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Abstract 
 

Throughout 2018, approximately 68.5 million people 

were forcibly displaced due to armed conflict, 

generalized violence, or human rights violations 

around the world; of those, 40 million were internally 

displaced persons (IDP), 25.4 million refugees, and 3.1 

million asylum-seekers. Effective management of 

refugee and IDP camps rely on accurate, up-to-date, 

and comprehensive population estimates. However, 

obtaining this information is not always easy.  Thus, 

the purpose of this study was to develop a methodology 

and custom toolset that estimates populations based on 

dwellings derived from automated feature extraction of 

high-resolution, multi-spectral orthorectified imagery. 

Estimates were determined for five Rohingya refugee 

camp populations and compared with United Nations 

High Commissioner for Human Rights (UNHCR) 

baseline data to determine accuracy.  

 

Keywords: Pixel-Based, Object-Based, Python, 

Population Estimate, GIS 

 

1. Introduction  

 
Using high resolution aerial or satellite imagery to 

automate and standardize refugee and internally 

displaced persons (IDP) population estimates and map 

camp structures, especially for hard-to-reach areas, can 

improve humanitarian relief efforts by saving time and 

money. As of June 2018, the United Nations High 

Commissioner for Human Rights (UNHCR) estimated 

approximately 68.5 million people around the world 

were forcibly displaced due to armed conflict, 

generalized violence, or human rights violations; of 

those, 40 million were IDPs, 25.4 million refugees, and 

3.1 million asylum-seekers [1]. These people often 

settle in formal or informal camps, many of which are 

temporary in nature, where they may receive 

humanitarian relief and protection [2]. Accurate, up-to-

date, comprehensive, and quality population data is 

essential for programming, monitoring, analysis, and 

advocacy [3]. However, reliable population figures are 

often not available for a variety of reasons that include 

challenges in accessing refugee and IDP camps in 

conflict areas, data bias for political purposes, and the 

difficult nature of collecting field data during large 

influxes of persons to a camp [4]. Failure to accurately 

document the size of camp populations may lead to 

inadvertent neglect by governments, relief agencies, 

and humanitarian funding mechanisms, further 

increasing the suffering of displaced persons [5]. 

In 2017, the Rohingya refugee crisis in 

Bangladesh was one of the fastest refugee exoduses in 

modern times, resulting in the creation of the largest 

ever refugee camp [6] with approximately 671,000 

Rohingya refugees fleeing from Myanmar to 

Bangladesh in previous years [1]. Refugees have 

settled in and around existing refugee communities in 

two main settlements, Kutupalong and Nayapara, 

overstretching already-limited services and scarce 

resources [1]. Since the beginning of the crisis, more 

than 50,000 shelters have been erected, which were 

built mainly of bamboo, rope, and tarpaulins [1, 7]. 

For the management of refugee or IDP camps, 

humanitarian relief organizations require up-to-date 

information about the number of people living in a 

camp and population changes over time [8]. Population 

estimates drive funding and advocacy decisions 

ensuring the displaced have enough food and sufficient 

supplies for personal hygiene, well-being, and 
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household goods [10]. Analyzing population estimates 

and camp structure geospatial data can determine if a 

camp is providing not only enough physical protection 

against the weather but enough space for privacy and 

dignity [10]. Camp structure data also is used to 

conduct geospatial analysis, which can ensure shelters 

are within adequate distances to water sources and 

other camp services, as well as being located outside 

risk zones, such as flood and landslide zones [10]. 

During the initial emergency phase of a refugee crisis, 

reliable population figures are often not available and 

asking the refugee or IDP leadership to perform its 

own census may result in bias information [5]. Field-

based population estimate approaches are time 

consuming and often dangerous [9]. Therefore, 

leveraging aerial and satellite images to derive 

population estimates is a growing trend within IDP and 

refugee humanitarian relief missions [10]. High-

resolution satellite imagery can be used to map 

physical structures in refugee and IDP camps, 

including changes to the number and type of these 

structures over time. This helps to provide up-to-date 

population estimates, make available information for 

hard-to-reach areas, conduct quick assessments during 

periods of high influx of persons to camps, and assist 

in planning logistical infrastructure and services such 

as health care [11]. 

Manual and automated feature extraction are two 

methods that can be used to map physical structures in 

refugee and IDP camps to support population estimates 

and geospatial analysis [8, 12]. Numerous studies using 

image-derived refugee and IDP camp population 

estimates have demonstrated the time, cost, and safety 

benefits of such methods compared to field-based 

approaches [5, 8, 9, 11, 13]. The UNHCR and 

International Organization for Migration (IOM) are 

already utilizing remote sensed imagery to update IDP 

population estimates in Somalia’s Afgooye corridor 

and monitor disaster-induced displacement in Haiti 

[14].  

Both manual and automated approaches require 

high-resolution imagery to distinguish camp features, 

which is now increasing in availability, as well as 

decreasing in cost [5, 11]. Population estimates can be 

calculated by multiplying the number of dwellings by 

the estimated number of people per building, by 

multiplying the rooftop areas by the estimated average 

number of people per covered area [13], or by dividing 

the rooftop area by the estimated average covered area 

per person [13]. The estimated number of people per 

building, people per area, or covered area per person 

can be derived from reports published by governments, 

humanitarian relief organizations, or utilizing estimates 

from similar camps [5].  

The manual feature extraction approach requires 

analysts to distinguish features and then manually 

digitize refugee and IDP camp structures from remote 

sensed imagery [9]. This approach can yield reasonable 

precision relative to reference population data (e.g. [5, 

8]) of less than 10 to 30%, but it can be problematic in 

areas where features are dense and layouts are complex 

resulting in severely overestimating population 

numbers [5]. Like [5], analysts in [8] and  [9]  also 

struggled to distinguish features in complex settings.  

The automated feature extraction approach assigns 

a pixel (pixel-based) or groups of pixels (object-based) 

to a class based on the relative likelihood of that pixel 

or group of pixels occurring within each class’s 

probability function [15]. Automated feature extraction 

can be supervised or unsupervised.  

Pixel-based classifiers treat each pixel independent 

from one another when assigning them to classes [16] . 

However, object-based classifiers compare groups of 

pixels, or “objects,” based on segmentation processes 

that account for spectral, textural, and spatial properties 

[17]. 

Automated feature extraction methods can yield 

similar results when compared to manual extraction 

methods [18]. Lastly, unlike the manual approach, 

automated feature extraction is transferable, can be 

automated, and is scalable, and thus, more consistent 

[8]. 

The development of an automated extraction 

process requires a high level of remote sensing 

information and software knowledge, which can be 

time consuming to acquire and learn [12]. Thus, the 

purpose of this study is to create a custom Esri ArcMap 

toolkit and workflow that can be used to automatically 

calculate population estimates based on feature 

information derived from an established automated 

extraction method. This will decrease processing time 

and enable non-technical users to leverage the benefits 

of automated extraction to provide humanitarian 

organizations’ access to up-to-date refugee and IDP 

population estimates and geospatial data depicting 

camp structures. Thus, ensuring refugee and IDP 

camps are allocated enough supplies and effectively 

managed and planned. 

 

2. Methodology 
2.1 Study Area. For the purpose of this study, the 

Rohingya refugee crisis was used to develop a custom 

automated population estimate toolkit. The area of 

interest is in and around existing refugee communities 

in two main settlements, Kutupalong and Nayapara 

(Figure 1). In these areas, several camps have been 

established. For the purpose of this study, Camps 1E, 

1W were used to develop the workflow and Camps 17, 
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19 and Nayapara RC were further used to evaluate 

population estimate accuracies. 

 

Figure 1: Kutupalong and Nyapara Refugee Camps in 

Bangladesh. 

 
 

2.2 Data  

2.2.1 Camp Population Data: Data on Rohingya 

Refugee Camp populations was obtained from 

UNHCR and Refugee Relief and Repatriation 

Commissioner, of the Government of Bangladesh [19-

21]. The Refugee Relief and Repatriation 

Commissioner (RRRC) of the Government of 

Bangladesh, with the support of UNHCR, conduct a 

shelter-by-shelter refugee count for Rohingya refugee 

camps in Bangladesh a biweekly bases [20]. The 

UNHCR publishes periodic reports detailing 

population, shelter, population density, and average 

covered area per person calculations with at least a 

95% confidence level and a 10% margin of error for 

each camp. In this study data was obtained for April 

and July 2018, and March 2019 [19-21].  

 

2.2.2 Imagery Data: The United Nations Migration 

Agency, International Organization for Migration 

(IOM) collects 10-centimeter resolution, three band 

(red, green, blue) drone imagery of Rohingya refugee 

camps every three months. The IOM provides the 

orthorectified imagery and camp outlines for free 

through the United Nations Office for the Coordination 

of Humanitarian Affairs (OCHA) Human Data 

Exchange (HDX) [22-24]. Imagery captured on July 8, 

2018 for Camps 1E and 1W was used to develop the 

automated feature classification methods (Figure 2).  In 

addition, imagery data for April 2018 and March 2019 

were obtained for all camps (1E, 1W, 17,19 and 

Nayapara RC) and used to determine population 

estimates in the camp. 

 

Figure 2: Refugee camp image and outline for Camp 

1E and 1W 

 
 

 

2.3 Estimating Population Numbers in Refugee 

Camps  

Population estimates for each of the refugee camps was 

determined using a number of steps that required (1) 

identifying building features and then using these 

features to (2) estimate the camp population based on 

the total area of the building features and the UNHCR 

covered area per person statistics (Figure 3) [19-21].  

Figure 3: Overview of the object-based method toolkit 

workflow used to estimate population numbers in 

refugee camps 
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2.4 Identify Building Features 

Features were identified using a supervised automated 

featured extraction method as used in several studies 

[5, 8, 17, 18]. Essentially, the supervised classification 

approach utilizes training areas, groups of pixels, to 

define each class [15]. For this study, classes for 

building and non-building features were defined based 

on a visual inspection of the imagery (e.g. Figure 2).  

Since roof tops can vary in color, resulting in a wide 

range of spectral signatures derived from their red, 

green, blue pixel values, as seen in Figure 2, it was 

necessary to include training sites that represent each 

of these features. This ensures the spectral range for 

each class is discrete enough to accurately assign 

unclassified pixels to an appropriate class. A 

generalized roof class would result in a broad spectral 

range, which non-building spectral signatures may fall 

within, thus decreasing the accuracy of the 

classification process. A list of training sites and 

features descriptions are provided in Table 1. Training 

areas were manually extracted based on those classes. 

 

Table 1: Training areas and reclassified value 

 Description of 

feature 

Reclassify 

Value 

Building 

Feature 

Roof comprised of 

different colors: white, 

orange, green, brown, 

blue, gray, and yellow 

Covered 

area 

Non Water, dirt and mud, NoData 

building 

feature 

agriculture and grass, 

and trees 

 

 

2.4.1 Segmentation on parameters: Object-based 

classifiers compare groups of pixels, or “objects,” 

based on segmentation processes that account for 

spectral, textural, and spatial properties [17]. The 

spectral, textural, and spatial influence on the 

segmentation process can be adjusted. Within the 

Segment Mean Shift Function in ArcMap, larger 

spectral and spatial detail values (range 0 to 20) will 

create more discrete groups of pixels by restricting the 

groupings to small spectral ranges and similar spatial 

characteristics [25]. Additionally, one can set a 

minimum segment size, thus preventing the grouping 

of pixels too small to be the features of interest [25]. 

An optimal segmentation process should yield objects 

that correlate to the features of interest as identified in 

each class. This study compared the three segmentation 

parameter combinations identified in Table 2 and 

determined through a visual inspection that 

combinations 2 and 3 yielded the best results. The 

larger spectral and spatial detail value segmentation 

combinations produced better results because the 

similar spectral signatures of some roof types and non-

roof features, such as brown roofs and dirt and mud, 

required more discrete groups of pixels to differentiate 

those features from one another. 

 

Table 2: Description of spectral and spatial detail of 

each segmentation   

Segmentation 

Name 

Spectral 

Detail 

Spatial 

Detail 

Minimum 

Segment 

Size in 

Pixels 

Seg1 15.5 15 20 

Seg2 18 17 20 

Seg3 18 17 200 

Image - - - 

 

2.4.2 Classification Process: During classification, 

unclassified pixels or objects were assigned a class 

based on the relative likelihood of that pixel or object 

occurring within each class’s probability density 

function [15]. Multiple methods are available to 

determine the relative likelihood of a pixel and include 

maximum likelihood (MLC), random forest (RF), and 

support vector machine (SVM). Each of these methods 

was assessed, and it was determined that MLC yielded 

the best results. 

To assess which method was best for identifying 

objects in the imagery, the kappa coefficient and 

overall, user, and producer accuracies for each of the 

parameter settings for the MLC, RF, and SVM 
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methods was calculated (Table 3). The accuracies were 

calculated by using 110 test points for each class, 

except for the yellow roof class, which only used 40, 

due to the limited number of that feature, to compare 

the original and classified images. The kappa 

coefficient is a measure of agreement between the 

original image and classification results and determines 

if the errors are significantly better than random [26]. 

The user accuracy identifies the percentage of test 

points for each class that corresponds to the ground 

truth [16]. The producer accuracy identifies the 

percentage of test points for each class that were 

correctly assigned to each class [16].  

   

Table 3: Training Classifier methods and parameter 

settings 

 MLC SVM RF 

Image Seg2, Seg3, 

Image 

Seg2, Seg3, 

Image 

Seg2, 

Seg3, 

Image 

Segment 

Attributes 

Color, mean ; 

Color, mean, 

rectangularity 

Color, mean ; 

Color, mean, 

rectangularity 

Color, 

mean 

Max No 

Samples 

per Class 

NA 500 1000 

Max No 

Trees 

NA NA 50 

Max Tree 

Depth 

NA NA 30 

 

The training areas (Table 1) were used to train 

the MLC, RT, and SVM classifiers using parameters 

listed in Table 3 for both the segmented (seg2 and 

seg3) (object-based) and original test (pixel-based) 

images. The resulting classifier definition files were 

then used to classify features in the images and 

assessed for accuracy in classifying each of the 

different roof types and non-building features (Table 

1).  

For features with the same spectral signature 

as non-covered items (Table 1), misclassifications 

occurred. This included brown and dark-tone roofs, 

which were misclassified as dirt or mud and vice-versa 

(Table 4). Additionally, water, dirt and mud, and 

agriculture and grass were misclassified as one 

another; however, this was deemed insignificant for 

this study, as those classes would not affect the roof 

area calculation (Table 4). It was determined that the 

MLC method using Seg2 as the input raster and the 

color, mean, and rectangularity segment attributes 

yielded the best results with an overall accuracy of 

94% and kappa coefficient of 0.87 in classifying 

building features (Table 5). 

 

Table 4: Classification accuracy assessments for each 

class - MLC, Seg2, Color, mean, and rectangularity 

method 

Class Producer 

Accuracy 

User 

Accuracy 

Light-tone roof 87.96 92.23 

Orange roof 98.18 97.30 

Green roof 97.27 100.00 

Brown roof 47.27 92.86 

Blue roof 97.27 94.69 

Dark-tone roof 81.65 72.36 

Yellow roof 90.00 94.74 

Water 80.77 32.94 

Dirt and mud 57.80 84.00 

Agriculture and grass 10.91 24.00 

Trees 52.34 58.33 

 

Table 5: Classification accuracy assessments for 

building and non-building features - MLC, Seg2, 

Color, mean, and rectangularity method 

 

Class Producer 

Accuracy 

User 

Accuracy 

Building 91.82 98.31 

Non-building 97.44 88.03 

 

 

2.5 Population Analysis 

Once image object features were identified, the area of 

each rooftop was determined. Since multiple rooftop 

classes were identified based on different colors, these 

were reclassified to represent a single feature type 

(covered area, Table 1). The reclassified image was 

converted to a polygon, and the total rooftop area was 

determined. Total population for each camp was then 

estimated by dividing the total covered area by the 

average covered area per person, which should be at a 

minimum of 3.5-square-meters per person but can 

range to 4.5-square-meters in harsh environments [27]. 

The minimum space ensures people have sufficient 

covered space to provide protection from the climate 

and provide enough space for fresh air, security, 

privacy and health [27].  In reality, the average covered 

area per person may vary from camp to camp, and 

therefore, the values for each camp were obtained from 

UNHCR Rohingya Refugee census reporting (Table 6) 

and used to determine population. However, if field-

based population reports do not exist, one can use the 

UNHCR recommended figures to obtain a rough 

population estimate [27].  

 

Table 6: April 2018 covered area (square-meter) per 

person estimates  
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Camp Covered-area 

per person [20] 

1E 3.69 

1W 4.77 

17 3.55 

19 3.85 

Nayapara RC 2 

 

2.6 Accuracy assessment 

Accuracy of population estimates were determined by 

comparing the population estimates with those 

recorded for each camp [19-21]. The percent margin of 

error and root mean square error (RMSE) were 

calculated. The percent margin of error measures the 

percent difference between the tool estimates and 

UNHCR baseline data. The RMSE is the standard 

deviation of the difference between the tool estimates 

and baseline data. Additionally, the kappa coefficient 

and overall, user, and producer accuracies were 

calculated to determine the level of misclassification 

within a 10% area of each camp classification using 

110 test points for each class.  

 
2.7 Automating the process: developing the toolkit 

To automate the process, a custom toolkit was 

developed using ArcPy and loaded into a custom 

toolbox created in ArcMap. The parameters required 

for the toolkit are summarized in Table 7 and outlined 

in Figure 3. 

 

Table 7: Custom toolkit user parameters  

Toolkit 

parameter 

Data 

Type 

Note 

Camp name 

(required) 

String Used for output 

naming convention 

and final report 

Image date 

(required) 

String Used for output 

naming convention 

and final report 

Image file 

(required) 

Raster 

Layer 

Imagery must 

correlate with 

classifier definition 

file. 

Classification 

method 

(required) 

String Default object-based 

method 

Classifier 

definition file 

(required) 

ECD 

File 

Classifier definition 

file must correlate 

with imagery.  

Covered area 

per person 

(required) 

Double Based on average 

covered area (sqm) per 

person. Default 3.5 

[27] 

Workspace 

(required) 

Folder Output location 

Spectral 

Detail 

Double Default parameters are 

provided. 

Spatial Detail Double Default parameters are 

provided. 

Minimum 

Segment Size 

in Pixels 

Double Default parameters are 

provided. 

Camp outline Feature 

class 

Used to create a raster 

mask (Decrease 

processing time) 

 

3. Results 
Population estimates were evaluated for five Rohingya 

refugee camps, that include Camps 1E and 1W, 17, 19 

and Nayapara RC using imagery collected in April and 

July 2018 and March 2019 [22-24]. The size of each of 

these camps varied (Figure 4) ranging from 10,000 to 

40,000 people.  

 

Figure 4: Population of each refugee camp during 

April and July 2018, and March 2019. 
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The average number of covered area (square-

meter) per person ranged between 2 and 4.7 with three 

camps falling within the minimum space requirement 

of 3.5 and 4.5 square-meters per person (Table 6) [27]. 

Three tests were conducted for each camp and 

image date. The first test was a pixel-based 

classification method using the MLC classifier 

definition file derived from the July 2018 test image 

and training areas. The other two were object-based 

methods, one using the same classifier definition file as 

the pixel-based method and the other using a MLC 

definition file derived from the seg2 segmentation 

raster with the color, mean, and rectangularity segment 

attributes. The values of 15.5, 15, and 20 were used as 

the spectral, spatial detail, and minimum segment size 

parameters for the two object-based methods based on 

visual inspection of multiple combinations. The 

UNHCR stopped reporting average covered area per 

person information after April 2018 (Table 6), 

Page 2202



therefore this study was limited to those figures to 

calculate population estimates beyond April 2018. Of 

the three tests, MLC Sep2 method yielded the best 

results (Table 8, 9, 10). 

 

Table 8: Tool population estimates and accuracy 

assessment. Object-based method using seg2 MLC 

classifier definition file. 

Camp UNHCR 

Population 

Estimates  

(Apr ’18, Jul 

‘18, Mar ’19) 

[20, 21, 22] 

Tool 

Population 

Estimate 

(Apr ’18, 

Jul ‘18, 

Mar ’19) 

RMSE Percent 

margin 

of 

error 

1E 39,724 

39,608 

40,436 

44,002 

38,023 

58,936 

13,472 25.6 

1W 40,658 

40,658 

40,964 

39,215 

43,482 

31,288 

5,880 5.3 

17 10,092 

14,669 

16,935 

36,226 

44,617 

53,205 

31,066 340.8 

19 18,982 

20,149 

20,820 

32,637 

40,194 

40,621 

18,077 117.1 

Nayapara 

RC 

26,783 

26,915 

26,927 

75,145 

55,551 

78,658 

44,102 183.4 

 

Table 9: Classification accuracies for building and 

non-building features. Object-based method using seg2 

MLC classifier definition file. 

 

Camp Mean 

Producer 

Accuracy 

– Building 

Features 

(Apr ’18, 

Jul ‘18, 

Mar ’19) 

Mean 

User 

Accuracy 

– Building 

Features 

(Apr ’18, 

Jul ‘18, 

Mar ’19) 

Mean 

Producer 

Accuracy 

– Non -

Building 

Features 

(Apr ’18, 

Jul ‘18, 

Mar ’19) 

Mean 

User 

Accuracy 

– Non -

Building 

Features 

(Apr ’18, 

Jul ‘18, 

Mar ’19) 

1E 85.64 93.00 89.52 79.67 

1W 83.67 95.42 93.24 78.41 

17 89.05 97.94 96.21 81.22 

19 88.60 97.50 96.40 84.20 

Nayapara 

RC 

88.31 89.83 84.69 84.53 

 

Table 10: Classification accuracies for each class. 

Object-based method using seg2 MLC classifier 

definition file. 

 

Class 

(Camp 1E,1W,17,19, 

N RC) 

 

Mean 

Producer 

Accuracy 

(Apr ‘18 
Jul ‘18 
Mar ’19) 

Mean 

User 

Accuracy 

(Apr ‘18 
Jul ‘18 
Mar ’19) 

Light-tone roof 70.86 87.75 

Orange roof 96.43 89.56 

Green roof 88.30 99.41 

Brown roof 38.87 47.64 

Blue roof 80.36 97.38 

Dark-tone roof 37.87 42.07 

Yellow roof 71.05 68.47 

Water 53.05 25.09 

Dirt and mud 52.72 39.66 

Agriculture and grass 1.62 4.57 

Trees 45.59 51.43 

 

4. Discussion and conclusion 
This study demonstrates the potential scalable and 

transferable benefits of automated feature extraction 

methods, as the toolkit functioned as designed. A 

benefit of this method is the average processing time 

for each camp was 30 minutes compared to hours using 

manual extraction as demonstrated in other studies [8]. 

Comparison of automated and manual methods showed 

that as the area of interest doubled, so did the 

production time associated with manual extraction; 

however, only the computing time increased for 

automated methods [8]. Thus, once developed, 

automated methods can significantly save time 

associated with feature extraction. Furthermore, 

automated methods can be transferable, saving time 

associated with extraction updates [28]. This 

significantly improves the ability to monitor large and 

highly dynamic camps [5, 11]. This study 

demonstrated the transferable benefits by combining 

automated feature extraction methods with a graphical 

user interface (GUI) for faster and interactive 

parameter adaptation and execution [8]. This 

combination enables non-technical users to leverage 

automated feature extraction processes, thus reducing 

the labor costs associated with feature extraction. 

However, the accuracy of automated tools using 

automated feature extraction methods rely on well-

defined classifier definition files. This study highlights 

the difficulty of developing well-defined classifier 

definition files that are geographical and temporal 

transferable. As stated, the classifier definition files 

used in this study severely misclassified dirt and mud 

features as brown and gray roofs (Table 4, 10), which 

resulted in an overly inflated roof area calculation, 

ultimately leading to severely overestimated 

populations (Table 8).  
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On average, the RMSE and percent margin of 

errors for the two camps used to develop the classifier 

signatures files were significantly lower (8,441 and 

15%) compared to the other three camps (31,082 and 

214%). This is likely the result of variations of features 

between each camp, density of populations (Table 6), 

and unknown post-image processes, thus altering the 

true spectral values and leading to inconsistent 

classifications (Table 9).  

 

4.1 Limitations of imagery-derived estimates 

Despite the benefits of imagery-derived refugee and 

IDP camp population estimates when compared to 

field-based counts, this method is not perfect. The 

reliance on field-based information to calculate 

population estimates; the inability to differentiate 

building function and occupancy status; decreased 

accuracy in complex situations; spectral variance 

between sensors; geographical, seasonal, and building 

material effects on spectral signatures; and tree and 

cloud cover all limit the effectiveness and efficiency of 

imagery-derived population estimates. The accuracy of 

imagery-derived population estimates relies heavily on 

the accuracy of dwelling occupancy and density 

counts, often derived from field-base information. As 

stated, field-based information is inconsistent for 

numerous reasons, thus affecting the accuracy of 

imagery-derived estimates [5, 9]. In this study, the 

discontinuation of covered area per person reporting 

limited the effectiveness of the tool to provide accurate 

population estimates. Additionally, unlike field-based 

surveys, imagery-derived information, especially 

through automated methods, is limited in its ability to 

identify building functions and occupancy status. This 

limitation leads to over-population estimates if all 

buildings are considered dwellings when calculating 

population estimates [8, 9, 13]. Underestimations can 

occur due to imagery-derived methods’ decreased 

accuracy when extracting features in complex 

environments, such as high-density and multi-story 

dwellings [5, 8, 9, 13]. 

Automated image extraction methods are 

more sensitive to spectral variations, further decreasing 

their effectiveness and efficiency when those 

limitations are not properly addressed. Supervised 

automated image extraction methods rely on custom-

made rulesets derived from spectral signature of 

training areas from specific imagery and camp 

location, season, and building types. The spectral and 

spatial characteristics of the imagery used will affect 

effectiveness of automated image extraction methods 

[13]. Therefore, utilizing the same or similar image 

source is necessary to ensure consistent and accurate 

extraction. Additionally, as stated, the accuracy of 

feature extraction methods relies on well-defined 

classifier definition files. Enhanced spectral 

characteristics, such as bands outside the visible 

spectrum, can improve the definition of signature files. 

As demonstrated by [18], the use of multiple bands to 

create spectral indices can improve the effectiveness of 

automated feature extraction methods [18]. Thus, the 

limited spectral characteristics and possible 

inconsistencies in the spectral resolution of the imagery 

used in this study likely hampered the accuracy of the 

classifier definition files as demonstrated in their 

difficulty distinguishing similar colored but different 

features like brown roofs and dirt. Therefore, using 

imagery with greater spectral characteristics and 

resolution to develop the classifier definition file and 

classify would likely increase the accuracy of this 

toolkit, as demonstrated by [18]. The geographical 

location will also impact the spectral signatures used to 

identify camp features due to variations in the contrast 

between camp features and the surrounding 

environment and the use of different materials to build 

structures [8, 29]. This is highlighted by the significant 

increase in margin of error and RMSE for test camps 

not used to develop the definition files despite being in 

close proximity with the camps used to develop the 

definition file. Additionally, seasonal variations can 

affect spectral signatures [30]. Lastly, tree and cloud 

cover can impede automated extraction efforts, thus 

leading to misclassification or the inability to conduct 

any extraction [17]. 

 

4.2 Future work: As stated, the effectiveness of 

population estimates derived from automated 

classification processes relies on the development of 

well-defined classifier definition files. Improving the 

classifier training methods, segmentation process, and 

incorporating additional information, such as spectral 

indices, as well as using higher quality imagery can 

improve the accuracy and transferability of classifier 

definition files. Although, this tool functioned as 

designed its accuracy was limited by the classifier 

definition file. Therefore, if humanitarian organizations 

dedicate the resources to develop a well-defined 

classifier definition file, they can use this toolkit to 

provide quick, up-to-date, consistent, and accurate 

population estimates, thus improving the ability to 

monitor and manage refugee and IDP camps. The 

toolkit also enables non-technical users to leverage 

automated feature extraction, thus lowering the number 

of technical users needed to derive population 

estimates from imagery.  

 Users of this toolkit can improve its accuracy 

by applying semi-automatic image analysis methods, 

as demonstrated by [8, 28, 30]. Semi-automatic image 

analysis combines automatic image analysis, as 

demonstrated in this study, with manual edits [8]. This 
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requires users to manually inspect the output data and 

edit misclassified features. Although this will increase 

the processing time, it will improve the accuracy of the 

toolkit while decreasing processing time and costs 

associated with field-base and manual extraction 

population estimates [28].  

Although it is difficult to provide accurate 

population estimates for a variety of reasons, the 

toolkit presented here is still useful for capturing 

change. Thus, the methods presented here can be used 

for monitoring, managing, and planning of camps by 

providing an efficient way to identify changes taking 

place on the ground, which in turn can initiate field-

based censuses and updating of information. 
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