density 
distributions (CDF) were subsequently retrieved and 
plotted. To test for stochastic dominance of pairs to 
occur across all distances we used Kolmogorov 
Smirnoff test between the two CDF curves.  After 
analyzing the cumulative results, we aggregated the 
distances of pairs per city in the following manner: 
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author number 1 was assigned to the city of his/her 
affiliation. Then, for each city we estimated the mean 
and median distance to any of the second authors that 
collaborate with that city.  

After establishing that the characteristic distance 
was 100km in both periods, with slight preference for 
smaller mean distance in the former period, we 
partitioned the distances between authors to “close” 
and “far”, where “far” was determined as farther than 
the radius of the first author’s city. The area of each 
city in the world was excavated from Wikipedia, and 
each city was modeled as a circle with radius  
! = #!$#/&  . 

 
To test whether any distance between collaborators 

and any of the time periods are dependent we used a 
Chi-square test of independence of these factors. We 
enumerated the pairs that collaborated in Nature who 
originated from any city. The statistical test of 
independence of the factors far/close and before/after 
yields rejection of the null, suggesting a tendency for 
far away pairs to occur more than expected in the later 
period (Table 3). 

 
Last, to analyze the chance of a single city to attract 

collaborations across time we tested the difference 
between second author occurrences of “close” vs. “far” 
in the two time periods using Fisher’s exact test. The 
data from which these results come, appear in the 
supplemental file localities_dist_pairs.xlsx. The shaded 
red and blue cells mark geographical areas that either 
expanded or contracted based on a 10-fold change in 
the mean collaboration distance. 

 
 
Table 3: enumeration of factors, with marginals. 
The blue shading marks a value greater than 
would be expected by chance by 3 standard 
deviations.	χ#  = 15.371, df = 1, p-value = 8.834e-05 

All cities after before Sum 

Far 323 575 898 

Close 818 1999 2817 

Sum 1141 2574 3715 

 
 
Generally, the tendency of a paper to result from a 

collaboration within the same institute is high. More 
often if this is the sole paper that was published from 
that institute, and much greater than the frequency of 
papers written by two authors that are more than 
200km apart. However, when breaking this to “before” 
vs. “after” this pattern changes in the “after” period. 
More examples from the supplemental file of centers 

that will have mixed tendencies, i.e., either expand or 
contract their reach to collaborators are: Davis, 
California, where the distance to collaborators grew 
from 327km (12 papers) to 1625km (8 papers), while 
Heidelberg, Germany, has contracted from 125km (17 
papers) to zero (9 papers). Jerusalem, Israel has grown 
from zero (5 papers) to 2820km (5 papers). London 
grew from 502km (78 papers) to 1945km (30 papers) 
while Cambridge has contracted from 1250km (112 
papers) to 284km (34 papers). New York City shrunk 
from 919km (64 papers) to 226km (40 papers). In 
Zurich the mean distance grew from zero (13 papers) 
to 709km (15 papers). Moscow grew from 560km (13 
papers) to 3616km (4 papers). Overall there were more 
centers harboring an increase in distance in the second 
period. Although less accurate due to its linear nature, 
it still supports our original many-body clustering 
claim (cf. Figure 3). 

 
 
Table 4: regions with the greatest change in 
geographical attraction (measured by the mean 
distance to collaborators) before 1995 and after, 
in the 95% confidence interval. 

Region Odds 
ratio 

 P-val 

Massachusetts 0.894 0.0006 

Moscow 15.242 0.0374 

Ontario 4.201 0.0382 

Pennsylvania 4.790 0.0391 

 
To gain further insight into the role that geography 

plays in the two periods, we ran a Fisher's exact test for 
each AreaName that asks: "in city X what is the chance 
of preserving the paper number ratio ‘before’ over 
‘after’ across distance?" Four areas stand out with 
divergent patterns in the two periods. These regions, 
listed in Table 4, we could fondly term the “evolving 
centers of knowledge”. 

 
The reason to run this test per region (a state in 

USA/Canada or a province in Europe) is for statistical 
power. Fisher’s exact test allows us to consider zeros 
as non-structural in the test design. Still, there is lack 
of power in the test since many regions will have had 
one or no papers at all in one of the periods. Further 
data should be incorporated in order to broaden this 
test. 

 
Then we designed a test for corroborating the 

gravitational law evidenced by other studies. For this 
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we added the quantities Mi and Mj to designate the 
masses in (1). These quantities were adapted from a list 
of degree-granting institutes in the USA 
(https://nces.ed.gov/ipeds/datacenter), excluding 
medical schools. The information is included in the 
supplementary file Data_6-9-2019---868.xls 

 
 
Table 5: summary statistics of the gravitational 
formula (1) components for the years before 1995 

 F Mi Mj r 
Min 1.000 0 0 0.0 
1st Qu. 1.000 499 499 0.0 
Median 1.000 1517 1498 146.6 
Mean 3.557 2207 2102 1004.2 
3rd Qu  2.000 2842 2707 1495.3 
Max 110.000 16483 16483 7766.8 

 
 
We restricted the dataset to collaboration pairs that 

reside in the US. We then aggregated the authors by 
the location of the closest known institute to increase 
the power of our statistical test. Thus, in a pair of 
nodes, Node i is roughly the city location of author i 
and Node j is the city location of author j. The distance, 
r, is the geographical distance between the nodes 
calculated on a great circle as before. The strength of 
each link is the number of collaboration pairs between 
the two nodes. This quantity is placed on the response 
side of the formulation, and termed Force.  
 

A competing theory may claim that the change in 
the intercept is a product of the evolution of the system 
over time, not necessarily related of the logic of the 
suggested cutoff. In order to see whether this is a 
relevant claim we further partitioned the sub-period 
preceding the original cutoff into two: 1984-1989 and 
1990-1995. We expected that the intercepts will be 
comparable and so they were. Table 9 lists the two 
regression models of the gravitational formula 
estimated for these two sub-periods. Although the 
estimators of masses are marginally significant, the 
differences are, overall, minute. 
 

To further support our analysis, we include 
summary statistics of the main effects in the 
gravitational formula. Tables 5 and 6 give comparable 
quantities except the distances, r, that are slightly more 
skewed in the second period. The two periods therefore 
maintain similar prerequisites to the gravitational 
constant, G. 
 

 
Table 6: summary statistics of the gravitational 
formula (1) components for the years after 1995 

 F Mi Mj r 
Min 1.000  0  0  0.00  
1st Qu. 1.000  526  514  0.00  
Median 1.000  1507  1489  96.72  
Mean 2.669  2218  1936  972.67  
3rd Qu. 2.000  2832  2440  1514.95  
Max. 43.000  16483  16483  8162.36  
 

 
Table 7: network stylized facts of the full data from Nature (1984-2015) and the 2-author subsample of 

the same time frames. Blue (orange) highlight marks the lower (higher) value in a before-after pair 

 
any coauthors two coauthors 

Variable Full ≤1995 >1995 Full ≤1995 >1995 
Papers 25187 11106 14081 3717 2575 1142 
Nodes 133300 38866 99773 6626 4624 2163 
Links 2116798 150582 1966303 3717 2575 1142 
Diameter 30 39 28 5 4 3 
Assortativity 0.7174 0.8518 0.7096 0.1891 0.2504 0.2282 
Path length 7.7457 12.1723 7.4116 1.2044 1.1041 1.2206 
Clustering coef. 0.7879 0.8512 0.7921 0 0 0 
Clique number 482 147 482 2 2 2 
Modularity 0.8504 0.9377 0.8580 0.9994 0.9988 0.9995 
Maximal cliques 
count 28706 10770 17696 3613 2490 1129 
Components 6345 4819 3956 3013 2134 1034 
Cliques over papers 0.0191 0.0132 0.0342 0.0005 0.0007 0.0006 
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Table 8: Summary statistics of research papers and 
letters published in Nature between 1984-2015 and 
written by two collaborators 

 Nature.com 
research 
papers 

Nature.com 
letters 

number of papers 321 3397 

1984-1994 219 2217 

1995-2015 102 1179 

2-author addresses 860 8938 

2-author addresses cleaned 
(permanent addresses or 
notes or correspondence 
addresses removed) 

804 8177 

2-author papers’ addresses 
where both authors have valid 
addresses 

642 6794 

number of papers where each 
author has a different address 

79 1039 

number of author pairs with 
different addresses 

158 2078 

same-address pairs 242 2358 

unique addresses (from the 2-
author papers where each 
author has a different 
address) 

155 1901 

mean distance [km]   

1984-1994 1096.7 893.7 

1995-2015 646.6 1063.7 

median distance [km]   

1984-1994 0 0 

1995-2015 0 0 
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Table 9: Similar to Table 2, two linear models were estimated. This time for two pre-internet sub-periods: 
before 1989 and 1990-1994. No appreciable difference between the models, intercept included. 

 log(Force) 1984-1989  log(Force) 1990-1994 

Coefficient Estimates Conf. Int (95%) P-Val  Estimates Conf. Int (95%) P-Val 

Intercept 0.51 0.23 – 0.79 <0.001  0.48 0.21 – 0.75 <0.001 

log (1+Mi) 0.04 0.00 – 0.09 0.033  0.03 -0.01 – 0.07 0.133 

log (1+Mj) 0.03 -0.01 – 0.07 0.119  0.03 -0.01 – 0.09 0.165 

2 log(r) -0.04 -0.05 – -0.03 <0.001  -0.04 -0.05 – -0.03 <0.001 

Observations 261 228 

R2 / adjusted R2 0.303 / 0.295 0.296 / 0.287 
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