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Abstract

Contagion in Online Social Networks (OSN) is
typically measured by the tendency of users to re-post
information or to adopt a new behavior after exposure to
that information/behavior. Most contagion research is
bound by modeling: (i) only local neighbor-to-neighbor
contagion (ii) the spread of viral information. However,
most contagion events are non-viral and can also
occur globally by non-neighbors through for example,
exposure to information by exploratory browsing, or
by content recommendation algorithms. This study is
the first to address the phenomenon of both global
and local contagion of non-viral information in a
quantitative way. Analysis of Twitter networks reveals
the prevailing nature of global contagion, the different
temporal patterns between global and local contagion,
and the ways it varies across topical categories. An
interesting finding shows that users who retweeted due
to global contagion have more Followers than those who
retweeted due to local contagion.

1. Introduction

Exposure to information is often modeled as a local
neighbor-to-neighbor spreading process [1, 2, 3]. For
example, the Following relationships of a Twitter user
(accounts a user chooses to follow) largely determine
the information she is exposed to [4]. Such exposure can
lead to information contagion, e.g. re-posting a message
(retweeting), or adopting the use of a a specific linguistic
pattern or a hashtag [2].

A local exposure in an OSN occurs when a user
reads content posted by a neighbor (e.g. a Twitter user
whom she follows). However, exposure also occurs in
other, global, ways [5], e.g. by exposure to promoted
posts [3], external sources [6, 7] like mainstream media,
exploratory browsing (users who seek and traverse
information) [8], or the use of a recommender systems
[9, 10]. We define this type of exposure as global
exposure which can lead to global contagion.

Contagion is typically modeled through one of two
approaches: structural and non-structural. Structural
models [2, 11, 12], infer the spread of local contagion
by users who expose network neighbors to their posted
content. These models assume that information can
reach users only within the network, but ignore the
spread of information by non-neighbors. Two-step
diffusion models [13, 11] argue that information first
spreads through the media to opinion leaders and then
propagates from node-to-node to a broader population.
Non-structural models [14, 15] consider a contagion
process based on the global state of the network, but
largely ignore the nodal level. Understanding how
contagion spread in OSNs, requires the consideration of
both local and global effects.

Myers et al., [6] found evidence of global contagion
due to exposure to external sources (main stream media)
by detecting a sequence of external events that caused
bursts of activity on Twitter. Albeit, indicating that
their results are only valid for posts that were shared at
least 50 times. However, most posts are shared a scant
number of times [16, 17] as virality takes the form of a
long-tailed distribution [18]. While most studies focus
on the spread of viral content, research on non-viral
content is sparse [19].

The contribution of this study is twofold: (i)
Considering both local and global contagions, and (ii)
Modeling the contagion and reach of non-viral content.
This perspective yields significant insights into online
human behavior.

We use Twitter data to learn the spread of
different types of contagion by retweets across topics.
Differentiating between local and global non-viral
contagion, our findings complement the vast body of
scholarship regarding the spread of viral content.

Organization. Section 2 sets the theoretical
background. Section 3 elaborates upon the methods
used in this study, and describes the analyzed dastaset.
Section 4 reports the empirical results. Finally, Section 5
covers the contributions, innovations, and the limitations
of this study.
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2. Related Work

Social media has revolutionized how people create
and consume information. One way by which
information can reach a user is through local exposure
to content, posted by other network neighbors (i.e.,
nodes at a distance of 1-hop from the user). For
example, Twitter exposes users to information through
the Following-Followers lists [20]. Such exposure
can lead to information contagion (infection, influence,
adoption). A local contagion on Twitter can occur when
a user retweets a message [2, 21], posted by a neighbor.
Structural contagion models build upon the assumption
that contagion spreads by a user-to-user mechanism.

2.1. Structural Contagion Models

Most studies about contagion spread focus on
user-to-user exposure that leads to local contagion,
causing the exposed user to engages in activities [22].
Leskovec et al., [23] studied a recommendation graph
and measured the extent to which a user’s activity in
recommending a product is contagious, i.e., affecting
her local neighbors’ purchase decisions. Sun at al.,
[1] studied the contagion affect on users’ participation
in fan-pages after some number of their friends have
done so. Bakshy et al., [24] examined contagion in
adopting the use of ”gestures” between friends in the
Second Life platform. The Linear Threshold Model [25]
focuses on contagion, defined by user transition from a
non-active to an active state, following a transition in the
participation of a network neighbor. The Independent
Cascade Model [26], allows a user to activate its inactive
neighbors, thus contagion is propagated by causing a
user to participate.

As explained in Section 1, OSN users are
increasingly exposed to varied content [3] by local
neighbors, and by global sources. Global exposure can
lead to global contagion [5]. For example, Facebook and
Reddit allow global exposure via trending topics that
appear on a user’s front page [27]. Twitter exposes users
to information posted by non-neighbors via exposure to
hashtags [28] and via exposure to promoted content on
a user’s Timeline feed [4]. Thus, the need to consider
global contagion beyond network structure arises.

2.2. Non-structural Contagion Models

Non-structural contagion models do not rely on
the structure of the network to infer contagion. For
example, the Susceptible-Infected-Resistant (SIR) and
the Susceptible-Infectious-Susceptible (SIS) models
[29] assume that every individual has the same
probability to be infected, i.e., all individuals have the

same contact rate, which can be indicated by an edge
formation in a network. Leskovec et al., [23] propose a
SIS model where all users have the same probability to
be infected. However, contagion in OSNs is not evenly
distributed among users [30] and is likely to depend on
exposure rates [6]. The Linear Influence Model assumes
a static network structure were users are affected by the
rate of contagious users in the network [14]. Wang et
al., [31] predict contagion by temporal and topological
dynamics but, regarding network structure, consider
only the distance from a user to the contagious user.

Myers et al., [6] found evidence of global contagion
in OSNs by exposure to external (out-of-network)
sources such as mainstream media, albeit, indicated that
their results are only valid for posts that were shared
at least 50 times. However, many posts fail to attract
attention [16] and do not become viral [17]. Detecting
viral messages have been extensively studied [3, 2].
Since most posts are non-viral [18, 17], studying how
non-viral content spreads can lead to important insights
on human behavior online [2].

To summarize, an exposure event occurs when a user
is exposed to information. Such exposure can lead to
information contagion e.g. retweeting (RT) a message
on Twitter [21]. Twitter users can pass interesting pieces
of information to their followers by a RT activity which
is the action of re-posting someone else’s tweet [20]. A
retweeted message indicates the ability of the user who
created the message to generate contagious information.

Most contagion research is focused on modeling
only local user-to-user contagion, ignoring
non-neighbors, or contagion by all network users,
largely ignoring the topology of the network. Detecting
both local and global contagion while considering
network structure is crucial to better understand human
behavior online, as reflected by user interactions [32].

2.3. Types of User Interactions

OSNs provide users platforms to form interaction
activities. These online activities create an activity
network and include, for example, post-reply, and
content sharing activities by which users expose
others to information. Twitter, for example, supports
two type of networks: a social network based on
the Following-Follower relationships, and an activity
network of who tweets whom [20]. In a Twitter RT
network, nodes are authors of the tweets and edges
represent the contagion spreading paths [33].

Dow et al., [17] focused on contagion spread by
resharing a photo on Facebook at least 100 times while
also considering the social network of friends. They
found that viral cascades have a large depth (larger
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than 20), many re-shares occurred within a single
step from the source, and that a significant fraction
of re-shares occurred deeper than one level into the
cascade. Liben-Nowell et al., [34] measured cascades
with hundreds of steps. These studies did not analyze
the dynamics that govern non-viral information spread.

Some OSNs only provide users the ability to interact,
without the ability to form an explicit relationship
(social) network. Therefore, the relationships between
users are implicit [35]. However, Shi et al., [36] found
that the contagion spreading patterns in the activity
networks are similar to those of explicit relationships
networks in online spaces. Moreover, the Twitter social
network was found to be less informative regarding
contagion spread than the activity network, which
exposes users by a RT, a mention, or a reply [7].

As discussed, most posts fail to attract attention.
Lack of sufficient knowledge about the spread of
non-viral content and sparse research about global
contagion in OSNs are the motivation of this study.

The proposed modeling approach of local and global
contagion, which provides multiple pathways in which
contagion can spread, is the basis for asking the
following two Research Questions (RQ):

1. Does global and local contagion of non-viral
information have different spreading patterns in
OSNs?

2. Does global and local contagion of non-viral
information spread differently in OSNs depending
on the discussed topics?

Our work differs significantly from other studies
by considering both local contagion as well as global
contagion that are not restricted to exposure by
mainstream media, or user-to-user mechanisms, and
can also result from exposure to content promoted
by algorithms. Our findings regarding the spread
on non-viral content complement the vast body of
scholarship regarding the spread of viral content.

3. Methods and Data

3.1. Detecting Local and Global Contagion

This section is designed to cope with RQ #1.
Consider a directed social network as a graph G =
(V,E) were nodes (V ) represent Twitter users and edges
(E) represent Following relationships among users. If
a user vj follows another user vi then, there exists
a directed edge eij ∈ E, connecting them. The
direction of eij signals an exposure path where vi post is
(potentially) read by vj who follows vi. Such exposure
might result in a spread of a local contagion.

More formally, let w denote an information nugget
(e.g. an original tweet) which is posted at time t0 by
user v0 ∈ V . The retweeting spread of w at times t1...tk
by users v1, ..., vj ∈ V , along with v0 could be thought
of as a temporal activity network GTw = (VTw, ETw),
laid over the social network G. In GTw, nodes (VTw)
represent users who retweet w at times ti ≤ tk, starting
with v0 and edges (ETw) are defined by retweet (RT)
relations which are known from the dataset. If vi ∈ VTw

has retweeted a tweet that was posted by vj ∈ VTw then,
eij ∈ ETw. The edge eij points to the node who spread
the contagion (i.e., the infecting node).

Next, we define the two types of contagion.
Local contagion. We define a contagion as local

if eij ∈ ETw and eji ∈ E. That is, vi retweeted an
original post w after one of the users she follows have
retweeted or wrote it, hence the contagion is local.

Global contagion. We define a contagion as global
if eij ∈ ETw and eji /∈ E. That is, vi retweeted w
before any of the users she follows have retweeted it,
hence the contagion is global.

This contagion process is illustrated in Figure 1.
A user v0 posts a tweet w at t0, locally exposing her
followers (v2, v4). User v2 retweeted w at time t1,
presenting a local contagion, since v2 follows v0. In
addition, v1 who does not follow v0 has also retweeted
w at time t1. We say that, v1 was exposed by some
global source to w and was infected globally (i.e., global
contagion). In Figure 1, the rest of the contagion events
(v3 at t2, v4 at t3 and v5 at t4) are local since their
opposite edges in ETw exist in E.
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Figure 1: An activity network with a social network.
Contagion time (ti) of a node is indicated near the node.

To cope with RQ #2, we analyze user retweet activity
by topics which requires detecting the discussed topics.

3.2. Topics Detection

To detect the topics of tweets, we follow two steps.
First, detect the list of topics in the dataset by inspecting
a random sample of tweets from the dataset.

From a statistical point of view the number of topics
in a randomly sampled twitter data exhibits high positive
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correlation with the number of topic in the dataset when
the randomly selected sample is large enough [37].

Second, each tweet in the dataset was annotated by
three independent annotators into one of the categories,
identified in the First step. A Tweet’s topic (category)
was decided by majority vote. If each of the annotators
assigned a tweet a different category, preventing a
majority, the principal researchers assigned the category.

3.3. Dataset Description

Using the Twitter stream API, we collected into
the initial dataset during March 2017 all public tweets
either mentioning (i.e., @username) the username of the
president of the United States (US) or the username of a
member of the US Congress. The accounts of users who
posted the tweets were also collected. The initial dataset
was selected since it contains tweets on US politics
with a potential to go viral, allowing us to select active
users. Since the discussed topics in the initial dataset are
somewhat biased toward politics, we counter such bias
by analyzing tweets on any topic of users who posted a
tweet in the initial dataset.

We used the Tweepy Python library to create
a stream session and routed tweet messages to a
StreamListener instance. We saved the tweets as json
files for further processing with the R and Python
software, as described next (Figure 2):

1. Select randomly a user who posted a tweet in
the initial dataset. To avoid ”celebrities” who
tend to go viral, we include that user if the user’s
Followers and Friends-lists’ sizes range between
100 and 1,000. To avoid inactive users, accounts
with less than 100 Followers were omitted. We
curated the analyzed dataset in Steps #2 to #5
during October 2018, starting with Step #2 which
is designed to counter the bias in the initial dataset
toward politics topics.

2. Following [38] we collected the 200 most recent
tweets posted by each of the users selected in
Step #1 without being limited to a specific topic
like politics. The older a tweet, the more
likely that its retweet list will be missing a
user (blocked, deleted, suspended, or protected),
which can negatively effect the analysis of
contagion spreading paths. Selecting the most
recent tweets minimizes the chance for a biased
view. The next step is designed to select non-viral
tweets from the tweets collected in step #2.

3. Obtain only tweets with 10 to 100 retweets (RTs)
for each tweet collected in Step #2. The upper

bound of 100 RTs was selected following [11, 17]
who indicated that viral posts infect more than
100 nodes. One month after the collection date,
we checked the RT-count of each tweet captured
in this step to verify that a tweet did not become
viral, discarding the viral ones.

4. Collect Twitter accounts of users who retweeted
an original tweet in Step #3. Throughout this
process we waved out suspected Bots (automated
agents) with the botcheck R package which calls
the Botometer API [39]. Only users with a score
bellow 3 were selected, presenting an average
score of 2.3 out of 5. The lower the score the
less likely a user is a Bot. The removal of Bots
is necessary to learn human behavior.

5. Collect the Followers list of users from Step #4.

Timeline

1 2 3 4 5

Timeline

Recent tweets Non-viral Retweeters Followers

Figure 2: Data collection steps (# denoted in a circle).

4. Analysis and Results

Following Section 3.3, in Step #1 we selected a seed
of 200 users from the initial dataset. During October
2018 we curated the analyzed dataset by following Steps
#2 to #5. The 200 users allowed us to collect and analyze
a large dataset (elaborated next) of retweet contagions
events, similar to other studies on contagion [4, 7, 5, 6].
The set of selected users had Followers and Friends-list
sizes between 100 and 1,000. In Step #2 we collected
the most recent tweets of selected users. Step #3 has
resulted in 3,901 tweets, out of which 745 tweets were
discarded since their RT count grew over 100. Thus,
the remaining 3,156 tweets represent non-viral content.
Step #4 resulted in 25,607 users who retweeted 172,206
times. Finally, Step #5 resulted in 11,038,902 users.

To summarize, we analyzed 3,156 tweets that
were retweeted by 25,607 users, 172,206 times. The
retweeting users had a total of 11,038,902 Followers.

Given a network, a local contagion begins at some
node (user) and then spreads from user-to-user over the
edges of the network, creating a cascade [40]. Typically,
cascades are measured on the activity network [40],
ignoring information about users’ social relationships
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(i.e., social network), which can explain the observed
spreading patterns of a contagion [17]. To cope with
RQ #1, and better understand human behavior online
in spreading non-viral content, we start by detecting
a contagion using the activity network (GTw), and
measure the depth of a cascade on the social network
(G). The cascade depth is defined as the largest distance
the information spreads from the user originating the
information [40].

To detect the cascade depth of w, each user
retweeting w was assigned a distance (d) on G from the
user v0, who originated w. An infinite distance (INF )
was assigned in the absence of a path on G. Distances
were calculated using the R igraph package [41]. Figure
3a presents a distribution of the distances from v0. Since
a cascade is defined as a user-to-user spread, the depth
of a cascade for each w is max({d|d < INF}).

A path might exists at larger distances (e.g. d = 10)
on the Following circles that we collected in Step #5.
However, such contagion is global and thus, does not
affect the analyses that follow.

Dow et al., [17] found that contagion occurred
deeper than one level into viral cascades. We find similar
results regarding the spread of contagion with non-viral
content (Figure 3a). The results show that non-viral
content has a contagion cascade with depth d ≤ 9. If
a path exists on G, the more distant a user is from the
source v0, the less likely she is to retweet w (Figure 3a).
As expected, most contagion events are local (d = 1).

To provide a view of the global contagion, we need
to consider the temporal order of the retweeting events.
For example, consider a slight variation in Figure 1
where v0 is the source of w; v3 retweets w at time t1
before v2 retweets w at time t2. This order of events
implies v3 was infected globally.

To account for such cases, each infected node was
assigned a contagion type (local/global) by analyzing
the activity network and the social network as described
in Section 3.1. Then, we computed the minimal distance
on G from any user vi ∈ VTw who retweeted w at
time tk (VTw are adaptors), to any user who retweeted
w before tk, or to the user who originated w (Figure
3b). Returning to Figure 1, consider a case where the
tweeting source is v0, and nodes v0, v3 are the only users
in VTw at time tk−1. Next, at time tk global contagion
spread to v5. The minimal distance from any user in
VTw before tk, to v5 is d(v3, v5) = 2, or d(v0, v5) = 2.

In Figure 3b, d = 1 indicates a local contagion.
As expected, this is the most frequent contagion
mechanism. Whereas, d > 1 indicates a distance that
was measured from the closest adopter to a user who
was infected by a global contagion.

In Figure 3b, for d ≤ 6, the closer a user to an
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(a) Histogram of distances from the tweeting source. 
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(b) Histogram of distances from the closest adaptor.

Figure 3: Histograms of measured distances.

adaptor, the more likely that user will retweet. This
finding supports the six-degree of separation theory
[42]. An interesting twist of a trend for d > 6: the larger
the distance, the more likely a user will retweet.

Most users are aware of information up to a social
distance of three hops [43]. Thus, the trend observed for
d ≤ 6 is in line with previous scholarship and it is likely
that a user who is retweeting at d ≤ 6 (Figure 3b) was
exposed to content through locality, through manually
crawling through the feeds of friends (and friends of
friends), or through exposure to the Twitter Timeline
containing tweets of accounts that a user follows.

On the other hand, contagion occurring with d > 6 is
more likely to result from a global exposure by means of
exposure to external sources (e.g. main stream media),
or promoted content by the Twitter Timeline algorithm.

Recall that our dataset contains non-viral tweets
which are less likely to be covered by mainstream
media, and therefor we believe that the Twitter Timeline
algorithm has exposed users and led to global contagion.

Twitter organises content on a user’s Timeline in
three main groups: 1) Tweets of accounts that a user
follows, 2) Promoted tweets - purchased by advertisers,
and 3) Tweets that are ranked by Twitter as having a
large engagement potential [44]. Groups #2, and #3
can contain content by non-neighbors. Due to user low
available time and limited attention, pushed information
on the user’s Timeline significantly increases contagion
rate [21, 44]. Thus, global contagion is more likely to
occur due to content promoted by Twitter’s Timeline.

To better study the patterns by which contagion
spread, we calculated the hourly time difference
between every two consecutive retweets, i.e.,
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Figure 4: Patterns of global (red) and local (blue)
contagion.

inter-retweet times. Figure 4a presents two cumulative
distribution functions (CDFs) of inter-retweet times that
correspond to each contagion type (local and global).
The two CDFs show different trends, uncovering
different patterns of user behavior.

For global contagions, 80% of inter-retweet times
were less than 0.44 hours (∼27.35 minutes), while for
99% of them, the inter-tweet time was less than 305.96
hours (∼12.74 days). For local contagions, 80% of the
inter-retweet times were less than 0.91 hours (∼54.6
minutes), whereas, for 99% of them, the inter-tweet
time was less than 180.94 hours (∼7.54 days). This
finding in inline with previous scholarship [45], and
shows that Twitter members interact in a bursty nature,
where members send several tweets in short periods,
separated by long periods of reduced activity [46].

We observe a change in Figure 4a at point P1. Up
to point P1 users retweeting due to global contagion
respond quicker than those infected locally. At P1, 88%
of the inter-retweet times of users were less than ∼2
hours. After P1 global contagion spreads slightly slower
than the local contagion but lasts longer.

A possible explanation for this finding is that local
contagion spreads slower than global contagion in the
initial phase since: 1) In local contagion a user has to
wait for the information to reach her through neighbors,

and 2) Users’ inclination to retweet non-viral content is
limited and governed by friendships.

While contagion is often perceived as spreading like
an infectious disease, social contagion differs in that
OSN users actively decide to spread it. On the other
hand, users who are exposed by a global source are not
restricted by a neighbor-to-neighbor mechanism.

We also study the effect of the number of Followers
on the contagion types. Users who retweeted due to
global contagion have more Followers than those who
retweeted due to local contagion (Figure 4b). A user
with many Followers acts as an information source. To
maintain this reputation, a user has to actively consume
diverse and innovative information beyond her local
neighborhood [47].

To cope with RQ #2, we pursue a more fine-grained
analysis between local and global contagion, by
analyzing next, user retweet activity by topics.

4.1. Retweet Analysis by Topics

Following the First step in Section 3.2 we inspected
a random sample of 1,000 tweets from the dataset
which reflects the topic distribution within the dataset
with 95% confidence level. We identified 19 topics
in the sample as presented in Figure 5. In the
Second step, each tweet in the dataset was annotated by
three independent annotators into one of the 19 topics,
identified in the First step (Table 1). Fleiss’s Kappa
[48] of inter-rater agreement score (0.68) indicates an
adequate agreement.

Figure 5a shows that the size of global contagion
varies across topical categories. The three most
contagious categories are Politics, Sports, and Celebrity.
Breaking contagious to types, we find that Politics has
only 17% of global contagion (Figure 5b). Several
studies [2, 49] found that political related topics spread
the most. Our analysis uncovers similar findings for
the spread of local contagions (Figure 5b). However,
global contagion shows different results. A low
global contagion in Politics may be the result of
”echo chambers”, i.e., restricted exposure to opinions
of like minded users [3], tending to retweet each
other. Technology, Community, and Sports related
topics enjoy the highest percentage of global contagion.
Since this study focuses on non-viral content, the
analyzed tweets are less likely covered by mainstream
media. We hypothesize that in the absence of exposure
by mainstream media, and the existence of global
contagion, individuals are exposed by other global
exposure sources.

We further analyze the density distributions of the
number of global (Figure 6a) and local (Figure 6b)
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(b) Percentage of contagion per type and topic.

(a) Sum of contagions per type and topic.

Figure 5: Patterns of global (red) and local (blue) contagion.
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(a) Density distributions of # global contagions per topic.

0

25

50

75

100
an

im
al

s

ce
le

br
ity

cl
im

at
e

co
m

m
un

ity

cr
im

e

ec
on

om
y

ed
uc

at
io

n

ev
en

ts

fo
od fu
n

he
al

th

m
ed

ia

m
us

ic

op
in

io
n

po
lit

ic
s

re
lig

io
us

sp
or

ts

te
ch

no
lo

gy

to
ur

is
m

Topic

N
um

be
r 

of
 lo

ca
l r

et
w

ee
ts

Topic

animals

celebrity

climate

community

crime

economy

education

events

food

fun

health

media

music

opinion

politics

religious

sports

technology

tourism

(b) Density distributions of # local contagions per topic.

Figure 6: Density distributions of the number of contagions by type. Black circles: median; Diamonds: mean.

contagions (retweets) across different topics, illustrated
by violin plots. A violin plot allows the comparison of
multiple density distributions, similar to a box plot with
a rotated kernel density plot on each side.

From Figure 6a, 6b it can be observed that within
each topic, the local and global retweet distributions
present different shapes. Using a Kruskal-Wallis rank
(KW) test [50] we found significant differences in the
density for both local (Pvalue = 22 × 1016 < 0.05),
and global (Pvalue = 3 × 101 < 0.05) contagions
across topics. To detect where those differences lie,

we conducted two Conover-Iman tests [51] with the
Benjamini-Hochberg method. Figure 7 presents the
Pvalue of each test, one for the global contagion,
and the other for the local contagion. Considering
local contagion, most topic groups are not significantly
different in their number of retweets (indicated by red
and yellow squares in Figure 7). The low Pvalue in
the KW test regarding local contagion was achieved
due to significant differences between a small number
of topical categories. For example, Technology differs
from Tourism (Figure 7). Whereas for global contagion,
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Table 1: Definitions of categories used for annotation with examples.

Category Definition Example
Animals Requests to save animals, reports of animal

abuse, photos of animals.
”#Blackfish be careful out there. They are
taking our’ fish.”

Celebrity∗ The subject is a person or a group. Political
figures were classified as ”Politics”. Sports
teams were classified as ”Sports”.

”Had the pleasure of interviewing the fabulous
@JoeCongelAuthor.”

Climate Whether, global warming, green environment. ”We broke down climate change by region.”
Community Public requests such as donations, giving

advice, sharing feelings with others, erotic texts,
complaints, empowerment.

”Ok dear friends, if you’re thinking of an
organization to support next year, pls consider
Culture of Life Africa.”

Crime Posts on illegal actions, trials, and laws. ”Accuse an 82 grandmother of vandalism?”
Economy Posts on business issues e.g. deals, trade,

consumption of goods, and investments.
”The UN spends more than 80% of its annual
peacekeeping budget in Africa.”

Education
(Edu)

Research results, books, schools, universities,
historical facts, quotation of wisdom comments.

”Afghanistan museum unveils restored ancient
Buddha.”

Events News, current and live events reported by users
(e.g. earthquake).

”#TrafficAlert I15 NB. Approx 100 gallons of
diesel across all lanes.”

Food Experiences regarding food and drinks (e.g.
restaurants recommendations).

”I’m hungry, let’s go grab food. How does
Lazy Moon sound?”

Entertainment
(Fun)

Humor, spare time, hobbies, jokes, short funny
videos, fashion, lifestyle.

”In the ER, a guy wearing a jacket that says,
”Invincible,” he does not seem”

Health Any health-related subject (e.g. a symptoms). ”436 hospitalized due to McDonald’s salads.”
Mixed Media
(Media)

Texts about movies, main stream media, or
social media.

”Star Wars: Clone Wars Revived for Surprise
Season.”

Music∗ Songs, albums, bands, music,and playing tools. ”Drop your favorite song ’?’ in the comments.”
Opinion Opinions on any subject not belonging to other

categories, with inconclusive finding or facts.
”People in LA are the best.”

Politics∗ A political figure, a party or movement,
elections, a location that is the subject of
controversial political discussion, or an issue that
is the subject of a political discussion.

”More Americans would still vote for Trump
again than Clinton”.

Religion Texts about users’ beliefs, often containing the
words: church, pray, God, Christian, and bible.

”God does not forsake the work which his own
hands have begun.”

Sports∗ Names of sports teams, leagues, sport events, fan
groups, or references to news items on sports.

”IT’S DONE!! Welcome, Las Vegas Raiders!”

Technology∗ Names of Web sites, applications, devices, or
events about any of these.

”change your password immediately” if you
stayed at a Marriott Hotel.”

Tourism Holiday, and vacation recommendations. ”Travel guys... while you’re able to.”
∗Definition taken from [2]; In absent of a majority vote among annotators, the authors assigned the category.

most topic groups significantly differ from one another,
as indicated by the absent of numbers in Figure 7.

5. Conclusions

Most contagion research is bound by modeling only
local contagion, and the spread of viral information.
This study focused on modeling contagion spread on
Twitter by users’ engagement in retweeting non-viral
content. Contrary to the common assumption that

contagion diffuses from node-to-node, we find that
contagion in OSNs also spreads globally, beyond social
network links. In addition, we find that the fractions of
global and local contagion differ between topics. The
percentage of global contagion on Twitter ranges from
8% in Crime to 28% in Technology related topics.

Significant differences in the spread of global and
local contagion of non-viral information, imply on
different mechanisms of contagion at work. Two
behaviors are observed in the spread of global
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Figure 7: Pvalues of Conover-Iman test.

contagion. First, at distances d ∈ [2, 6] on the social
network from a user who adopted the information: the
larger the distance the less likely a user will be infected.
Second, when d > 6 the trend is reversed. When
d > 6 users are less likely to search information by a
user-to-user page crawling. Thus, contagion more likely
occurs due to content promoted by external sources such
as algorithms, mass media, or searching information in
the Twitter search box (i.e., jumping between pages).

We also analyzed the temporal retweeting activity of
users and find that global contagion spreads faster than
local contagion, indicated by short inter-retweet times
up to point P1. At point P1, 88% of the inter-retweet
times were less than 2 hours, indicating that global
contagion is more bursty than local contagion. This
might be due to a blocking mechanism of local
contagion where retweeting non-viral content is less
appealing. However, after point P1 the trend is reversed.

Two main limitations of this study are 1)
Human annotation has subjective judgments in topic
assignments. Some categories definition can overlap,
depending on the annotator’s subjective reading.
However, the level of agreement among annotators
presented adequate results, and 2) There might have
been retweets by deleted accounts which we cannot
observe in a retweet list.

Whereas, most studies focus on user-to-user
contagion, this study contributes to the knowledge on
how non-viral contagion spread. Since most content
is non-viral, analyzing it makes a valuable contribution
to the OSN research. The novelty associated with this
study is in better modeling user behavior in an OSN,
accounting to local and global effects.
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