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Abstract 
 

e-Government enables big data analytics to support 
decision processes in governing. C4ISR (Command, 
Control, Communications, Computers, Intelligence, 
Surveillance and Reconnaissance) is essentially e-
Government scoped to military decision processes.  The 
value of big data and its challenges are common to both.  
High variety and demand for veracity compel domain 
expertise-specific data analysis, and increasing volume 
and velocity hinder data analytics at scale. These 
conditions challenge even highly automated methods for 
comprehensive cross-domain analytics, and motivate 
cognitive approaches such as underlie Autonomous 
Systems (AS) aimed at C4ISR.  A C4ISR framework is 
examined by parts, linking each C to ISR capability, and 
a taxonomy of analytics is extended to include cognitive 
autonomy enablers. Coupling these frameworks, the 
authors propose an extension of cognitive approaches 
for autonomy in C4ISR to e-Government in general and 
outline a research agenda for attaining it.   
 
1. Introduction  

e-Government supports the complex, overlapping, 
and conflicting processes of governing.  Data analytics 
support e-Government. As governing increases in scope 
and complexity in response to demographic, economic, 
environmental, and political dynamics, so the value of 
data increases. “e-Governing” then draws on increasing 
variety, veracity, volume, and velocity of data -- big 
data.  Here the term refers to the condition where the “4 
Vs” challenge the ability to analyze it in operationally 
required timelines [4]. Within e-Government processes, 
traditionally military-oriented C4ISR approaches can 
guide data collection, evaluation and interpretation to 
provide decision-supporting responses relevant to 

operational timelines.  We examine data analysis 
methods in government services to see how.  

e-Government services (GOV) have been described 
as existing within six general “G2x” categories [5] [6]: 
• GOV Delivering Services to Individuals (G2IS) 
• GOV to Individuals for Political Processes (G2IP) 
• GOV to Business as a Citizen (G2BC) 
• GOV to Business in the Marketplace (G2BMKT)  
• GOV to Employees (G2E) 
• GOV to Government (G2G). 
Such service categories relate ultimately to value-
generation from data collectors to data consumers. As 
might be expected, in all of these functions, data is 
collected in increasing quantities and from increasingly 
diverse sources. Individually and collectively, these 
services are subject to degrees of big data challenges. 

Among military-related e-Government processes, 
C4ISR (Command, Control, Communications, 
Computers, Intelligence, Surveillance, and 
Reconnaissance) implies both an architecture and a set 
of capabilities for analyzing data to provide situational 
awareness and decision aiding [7]. In a C4ISR 
framework, big data analytics derive meaning in data 
and help answer (and reveal) questions.  As a military-
specific set of G2G services, C4ISR relies on 
infrastructure to collect, communicate, analyze, and act 
accountably based on data.  So it is with the other “G2x” 
services.  Indeed two fundamental similarities with e-
Government services and C4ISR processes is the 
supreme value of data and the challenges of handling it 
– collection, curation, correlation, and computation to 
derive value. We propose then, that e-Government in 
general can benefit from emerging advances in data 
processing approaches in C4ISR.   

Data, information, knowledge and wisdom are 
generally related as depicted in Figure 1, where, e.g., 
wisdom is considered knowledge plus insight [8]. 

 
Figure 1. General relationship between reality and the data, information, knowledge and wisdom (DIKW) 
hierarchy, adapted from [1] [2] [3]. 

WisdomKnowledgeInformationDataReality + insight =+ context =+ meaning =+ sampling =
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However, finding insight and meaning from data, i.e. 
extracting knowledge and wisdom, requires human 
expertise in the analysis loop. Analytics can process 
data, facilitate human interpretation, and aid knowledge 
and wisdom development. However, as big data 
challenges increasingly affect e-Governing disciplines, 
humans will only with greater difficulty and perhaps 
less efficiency, exhaustively evaluate relevant data. 
When human ability is saturated and automation lacks 
wisdom, autonomous analysis methods could well 
become a practical necessity. 

Machine autonomy goes beyond automation, the 
latter acting in well-defined operating conditions (OCs) 
and more open to human-in-the-loop decisions [9]. 
Autonomous systems (AS) have three distinctive 
characteristics:  1) intelligent, informed, and unforced 
choices, 2) an ability to handle uncertain and unexpected 
situations, and 3) a sense of self [9].  In a C4ISR context, 
AS could be incorporated in both the ISR approaches, 
i.e. data analytics, as well as C4 components, i.e. for 
onboard or offboard decision making and controls.  The 
authors envision an effective autonomous approach to 
C4ISR where human operators are at an executive level 
of Command and Control (C2). Presently, C4ISR 
operations involve a human analyst considering data 
from various sources, e.g. G2G, and imparting agency 
to virtual or physical assets via C2. Noting that C4ISR 
occurs on a range of time-scales, from real time, total 
system resource management, to longer latency forensic 
analysis, in the rest of this work, we explore possibilities 
of autonomy-enabling analytics to autonomous decision 
making across the spectrum of decision timelines.  By 
expanding the C4ISR components to include autonomy 
enabling analytics and processes, we motivate that 
processes can be similar at both ends of the time scale. 

 
2. C4ISR and e-Government  
 

C4ISR, as an architecture, at its core encapsulates 
two components: resources and capabilities.  Resources 
are the C(*) components, e.g. command, control, 
communications, and computations; capabilities from 
expending C(*) resources are the information-based 
decision aiding processes and processes.   

C4ISR results in synthesized products where 
information is gained through ISR (collection and 
analytics) activities.  ISR activities can range from CPU-
based analysis of G2G data products to real-time 
exploitation of streaming sensor feeds [7]. In conducting 
ISR, data science-based analytics can be used by 
operators and automated onboard systems to provide 
awareness- and decision-aiding data for inference [7].  

In C4ISR, the authors adopt the hierarchical process 
of data engagement in [10] and adapt it as in Figure 2.  
In [10], a general e-Government hierarchy of data, 

agents and services is presented. It links the data sources 
to services, which access and process the data, as well 
as agents who analyze, collect, and consume the data.   

Figure 2 illustrates the first proposed extensions 
from [10] -- overlaying the DIKW hierarchy from 
Figure 1. In Figure 2, data source consumers query 
sources of data via services.  Data products and services 
are refined through man-machine operations providing 
analytics to aid analysts.  This enables e-Government. 

 
2.1. G2G e-Government 

 
In adopting a C4ISR approach for G2G systems, one 

must address crucial V’s of big data: volume, variety, 
and velocity [4]. Regarding the variety of data sources, 
one must work to ensure availability and accessibility 
across silos, even single source ones. As discussed in 
[10], linked data and adherence to standards can address 
this.   Further, as in Figure 2, while data variety is a 
notable aspect of the data in the general e-Gov catalog, 
considerations must also be made for the variety of 
agents accessing data: human analysts, machine 
analytics, providers, consumers, and “prosumers”.  Data 
availability and interoperability concerns also exist in 
data collected and shared in G2G domains [11][12], 
however, G2G projects focused on data ingestion have 
addressed this via architectural approaches [12]. 
Beyond data variety, increasing volume and velocity 
(i.e. scale) of big data in G2G services increase the 
processing and analysis challenges to human analysts. 
Intelligent analytics and autonomy become essential to 
timely operational solutions, and underscore the 4th ‘C’ 
in the C4ISR paradigm (‘computing’).    

 
2.2. C(*)ISR as a functional paradigm 

 
In this section, we examine by parts the C(*) 

resources to ISR capabilities introduced earlier.  First, 
we assert as a construct and for clarity, ISR capabilities 
imply coarsely, a scale and scope of information gained:  
• R – Reconnaissance – examination and analysis 

examination of a location at discrete points in time 
• S – Surveillance – continuous examination and 

analysis of an area over time 
• I – Intelligence – comprehensive, coherent, and 

predictable pattern synthesis from S and R.  
In Table 1 we notionally express ISR-enabling 
contributions of the C(*) capabilities. 
 

Table 1. Linking C(*) to ISR capabilities 
 Reconnaissance Surveillance Intelligence 

Command location duration motivation 
Control frequency resource mgt scope 
Comm. data batches data streams disseminate 
Computers state analysis scene analysis prediction 
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The authors here posit that the C’s are the raw 
abilities that yield useful ISR capabilities.  That is, 
allocating resources (manpower, funds, time, etc.) to the 
C’s can yield increasing capabilities in ISR. Stated 
another way, one can view the general relationship as  

 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 =  
𝜕𝜕(𝐼𝐼𝐼𝐼𝐼𝐼)
𝜕𝜕𝜕𝜕(∗)

 (1) 

encapsulating the plain understanding of Table 1 that the 
capabilities yielded from ISR are realized through 
investments in C(*).  Quality, then, varies with degree.  

Notably, many C(*) components are manpower 
intensive, particular the C2 component, and this 
resource is available at a premium.   Thus, the authors 
envision that advanced computing capabilities are 
needed to offset manpower constraints. Thus, the 
understanding in (1) can be further expended to 
encompass expenditures in technology (Tech):  

 𝐺𝐺𝑄𝑄𝑄𝑄𝑎𝑎 =
𝜕𝜕

𝑇𝑇𝑇𝑇𝑇𝑇ℎ
�
𝜕𝜕(𝐼𝐼𝐼𝐼𝐼𝐼)
𝜕𝜕𝜕𝜕(∗)

� (2) 

providing an illustration of how technology can 
influence the gain in capabilities.   

The authors further envision that advanced 
computing capabilities, enabling advanced analytics, 
can facilitate manpower moving from a C2 role to a 

primarily C1 (command) role. In the following sections, 
this vision and its components will be explored. 
 
3. Data Science and Analytics 
 

Analytics are considered herein as the techniques 
used to explain, model, and analyze data. Considered 
broadly, the authors consider those associated with data 
science, statistics, pattern recognition, machine 
learning, and related domains, c.f. [13] [14] [15].  

As seen in Figure 2, analytics is necessary to provide 
solutions and services from data. C4ISR processes 
incorporate many analytic abilities, but require human 
analysts for synthesis leading to decisions and resource 
commitment. Current analytics methods examine data 
through the use of rules and logic, which are either 
developed through algorithmic means (Machine 
Learning) or designed into the system (Expert Systems). 
While these methods can be very sophisticated, all such 
algorithms fail when presented with data outside the 
bounds of its training, e.g. [17] [18].  However, human 
cognition (as wisdom) routinely excels and adapts to 
such situations.  E.g., humans would rarely confuse a 
gibbon with a panda yet machine learning algorithms 
frequently do [19] [20]. 

 

 
Figure 2. Roadmap of e-Government Data, adapted and expanded from [10] to include both a mapping to 
C4ISR and DIKW components.  C3 (communications) permeates the roadmap.  
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Additionally, big data in enterprise scale 
organizations causes “enterprise amnesia” wherein the 
data collected outstrips algorithmic abilities [21]. When, 
as is occurring now, big data holdings in G2G e-
Government grow on par with the expansion of data 
holdings in other national sectors, intrinsic, organic, 
self-servicing and even self-healing  solutions are 
warranted. These are features of organisms, and not 
short of what we ultimately need in autonomous 
solutions for e-Gov big data challenges.    

While advanced analytics, often called artificial 
intelligence (AI), are highly sophisticated, they are the 
result of complex automated algorithms. Such methods 
become brittle when unexpected information is 
processed, e.g. [18], and even powerful analytics 
methods need human input for synthesis and 
understanding, especially for timely, responsible, and 
even grave decisions.  In the last remark we imply 
degrees of autonomy.  We explore this below.  

3.1. Taxonomy of Analytics for Autonomy 
 
Typical taxonomies of analytics, e.g. [16], include 

descriptive, predictive, and prescriptive levels, as 
captured in the first three columns of Figure 3.   
Descriptive analytics consider answering questions 
about what happened or is happening and encompass 
sensor data logging and methods to describe the general 

data structure, e.g. measuring central tendency and 
dispersion of data [16]. Predictive analytics extend upon 
descriptive analytics and answer questions such as 
“what will happen?” and involve more advanced 
algorithmic methods to model the structure of the data 
and provide inference abilities [16]. Prescriptive 
analytics further expand upon the analytics base and 
start to answer questions such as “what should be 
done?” and these involve more sophisticated methods to 
model the data and prescribe the correct decisions [16]. 

However, for autonomous systems, further 
capabilities are needed.  Missing in the taxonomy of 
[16] is the ability to handle unexpected events/data and 
create new knowledge/information. Accounting for this, 
we add cognitive analytics as an extension of the 
analytical foundation [15]. Cognitive analytics 
generally include capabilities such as knowledge 
representation, inference, reasoning, learning, and 
hypothesis generation [15].  At a high level of 
capability, cognitive analytics embody artificial general 
intelligence (AGI), which can be considered as building 
AI with reasoning, cognition, and rationality [22]. 
Performed correctly, cognitive analytics have the 
potential of enabling machine computation to reach the 
knowledge level of the hierarchy presented in Figure 1. 
Using this understanding, Figure 3 depicts an extension 
of taxonomy of [16] to include cognitive analytics 
effected by autonomous processes.  

Analytics

Descriptive Predictive Prescriptive Cognitive 

What happened?
What is happening?

What will happen?
Why will it happen?

What should be 
done about it?
Why should it be 
done?
How can we make it 
happen?

What will happen next?
What is the meaning?
What is the best action?

Q
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• Sensors
• Dashboards
• Data warehousing
• Data collection
• Scorecards
• Reporting

• Data mining
• Text mining
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• Forecasting
• Web/Media mining
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Intelligence (AI)

• Optimization
• Simulation
• Expert Systems
• Machine Learning

• Artificial General 
Intelligence (AGI)

• Cognitive Computing
• Cognitive Architectures
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Figure 3. Taxonomy of Analytics for Autonomy, adapted and expanded from [16]. 
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3.2. Autonomy 
 

Autonomous capabilities are needed for advanced 
analytics wherein an analyst could consider the 
inferential results from multiple analytical agents. To 
understand what is needed for autonomous analytical 
agents, one must understand the current state of the art 
for machine intelligence with respect to automation and 
autonomy. One can consider automation, as the 
following definition, from [20]: 

1. Automation: The system functions with no or little 
human involvement, however performance is 
limited by the specific logic it has been designed to 
employ, and the actions it has been designed to do. 
Typically these are well-defined tasks that have 
predetermined outcomes, i.e. rule-based responses. 

Notably, this does not include the ability to anticipate or 
address uncertainty, an ability of living organisms and 
autonomous systems. In this perspective, a working 
definition for autonomy can be considered, per [20], as: 

2. Autonomy: Systems which have intelligence-
based capabilities, allowing it to respond to 
situations that were not preprogrammed or 
anticipated in the design. Autonomous systems 
have a degree of self-government, self-directed 
behavior (being the human's proxy for decisions). 

Thus, inherent in an autonomous system are three 
general characteristics: 1) intelligence, 2) an ability to 
handle unexpected situations, and 3) a notion of self [9]. 
Inherently, these characteristics are those of cognition. 
To provide autonomous operations a system needs 
“cognitive autonomy,” which involves the ability to 
resolve conflicting information, plan, and learn [23].  

Stated another way, autonomous analytics can only 
be achieved when goals, tasks, cognition, and command 
abilities are enabled such that an AS can select the 
appropriate task or goal to pursue, modify its thinking 
constructs, and appropriately assume roles [9]. 
However, achieving operational autonomous analytics 
is difficult and fundamental research must be conducted.  

 
4. A Research Agenda for C5ISR 
 

The authors envision and propose autonomous 
analytics as providing a realization of C5ISR where the 
C(5) is cognition, the primary necessary component of 
autonomy. However, to fully realize C5ISR involves 
creating more than cognitive analytics.  It includes 
extensions of C4ISR to account for human-machine 
teaming (HMT) and human-machine interfaces (HMI).  
Still further, it requires metrics to evaluate autonomy 
component and HMT effectiveness, as well as to 

provide assurances for bounds on autonomous system 
behaviors. In addition to leveraging the foundational 
works identified so far, in developing a research agenda 
for C5ISR the authors leverage recent U.S. Government 
frameworks including the USAF Autonomous Horizons 
Vol. 2 [24], the challenge areas identified in the DOD 
Autonomy Community of Interest [25], discussions on 
autonomous vehicle architectures [26], and principles 
embodied in a research agenda on HMT [27]. 

In order to develop and implement C5ISR, the 
authors outline a research agenda in Figure 4. There are 
three components: Reasoning, Implementation, and 
Application.  Now we look more closely at each 
component. 

 

 
Figure 4. Research Agenda for C5ISR 

 
4.1. Reasoning (Meta Theme A) 
 

Within Figure 4, Reasoning encompasses research 
and development (R&D) in machine perception, 
reasoning, and intelligence.  This includes cognitive 
analytics and analytics in general, cognitive 
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situation understanding. 

Reasoning addresses 1) extending the analytics 
taxonomy of Figure 3 to include autonomy enabling 
capabilities, this further includes 2) architectures which 
mimic and replicate biological brains for decision 
making, and 3) memory structures to recall and store 
data. In order for a machine to reason, this implies the 
ability to learn, adapt, and handle unexpected events, 
e.g. much beyond what an algorithm was trained on and 
beyond the current state of the art in machine learning.  
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It is known that biological brains employ high 
efficiency and compress sensed data at a very high rate.  
The human mind is able to collect up to 107 bits of 
information yet process at 25-75 bits/sec (rate 
depending on channel -- auditory, visual, tactile, etc.) 
[28] [29].  This rate eclipses even big data analytics high 
volume burst capabilities, which still are not scalable for 
always-on AS.  Clearly, speed and scale approaching 
biological system abilities for efficient storage, 
retrieval, and processing is required. 

 
4.1.1. Cognition (Theme 1). Machine cognition, 
cognitive analytics, and cognitive architectures aim to 
leverage this foundational work in neurosciences to 
develop approaches for effective and efficient AI.  There 
have been some successes in this area, including the 
development of the LIDA architecture and its 
deployment on the US Navy’s G2E personnel system 
[30]. However, LIDA’s G2E application was aimed at a 
specific problem while a C5ISR approach would need 
to apply to many different problems and events, even 
with a potential to expand in scope, within the same 
general architecture.  

Additionally, current research in machine autonomy 
involves components such as cognitive architectures, 
which provide an infrastructure for AS and learning 
systems [31]. Still, though practical cognitive 
architectures, e.g. [30] [32], have seen use in decision 
making, reasoning, and inference, issues exist in 
scalability, timeliness, and efficiency when these are 
employed on a large scale [32]. 

A variety of research questions remain in this area: 
• What are the appropriate reasoning and logical 

constructs for a cognitively flexible AS?  
• How can cognitive architectures be combined with 

natural language processing for bidirectional 
communication and learning? 

 
4.1.2. Analytics (Theme 2). In addition to cognitive 
analytics as a general topic, primary concerns for 
analytics in general for C5ISR include developing 
abilities to handle unexpected events.  Notably, some 
work has been done to date in this area, including: 
analogical reasoning [33], out-of-library considerations 
[34], and transfer learning [35].  However, capabilities 
are still limited as noted in [24].  A variety of research 
questions remain in this area: 
• How can analytics methods be extended to handle 

conditions outside the training space?  
• What is needed to enable, record, and reuse 

experiential learning in AS for analytics?  
• How can an AS respond to changes in mission 

objectives by task-flexible selection of analytics? 
 

4.1.3. Memories (Theme 3).  Currently available AI 
systems generally aim to collect and store all possible 
data in as high dimensionality as possible. This becomes 
highly inefficient as a system scales.  We know that 
biological cognition is very efficient in this area, and 
thus a particular focus is needed on new approaches for 
machine memory storage and retrieval.  This work 
currently focuses on procedural, declarative, and 
working memories and their effective interactions.   A 
variety of research questions remain in this area: 
• How can memories (and knowledge gained) from 

past events be stored efficiently?  
• What approach to management of memories (e.g. 

procedural, declarative, and working) and their 
interactions ensures timely and viable AS? 

 
4.2. Implementation (Meta Theme B) 
 

  Implementation involves R&D in hardware 
tradeoffs, HMIs for appropriate user operations, and test 
and evaluation for developing and understanding 
metrics for assessing C5ISR performance. 
 
4.2.1. Autonomous Agents (Theme 4). Beyond 
developing components for an AS agent, integrating 
components and developing the agent itself is needed 
for effective C5ISR use.  Questions for this area:  
• What computational and reasoning components 

comprise effective AS agents and HMT? 
• How to define a component trade-space to predict 

system performance relative to mission objectives?   
• What is the effect of levels of peer interaction on 

operational trust-ability of the AS agent? 
 

4.2.2. Hardware (Theme 5). Beyond developing an AS 
for C5ISR, implementing it with users and infrastructure 
in mind is necessary.  In this, hardware constraints, i.e. 
Size, Weight, and Power (SWaP), must be considered 
when discussing computing since cognition is 
computationally expensive [36]. With high-SWaP 
capacity, e.g. dedicated on-demand supercomputer 
time, little constrains system.  In contrast, consider niche 
systems, e.g. autonomous vehicles or single CPU 
computers, where SWaP constraints may limit utility 
and capabilities, since power budgets may not support 
raw demands of algorithms or high volume data 
throughput, or on-board cooling, or any two or all three.   

This is key for any proposed C5ISR implementation 
since cognition is computationally expensive, e.g. [36], 
and computation comes at a cost. General e-Gov 
systems will likely operate with unconstrained SWaP 
provisions (i.e., in a permanent building with continuous 
power).  However, given the diversity of systems and 
subsystems and their ages and SWaP requirements, 
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SWaP-C considerations should apply across the e-Gov 
when evaluating what systems should be upgraded (or 
downgraded), improved, or replaced.  Besides desired 
“greening,” sustainability and possibly security may be 
enhanced by the right SWaP.  

Some solutions to SWaP concerns relate to selecting 
the appropriate method for the task at hand, as in [36].  
Another solution involves incorporating “AI 
Accelerators.” [15], advanced electronics to get around 
a Moore’s Law bottleneck on computation abilities 
available on CPUs. As presented in Table 2, AI 
accelerators include technologies and capabilities such 
as current parallel computing and graphics processing 
units (GPU), in- development neuromorphic chips, and 
potentially realizable quantum computing. Considering 
the foregoing and hardware maturity and SWaP 
concerns have enumerated in other technology reviews, 
e.g. [37].  Hardware-related research questions include:  
• What AI accelerators best enable a given mission-

driven reasoning and HMT implementation? 
• Which of size, weight, and power are likely to 

produce highest gains in AS enablement if reduced, 
made more efficient, or less costly?  

 
Table 2. Example AI accelerator technologies 

with potentials to facilitate future C5ISR abilities  
 Maturity & SWaP Ref. 

Parallel computing  High maturity, High SWaP [38] 
GPU High maturity, High SWaP [39] 
Neuromorphic chips Med maturity, low SWaP [40] 
Memristors  Low maturity, low SWaP [41] 
Quantum computing Very low maturity, 

theoretically low SWaP 
[42] 

 
4.2.3. Human-machine interaction (HMI) (Theme 6). 
Human-machine interaction (HMI) in AS is of perhaps 
greater interest than the machine-machine interactions 
in hardware alone, owing to the external fragility and 
internal complexity of the human.  HMI involves the 
complex yet cooperative interaction between humans 
and system components necessary to facilitate 
collaboration and coordination [43] [44]. HMI includes 
both technical and non-technical accommodations and 
often employs a user-centric approach [43] [24].  Of 
primary interest is reducing user workload and 
displaying information helpfully [45].   The latter is 
challenged by increasing data volume, velocity, variety 
which additionally complicates the analytics and 
reduces the time available to process the data.  We 
consider these research questions: 
• How to effectively relay AS internal situation 

assessment, i.e., beliefs and thoughts, to users for 
effective peer flexible interaction?  

• Can an HMI enable trust between users and 
autonomous systems for effective teaming?  

• How to develop training for the user and the AS for 
joint, mutual, and individual benefit? 

 
4.2.4. Test & Evaluation (Theme 7). Finally, if the 
hardware works and the human has a functional partner 
in the AS machinery, how well does the total system 
accomplish the mission? Test and Evaluation includes 
understanding how to evaluate an AS and develop trust. 
Current issues in AI, AGI, and AS include 
unexplainable results and explainable AI (XAI) has 
recently been a large research goal [24].  While XAI 
approaches can extend into fully explainable results, 
largely what is of interest is trustable and reliable AS.  
This can be thought of in much the same way as service 
dogs which, though trained and trusted, are still black 
boxes since they cannot be queried or questioned.  

 Beyond this, understanding when and where an AS 
should be used is important. In some applications, it is 
logical that a human is more efficient at the task; but, the 
division between such tasks is not yet obvious beyond 
coarse divisions.   For us, research questions include: 
• What measures quantify AS-human teaming 

effectiveness and their respective contributions? 
• How to quantify human-agent interaction quality in 

an AS, perhaps even a function of mission? 
• What measures quantify an AS’s trusted ability to 

act as a human proxy for timely, critical missions? 
 
4.3. Application (Meta Theme C) 
 

Application involves understanding how to 
decentralize tasks effectively, how to enable effective 
HMT, and what outcomes and products are possible. 
Extending the implementation, application involves 
deploying and employing a trusted AS with appropriate 
human-agent teaming.   
 
4.3.1. Human Machine Teaming (Theme 8). Beyond 
developing an AS for C5ISR, implementing it within an 
HMT team is critical. Here, an effective HMI is used, 
but now conditions outside the training space are 
possible since the system is used outside the 
developmental context.  Upon employment, effective 
analysis of outcomes and relaying results back to 
developmental efforts drives improvement.  To that end, 
these questions apply: 
• How to measure the quality of live experiential 

learning, outside the test environment?   
• Can a trustable AS be matured with the experience 

of live experiential learning?   
• How does the mission drive the division of labor? 
 
4.3.2. Outcomes (Theme 9). In evaluating the 
performance of an AS and HMT C5ISR, one must 
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consider the mission outcomes as both tangible and 
intangible work products [27].  Research questions 
about outcomes include, for instance: 
• How to measure intangible outcomes e.g., 

perceived goal attainment and user satisfaction?   
• What further intangible outcomes are measureable 

(e.g., user experience)? 
• What is the overall utility of the AS with respect to 

mission timeliness, task diversity, and criticality?  
 
4.3.3. Boundaries (Theme 10). Safety, trust, legal, and 
usability boundaries all exist within the scope of 
deploying an AS in an HMT for C5ISR.  Currently, no 
safety standards exist for ASs, and currently available 
safety standards, e.g. IEC 61508 and ISO 13849-1, 
assume direct human involvement, which cannot be 
assured when an AS acts as a human proxy [26]. 
Additionally, the legal questions regarding the liability 
of decisions made by an AS are unsettled [46]. Thus, 
leveraging [27], various research questions include: 
• What safety standards, policies, and legal 

restrictions need development for AS use? 
• What cultural norms, values, and behavioral 

expectations constrain developing AS agents?   
• What as-yet unnoticed boundary may block or 

advance the use of AS agents and HMT?  
 
4.4. Developing Performance Metrics for C5ISR 
  

In developing technologies and capabilities for 
C5ISR, (recalling the fifth ‘C’ is ‘cognitive’), that 
extend to general e-Governing, specific and appropriate 
measures are necessary to evaluate results. Used 
effectively, the analysis of assessed performance can 
also guide technology development and inform research 
agendas [9] [47].  We propose to let the relationships in 
eqs (1) and (2) serve as a guide to assessment:    
• Has desired product or service quality been 

delivered?   
• Has an achieved gain been sufficient to the need? 

 
While the application of metrics is well studied in 

many deterministic applications, e.g. text and data 
analytics performance measures [48], areas such as 
autonomy are not. The authors present two classes of 
metrics to round out the research agenda.   
 
4.4.1. Autonomy Evaluation Metrics. Various 
approaches exist to quantify how autonomous an agent 
is, e.g., the SAE J3016 approach for quantifying the 
autonomy of cars.  However, limitations exist in many 
approaches due to their discrete nature or limited 
granularity [9]. Of particular interest in [9] is creating an 
initial approach to synthesizing the literature on 

autonomous system metrics, resulting in a suggestion to 
use metrics that have concise definitions, are 
progressive in nature (ideally continuous), are 
verifiable, use well-defined and measurable inputs to 
facilitate implementation, and are simple to understand.   

Additionally, in [9] the authors identified three 
flexibilities that characterize autonomous behavior.  
These three flexibilities can be defined, using the short 
and concise definitions of [49], as 
• Task flexibility: the ability of an agent to identify, 

select, act, and complete multiple tasks to complete 
a mission or activity  

• Peer flexibility: the ability of an agent to change 
from subordinate, peer, and supervisory roles as 
necessary to complete a mission or activity 

• Cognitive flexibility: the ability of an agent to 
change decision boundaries, rules, or models for a 
given task, e.g. adaptive cognition. 

The source cited recommends measuring capabilities of 
an agent (model building, knowledge forming, 
knowledge transferring, acting, simulating, planning, 
and understanding) as they are applied to the three 
flexibilities [9]. 
  
4.4.2. Deadline, Responsibility, and Gravity (DRaG). 
Beyond developing capabilities to enable C5ISR, we 
need guidelines for when and where to best use 
autonomous solutions versus human-in-the-loop. This is 
largely a matter of trust in an AS as well as appropriate 
use of teammates (humans, AS, and human-agent 
teams) given demonstrated abilities vs. required tasks.  

To evaluate these considerations, the authors 
leverage stakeholder theory, which provides the 
following attributes of stakeholders to a situation: power 
(to influence), legitimacy (of the relationship), and 
urgency (of the claim) [50].  Modulating these ideas, the 
authors have identified three areas that are of a concern 
when using AS and human-AS teams.  These are: 
• Deadline of the decision to be made. For real time, 

continuous, dynamic actions an AS may well be 
better suited than asking a user and waiting for a 
response, repeatedly. 

• Responsibility, i.e. who has ownership of the 
decision, and perhaps even the legal standing.  E.g., 
an AS might not be permitted to declare guilt 
(involving humans), but it could logically identify 
potentially criminal activity from forensic analysis 
of financial transactions, or enemy military vehicles 
in a battleground from imagery or signals.   

• Gravity, a general understanding of risks and 
tradeoffs. For example, a trusted low gravity 
decision might be best tendered by an autonomous 
system since 1) the risk of a bad outcome is 
minimal, and 2) it reduces the human cognitive 
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burden, especially if the decision is called for with 
high frequency, is excessively broad in scope (even 
if bounded), or is mind-numbingly repetitive.   

 
Table 3. Example DRaG analysis possibilities and 

implications  
Deadline Respons. Grav Motivating  

Example 
C5ISR Potential 
for AS (outcome) 

Fast Machine Low GIS Mapping 
services 

acts and logs 
(annotated maps) 

Fast Human Low G2IS notary 
services 

acts and notifies 
(notarized docs)  

Slow Machine Low FHA/VA loan 
approvals 

acts and logs 
(load decisions) 

Slow Human Low Issue Passports acts and logs 
(passport) 

Fast Machine High FAA Collision 
avoidance 

acts and notifies  
(disaster averted) 

Fast Human High First Responders presents options 
(triage) 

Slow Machine High Congressional 
Budgeting 

analyzes options 
(feasible budget) 

Slow Human High Military 
operations 

predicts outcomes 
(resource phasing) 

 
When considering DRaG, one thus has three axes to 

assess and attempt to optimize.  A conceptualization of 
a DRaG analysis with possible implications and 
examples is presented in Table 3. Table 3 decisions and 
services for pairwise combinations of DRaG factors 
ordered by “gravity”. Within Table 3, motivating 
examples are listed of current e-Gov processes, 
performed by either humans or automation. In Table 3, 
the C5ISR potential is given for the motivating 
examples which relates to how a C5ISR AS would act 
given the DRaG. In parentheses are the potential 
outcomes of C5ISR action.  

 
5. Conclusions  
 

The authors motivate here how the C4ISR e-
Government (primarily military) architecture can be 
extended to address challenges inherent in big data 
analytics. Further, the authors illustrate how a C4ISR-
like architecture is linked inherently to general e-
Government systems, and that some e-Government 
functions stand to benefit from enabling autonomous 
systems (AS) to assist in big data related processes.   

To tackle this problem, the authors propose a 
research agenda for C5ISR where C(5) is cognition. 
Through an understanding of (Gov-to-Gov) G2G 
concerns, the authors depict a hierarchy of analytics to 
include cognitive analytics for improved G2G data 
analysis to process big data in a C4ISR structured 
enterprise. By incorporating cognitive analytics, the 
authors propose that C5ISR can abide and provide 
autonomous processing of data and the autonomous 

delivery of data products. Finally, the authors further 
present C4ISR as a functional paradigm whereby 
different C’s enhance ISR capabilities. We note 
challenges in employing C5ISR solutions and present an 
array of evaluation approaches when developing AS. 
Key research questions are provided. 
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