

Creating Effective Industrial-Control-System Honeypots

Neil C. Rowe, Thuy D. Nguyen, Marian M. Kendrick,

Zaki A. Rucker, Dahae Hyun, and Justin C. Brown
U.S. Naval Postgraduate School

Monterey, CA 93943 USA
Contact: ncrowe@nps.edu

Abstract

Cyberattacks on industrial control systems

(ICSs) can be especially damaging since they often
target critical infrastructure. Honeypots are
valuable network-defense tools, but they are
difficult to implement for ICSs because they must
then simulate more than familiar protocols. This
research compared the performance of the Conpot
and GridPot honeypot tools for simulating nodes
on an electric grid for live (not recorded) traffic.
We evaluated the success of their deceptions by
observing their activity types and by scanning them.
GridPot received a higher rate of traffic than
Conpot, and many visitors to both were deceived as
to whether they were dealing with a honeypot. We
also tested Shodan’s Honeyscore for finding
honeypots, and found it was fooled by our
honeypots as well as others when, like most users,
it did not take site history into account. This is good
news for collecting useful attack intelligence with
ICS honeypots.

1. Introduction

Industrial control systems (ICSs) are important

concerns for cybersecurity even though they are not
attacked often, because an attack on critical
infrastructure such as a power grid can have
catastrophic effects on the operation of business
and government [1]. ICSs are vulnerable due to
their proprietary software and protocols, legacy
devices, and outdated operating systems.
Furthermore, they are difficult to update because
many must provide continuous operation.

Honeypots (decoy digital systems) are useful
defensive tools to investigate cyberattack threats
and other kinds of malicious activity. It is useful to
develop honeypots for ICSs to collect intelligence
on their kinds of attacks. However, creating an

effective honeypot for ICSs is more difficult than
for most network nodes because they must simulate
a wide variety of real-time industrial processes
using proprietary protocols as well as standard
protocols like TCP/IP. If ICS honeypots are not
simulated accurately, attackers may realize they are
being deceived and go away, failing to provide
useful intelligence.

We installed two open-source industrial-
control-system honeypots, Conpot [2] and GridPot
[3], and studied the live traffic to them to evaluate
their effectiveness. GridPot is a modified Conpot
designed to simulate different electric-grid models.
Conpot is simpler and served as a control
experiment to see if GridPot was a significant
advance. While they have been assessed
separately, no previous experiments have
compared their performance in the same
environment. We also checked whether a
commonly used network scanning tool could
identify these and similar honeypots.

2. Background

2.1. Electric grids

Our experiments focused on ICSs simulating

electrical grids. An electric grid (or bulk electric
power system) includes generation, transmission,
distribution, and end use [4]. The generation of
electricity occurs in many ways including coal-
fired plants, natural-gas plants, solar farms, wind
turbines, and hydroelectric plants. Generated
electricity is passed through transformers to step up
voltage to a very high level where it is then
transferred to transmission lines. Transmission
lines deliver electricity to substations. Substations
use a transformer to step down the voltage from
high to low voltage before it is distributed to end
users. A switch is a device used to direct the flow
of current by opening and closing a circuit. A

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 1845
URI: https://hdl.handle.net/10125/63967
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

substation employs each of these devices to safely
control the transfer of current from transmission to
distribution. Regulators ensure a constant and safe
voltage level is maintained throughout the bulk
power system.

Software now allows operators to monitor and
control portions of an electric grid without being at
each physical location. SCADA (Supervisory
Control and Acquisition) devices, a subset of ICSs,
in particular allow operators to monitor many
devices over a wide area. An IED (Intelligent
Electronic Device) like a controller or a digital
relay can send or receive data or control to or from
an external source. ICSs are a subtype of cyber-
physical systems, which integrate physics and logic
to allow interaction between digital, analog,
physical, and human components.

Electrical grids and related infrastructure have
been targeted by a number of types of malware [5].
Well-reported cases involved CRASHOVERRIDE
or Industroyer, STUXNET, BLACKENERGY 2,
and HAVEX. In December 2016, a transmission-
level substation was attacked in the Ukraine using
CRASHOVERRIDE [6]. Proof that grid
operations can be severely affected by a
cyberattack was demonstrated in a U.S.
Department of Energy test which caused the self-
destruction of a replica power plant generator by
means of a cyberattack [7].

Cyber threats that target the distribution
portion of the bulk power system are load shedding,
advanced metering infrastructures, and demand-
side management [8]. The U.S. has seen load-
shedding incidents in recent years that have caused
cascading power outages. In 2007, Tempe, Arizona
experienced large-scale load shedding which
affected 98,700 customers for almost an hour.

2.2. Honeypots for ICSs
Our research explored the use of honeypots to

collect data of cyberattacks on electric utilities.
Honeypots can be most useful for gathering
information about attacks when they entice
attackers into revealing a rich set of information
about their attacks [9]. Honeypots that conceal
their purpose through deception are more
productive because attackers do not want to interact
with honeypots [10]. High-interaction honeypots
can confuse attackers through program-based or
scripted interaction designed to encourage further
exploration. However, some botnets have evolved
to become aware of honeypots [11] by detecting
firewalls and filters on outbound traffic. Honeypots
desire to limit their liability in case they are used to

launch an attack on a third party. This could be
done with an intrusion-detection system that filters
for outbound activity. A bot that is prevented from
spreading malicious data from a honeypot would
detect that and recognize it is on a honeypot.

Several projects have used honeypots to
monitor attacks on ICSs. One project deployed a
large-scale cloud-based low-interaction honeypot
system for 28 days using Amazon’s EC2 cloud
environment [12]. This experiment monitored the
protocols DNP3, ICCP, IEC-104, Modbus, SNMP,
TFTP, and XMPP. The researchers concluded that
reconnaissance occurred more often than actual
attacks and it targeted single protocols rather than
combinations of protocols. They also identified a
positive correlation between Modbus
reconnaissance and discovery by the Shodan
network-scanning tool of Modbus-enabled devices.

HoneyPhy [13] addressed the problem that ICS
honeypots could be unrealistic in modeling device
physics and device-actuation times and therefore
could be identifiable. One honeypot they designed
provided general structure-modeling processes and
devices implementing a simple heating-ventilation
system. Another modeled a simplified water-
treatment system.

The GasPot honeypot simulated the Veeder-
Root Guardian aboveground storage- tank
monitoring system [14]. Logs revealed
unauthorized reads and writes, defacement, and
denial of service attacks . GasPot was subsequently
integrated into Conpot as the guardian_ast
template. Similarly, the kamstrup_382 template
provided by Conpot mimics a Kamstrup model
382 smart electrical meter, providing an electrical
power metering service on port 1025 and a
management service on port 50100. The hardware
on which this is based provides measurement of
electrical circuits up to three-phase ones, allows
remote access by way of optional modules for
TCP/IP networking over Wi-Fi, GSM, and GPRS
connectivity, and enables local interaction via
optional serial and infrared interfaces.

Another honeypot architecture used
geographically dispersed nodes hosted on Amazon
Elastic Cloud Compute with emulation support for
the protocols DNP3, ICCP, IEC 104, Modbus, SNMP,
TFTP, and XMPP [15]. In experiments, the Shodan
network scanner provided the first unsolicited
interaction with five of the six honeypots, and
attacks began only after each honeypot was listed
on Shodan. This suggests that attackers are
exploiting network-scanning databases.

Other similar honeypot projects were CryPLH
[16] and the Digital Bond SCADA Honeynet [17].

Page 1846

2.3. Network scanning
Honeypots may be detectable by distinctive

clues they provide to network protocols. Network
scanning can look for these. Transport- layer
scanners send some combination of TCP, UDP,
and ICMP packets to a remote host, waiting an
assigned time for responses. Nmap (nmap.org) is
popular tool for transport-layer scanning.
Protocol scanners interact with specific application-
level protocols and require expertise with
proprietary communications protocols. For
instance, Digital Bond’s Redpoint uses Nmap’s
NSE tool to use ICS protocols [18]. Within
Redpoint the s7-info.nse script can do simple
interactions with Siemens PLC devices with port
102 and S7Comm.

Some scanners focus on specific protocols like
zmap (zmap.io), and others scan more broadly such
as ZoomEye (www.zoomeye.org). The Shodan
scanner (www.shodan.io) scans Internet-connected
hosts continuously. I t a p p e a r s to pick IP
addresses randomly and is more successful in the
IPv4 address space [19]. The Shodan website
provides a service called Honeyscore which uses
a proprietary algorithm to i d e n t i f y honeypots.

Project SHINE f o r t w o y e a r s queried
Shodan for selected search terms, starting with
manufacturer names from trade magazines and
blogs, and continuing by query terms derived from
the results of searches on manufacturer names [20].
Eventually they sampled 2,186,971 devices from
which they derived 578 unique search terms for
traditional industrial-control system devices and
349 search terms for “non-traditional” devices but
having physical controls of some kind. The
protocols studied were S7Comm, Modbus, DNP3,
EtherNet/IP, and BACNet. Scanning did include
the possibility of duplicate devices and NAT
connections.

In another experiment, a Siemens RuggedCom
RS910 was configured to respond as a water pump
[21]. This RUGGEDTRAX honeypot was
configured to run SSH, HTTP, HTTPS, and DNP3
services. The device firmware name and version
were displayed on its HTTPS web page, alongside a
fictitious System Name indicating a water well in a
s p e c i f i c l o c a t i o n . The firmware sent a
variant of the “goahead” embedded web server
banner. The honeypot was indexed by Shodan two
days after being connected to Internet.

An experiment with the Bodenheim tool [19]
observed the success of Shodan in identifying
Internet-connected industrial-control system
devices. For 55 days Bodenheim connected a set

of four Allen-Bradley ControlLogix 1756-L61
controllers to the Internet as honeypot. Two
controllers connected with an unmodified
“Standard” HTTP banner, one with an “Obfuscated”
banner, and one with an “Advertised” HTTP banner.
All four were probed within four days of
deployment, and t wo wi t h i n a d a y ; data from
all four was visible on the Shodan website within
19 days of deployment, despite never having
provided their addresses to Shodan. This could
reflect historical data about the addresses.

3. Experiments with Conpot

We first tested a low-interaction ICS honeypot,

Conpot from conpot.org [2]. It simulates an ICS
such as a power plant and collects information of
cyberattacks. It acts as a master server for
commonly used ICS network protocols and
provides multiple templates that simulate simple
forms of them. Conpot served as our control
experiment for the subsequent experiments with
GridPot. More details are in [22].

3.1. Methodology
Our experiments used a laptop computer with

a Linux Ubuntu 16.04.3 LTS operating system. A
Linux virtual machine was installed using Oracle
VM Virtualbox 5.1.20, and Conpot 0.5.1 was
installed in it. A local network was set up outside
of our school’s firewall to make it easier for live
attackers to discover the honeypot without
advertising it. Both the host and virtual machines
used statically assigned IPv4 addresses and
communicated with internal bridged networking.
While our local network could not be mistaken for
a major ICS installation, it could simulate a small
node on an electrical grid.

Conpot offers four different templates. In our
first experiments we used the “default template”
which simulates an electric-power plant using
Siemens SIMATIC S7-200 Programmable Logic
Controllers that communicate with at least two
slaves. Conpot simulates the initial interactions
with the protocols HTTP, Modbus over TCP/IP,
S7Comm, SNMP, BACnet, IPMI, EtherNet/IP, and
CIP. We created parsers to extract clues from log
data for each protocol such as IP addresses, ports,
and basic protocol-specific data. The IPMI
emulator was special in that it mimics a baseboard
management controller supporting functions such
as “chassis status” and “user list”, and permits
manipulation of system power [23].

Page 1847

3.2. Conpot results
Our honeypot collected live traffic over four

months from October 2017 to February 2018
except when the main log was backed up. The

network protocol analyzer Wireshark
(www.wireshark.org) monitored and captured
network traffic. Table 1 summarizes the traffic
counts by protocol seen by Conpot and in the
subsequent experiments with GridPot.

Table 1: Traffic percentages by protocol in live-traffic testing of the two honeypots.

Protocol Conpot
count

Conpot
percentage

GridPot
count

GridPot
percentage

HTTP 7,366 66.7% 9,641 93.0%

Modbus 2,316 21.0% 621 6.0%
S7Comm 645 5.8% 102 1.0%
BACnet 311 2.8% 0 0.0%
IPMI 262 2.4% 0 0.0%
EtherNet/IP 154 1.4% 0 0.0%
Total 11,054 100% 10,364 100%

Only 59 of the 2,316 Modbus activities had a

valid Modbus function code of the 19 possible:
0x03 (Read Holding Register), 0x2b (Read Device
Identification), and 0x11 (Report Server ID).
These suggest reconnaissance only. Spikes of
activity occurred on November 13, November 23,
December 8, and January 10. On November 16,
ICS-CERT released a security advisory about
Siemens SICAM equipment; Modbus is supported
by this product, and the equipment emulated by
Conpot is also a Siemens product, so that probably
explains two of the activity spikes.

With EtherNet/IP activities, only NOP,
RegisterSession, and ListIdentity commands were
used. Invalid commands or null commands were
also observed; these suggest probing attempts. For
S7Comm, all packets had a data length of 0 or 8 and
a request ID of 0. For BACnet, some data
apparently was sent for all 78 established
connections using an invalid type, resulting in 78
decoding errors, but we could not identify where it
came from. For IPMI activities, 129 had new
traffic, 30 were returning traffic, and only 2
sessions were properly closed.

More overall activity occurred in October and
November, and then it gradually declined (Figure
1), as is typical of new honeypots. The decline was
predominantly due to HTTP and the spikes were
predominantly due to Modbus activities. Claimed

nationalities of the attacks were all over the world,
suggesting diverse international reconnaissance
(Table 2).

Table 2: Country claimed by Conpot
attack traffic observed.

Country Percent Country Percent
U.S. 27% Netherlands 5%
China 22% Hong Kong 4%
Brazil 8% France 4%
Russia 8% Indonesia 3%
Egypt 6% Indonesia 3%
India 6% Japan 3%

As could be expected with a low-interaction

honeypot, overall traffic was mostly
reconnaissance. Conpot traffic concentrated on the
most familiar protocol, HTTP, despite its limited
capability on this honeypot. Modbus traffic
appeared to be testing access permutations using
many malformed packets. EtherNet/IP and
Modbus activities showed that Conpot had
difficulty distinguishing between real protocol
activities and embedded protocol requests sent to
the ports on which Conpot listened. Since Conpot
only logs basic flow data, embedded payloads to
unnoticed.

Page 1848

Figure 1: Conpot activity count of all protocols over time.

4. Experiments with GridPot
We also tested the GridPot open-source high-

interaction ICS honeypot framework
(github.com/sk4ld/gridpot). It uses GridLAB-D, a
simulation and analysis tool for power-distribution
systems (gridlab.org), developed by the U.S.
Department of Energy and Pacific Northwest
National Laboratory to enable modeling and testing
of power distribution systems at low cost [24]. It
was run on the same local network as our Conpot
experiments to enable a fair comparison. More
details are in [25].

4.1. Setup
GridLAB-D Model objects used in our

honeypot were the node, link, switch, transformer,
and regulator. Object node properties include
phases, object connections, open status, power
flow, temperature, tap position, and configuration.
Objects can include schedules of parameter values
over time. Network protocols we supported with
GridPot were HTTP, Modbus, S7Comm, SNMP,
and IEC 61850.

GridPot uses a honeypot layer and a modeling
layer to add electrical components and integration
between GridLAB-D and Conpot, including IEC
61850 communication. GridPot’s honeypot layer

is derived from Conpot, adding an XML-formatted
GridPot template that specifies to which GridLAB-
D model to link. Additional Python-coded GridPot
files are included in the honeypot layer to retrieve
parameter values from the running model in real
time using port 6267.

GridPot’s primary modeling layer uses
GridLAB-D’s Powerflow module, adding GridPot
model (GPM) configuration files. Powerflow
simulates voltage and current values across an
IEEE 13 node grid model with 15 houses. GridPot
source code includes additional modeling features
for “intelligent electronic devices” under an electric
components subdirectory. This contains code to
simulate a GE Brick Merging Unit and a generic
input/output switch control device.

Our experiments used both a test environment
and a live environment. The test environment
altered the Conpot code to use its localhost IP
address instead of the host environment’s external
IP address, which kept traffic internal to our
machine for testing. The live environment enabled
external user access and threat data collection from
outside the school firewall. We used network-
address-translation, host-only-adapter, and
bridged-adapter network settings in both
environments.

Page 1849

We used Oracle VM Virtualbox 5.2.22 to
install a virtual machine in which to place GridPot.
It ran the same operating system as the host. The
honeypot layer initialized Conpot using the GridPot
template and the modeling layer initialized the
GridLAB-D model IEEE_13_Node_With_Houses.
We updated the “gridpotmodel_file” field value to
link with our custom GPM file for the latter. Four
protocol servers were started upon launch as
written in the original source code. Modbus is used
on TCP/IP port 502 connecting to one client and
two servers.

The IEEE_13_Node_With_Houses model
contained switch, transformer, and regulator
objects used for the Conpot integration and
required minimal code modifications. A schedule
based on local time was used to alter power flow
readings across the switch. Real-time power-in and
power-out simulated switch parameter values
which were displayed on our web-based interface.
We created a GPM file to link with the switch,
transformer, and regulator objects specified in the
IEEE_13_Node_With_Houses GLM file by
modifying an existing GPM file.

4.2. Testing
We used the Wireshark network-protocol

analyzer (www.wireshark.org) to confirm that
Conpot and Gridpot logs were complete; the Nmap
(nmap.org) and Linux Netstat built-in network
scanners to check which ports were open; the
Nessus vulnerability-assessment tool
(www.tenable.com) to check for obvious
vulnerabilities; and the Metasploit penetration
tester (www.metasploit.com) to test logging of
attacks. Nessus and Metasploit were used with
SCADA plugins.

First we tested if our web-based interface
display was accurate to the running model by
pointing a web-browser to GridPot’s HTTP server
using localhost IP address and TCP port 80, and
comparing the results to the GridLAB-D model
instance that listened on port 6267. We then used
the Netstat tool to determine which ports were
opened by GridPot. We then ran scans using
Nmap, Nessus, and Metasploit against our
honeypot. We focused these scans on open ports
and probed for operational-technology devices
using the Modbus protocol by running detection,
discovery, and interaction scans. We focused on
Modbus since it is the most common ICS protocol.

Host-to-virtual-machine baseline testing first
required altering our network connectivity from
disabled-network status to host-only status. We

tested the host-only network status using “ping”
commands between our host and virtual machine
and confirmed receipt of a “network is
unreachable” error when trying to ping an arbitrary
IP address. The same scans using Nmap, Nessus,
and Metasploit were then performed, changing the
IP address to our GridPot virtual machine instead
of the localhost address. To generate useful log
data for comparison against live denial-of-service
attacks, we conducted a scan using an auxiliary
Metasploit module.

We modified portions of the default Conpot
configuration in the template to eliminate well-
known clues to Conpot and fool more attackers.
Testing confirmed our web-based interface
accurately displayed values of the running
GridLAB-D model. Netstat results confirmed that
our four protocol ports (HTTP, Modbus, S7Comm,
and SNMP) were open. Results of the Nmap,
Nessus, and Metasploit scans also saw these ports
as open and that Modbus-enabled devices were
running on our honeypot.

Our live honeypot collected data over 19 days
from April 11-30, 2019. GridPot ran continuously
except when we fixed a broken link. Conpot
stopped logging twice, which could have been due
either to bugs or malicious activity that we could
not distinguish.

4.3. GridPot results
Live GridPot traffic data collected by

Wireshark totaled 1,525,059 packets and 165 MBs.
This was a higher traffic rate of 545 interactions per
day versus 92 with Conpot. The GridPot protocol
distribution differed from that of Conpot (Table 1).
BACnet, IPMI, and EtherNet/IP were not included
in the GridPot template we used and so were not
logged, though there was likely a small amount of
their traffic judging by the Conpot results. HTTP
traffic was a larger percentage of traffic with
GridPot. This is likely due to the additional
deceptions beyond Conpot provided by GridPot
that were accessible by HTTP, though a
contributing factor could be the increasing numbers
over a year of real electric grids that use HTTP [1].
It thus appears that GridPot’s additional deceptions
are justified and effective.

Heavy scanning with Modbus was seen twice.
39 unique source addresses sent packets to our
honeypot multiple times, some of which
demonstrated information had been learned from
the first interaction.

The greatest number of packets (1,013,726)
came from a California-based cloud-hosting

Page 1850

corporation. It came from an address registered to
Fastly, a content delivery network provider.
GridPot exchanged 84,588 packets with just one
Fastly address using MaxMind. Traffic from this
address occurred throughout our collection, and
contained over 26,000 retransmissions of nearly
identical ACK messages, so this campaign was not
intelligent.

The second-highest source of packets was an
IP address registered to an LLC in St. Petersburg,
Russia, which was responsible for 56,280 packets
of 3,221KB. Censys.io traced this address to a
Debian-based SSH server in Amsterdam. 38,754
were SYN packets sent to GridPot, and there were
also RST packets.

Seven different HTTP methods were seen in
the HTTP requests, including 79 “None” and 78
“Bad”. Significant spikes in the number of HTTP
requests occurred almost daily (Figure 2). Each
peak contained roughly the same number of GET
and POST request methods in the same order with
varying speeds. This suggests these attackers used
a single HTTP scanning tool to conduct the attacks,
and were not inspecting their results carefully. We
compared this apparent scanning to our host-to-
virtual-machine logs and concluded that steps of
the real scans did not match any of our test scans

because of the quite different distributions in the
times of HTTP commands for these attacks.

Most Modbus traffic used the “none” function
code, and the remainder split between function
codes 17 and 43, totaling 597, 5, and 2,
respectively. Protocol scanning using Modbus was
visible in the form of incrementing slave ID
numbers with each new request seen. By
comparing to our host-to-virtual-machine logs, we
inferred that Nmap and the “modbus-discover.nse”
script were used in both cases by the similarity in
the sequencing of function code, the slave ID, the
request values, and the response values.

We observed 20 new S7Comm sessions, 102
S7Comm connections, 13 COTP connection
requests, and 19 S7 packets. S7Comm messages
were only of types 1 and 7, with counts 6 and 13
respectively.

Configuring GridPot was difficult due its lack
of updating. But once configured, it proved
successful at collecting intelligence for threat
analysis. It is apparent that attackers thoroughly
explore Web-based vulnerabilities in ICS
interfaces, as seen in the large amount of HTTP
traffic captured. The Modbus scanning indicated
that our simulated grid was realistic enough to
encourage specialized-protocol reconnaissance.

Figure 2: GridPot HTTP requests during live testing.

5. Testing scanning for honeypots
We also conducted tests using network scanning

tools to try to detect honeypots [26]. Most of
experiments used Shodan’s Honeyscore, which rates a
site from 0.0 (not a honeypot) to 1.0 (definitely a

honeypot). The Honeyscore tool was sure that our
final GridPot implementation was a honeypot when its
history was taken into account, but was sure it was not
a honeypot without the history. This is likely because
we have reused the IP addresses often for other
honeypot projects [27, 28], so Shodan’s automated

Page 1851

scanning has found them many times, but the
customization of the configuration of our GridPot
implementation appeared to be a sufficient disguise of
the honeypot without knowing the history. In fact, the
disguise of our GridPot implementation may have
been better than that of previous honeypots on the site
because its traffic was significantly higher than the
others, so not many visitors were inspecting the
scanning history.

To further explore these issues, we examined the
records of 122,668 Internet sites in Shodan’s database
collected between April 22, 2016 and April 20, 2017
that had records for one of eight ports known to be
specifically related to ICSs according to the Digital
Bond ICS Enumeration plugin: Modbus, S7Comm,
BACnet, CODESYS, Niagara Fox, OMRONFINS,
ProconOS, and Ethernet/IP. For 114 of these, no
Honeyscore was reported for reasons unexplained. Of
the remainder, 1063 sites had a Honeyscore of 0.5 or
larger for a rate of 0.87%. Shodan does not publish
their criteria for Honeyscore, apparently to discourage
honeypot developers from engineering easy
countermeasures. However, some clues are obvious,
so as a simple test, we explored three heuristics:

• H1: A device which services the S7Comm
protocol on tcp/102 and returns the terms
“Technodrome”, “Mouser”, or “88111222” is a
honeypot. These strings occur in the PLC Name,
Plant ID, and Serial number fields in Conpot
default implementations. These are implausible
as values in a production S7Comm service.

• H2: A device providing the same ICS services
as Conpot’s default template, plus or minus one
service, is a honeypot. Those services are HTTP
(port 80), S7Comm (102), SNMP (161), Modbus
(502), IPMI (623), and BACnet udp (47808). It is
unusual to see these services together otherwise.

• H3: A device providing industrial-control
services from a public cloud location is running a
honeypot. Cloud locations came from hosts
identified as matching H1 in the Shodan data,
names with the keywords “cloud” or “hosting”, and
names listed in a “Most Reliable Hosting
Company Sites” page at Netcraft.com.

None of these rules applied to our GridPot site:

• H1 does not apply because we changed default
strings in our implementation. However, when
we ran Conpot a year previously, it had the
default strings [22].

• H2 does not apply because using Nmap against
our GridPot honeypot, we found open ports 80,
102, 502, 6267, 8834, and 11211, so a scanner

could match only 3 of the 6 target ports with 3
extra ports.

• H3 does not apply because our site did not offer
any of those clues to directory services. It was
listed by our Internet Service Provider (AT&T) as
being associated with our school, but that is not
one of the clues.

To test the heuristics, we supplemented the 1063
high-Honeyscore sites with all sites matching either
H1, H2, or H3 in the Shodan database, to get a test set
of 8127 sites. We manually inspected other scanning
data to estimate that 748 of these were honeypots
(9.2%). This inspection used DNS node data, IP
geolocations, and “whois” service data whenever there
was a strong disagreement between Honeyscore and
our heuristics. For some hosts we transmitted active
probes using the Nmap OS detection method and
observed the response. Among the sites found from
manual inspection were 550 Conpot clones identified
by duplicated ICS serial numbers, duplicated SSH
fingerprints on controllers, and in one case, an FTP
honeypot on the same site.

Overall counts on the test set are shown in Table
3. We assumed a Honeyscore ≥ 0.5 as “ground truth”
of a honeypot, and ignored the missing Honeyscore
values. Then in the sample of 8127, H1 had a
precision of 1.00, recall of 0.20, and an F-score of
0.33; H2 had a precision of 0.28, recall of 0.92, and an
F-score of 0.43; H3 had a precision of 0.03, recall of
0.14, and an F-score of 0.14. So H2 was the best and
H3 was the worst. Note there is a tradeoff between
precision and recall which will need to be best set
based on information-security priorities.

As for identifying honeypots using Honeyscore
alone, the precision for Honeyscore ≥ 0.5 was
748/1063 = 0.703. The recall was difficult to estimate,
but it must be close to 1.0 because for H1 we found 7
sites with lower Honeyscores that we confirmed were
honeypots; for H2 we found only 1 of 108 lower
Honeyscores were honeypots; and for H3 we found no
honeypots in a sample of 100 with lower Honeyscores.
Thus the F-score is close to 0.70. Thus our heuristics
can model some but not all of Honeyscore
functionality.

Thus we conclude that Shodan can be fooled by
an ICS honeypot with a few simple modifications to
the default configuration that we can find by testing
heuristics, provided Shodan is not examining site
history. But on the other side of the coin, these results
suggest that probes and attacks that do use history
should be easy to fool with “fake honeypots” [29],
real ICSs that have artifacts, services, and history of
honeypots; Shodan’s outdated information will “scare

Page 1852

Table 3: Results of testing a sample of
122,068 sites in Shodan's database for

honeypot clues.

H1 H2 H3 Honeyscore ≥
0.5?

Count

Y Y Y Y 81
Y Y N Y 16
Y N Y Y 3
Y N N Y 41
N Y Y Y 25
N Y N Y 566
N N Y Y 234
N N N Y 97
Y Y Y N 1
Y Y N N 2
Y N Y N 0
Y N N N 2
N Y Y N 1
N Y N N 1762
N N Y N 4175
N N N N 115548
N Y N missing 2
N N Y missing 3
N N N missing 109

away” attacks and help protect these sites. Then if
attackers try to counter this by ignoring the historical
data and just testing the current properties of the site
with heuristics like H1, H2, and H3, some small
modifications to the site like those of our GridPot
implementation will cause a Shodan-like system to
conclude a real honeypot is not a honeypot. The nice
thing about this strategy is that the sort of attackers
for which this will work best are the more
sophisticated and intelligent attackers who gather
thorough intelligence before focused attacks, so these
sites can provide some sorely needed defensive
techniques for attackers to which we are especially
vulnerable.

6. Conclusions
Due to their real-time requirements and

proprietary protocols, ICSs are more difficult to
simulate with honeypots than other kinds of network
nodes. The two ICS-honeypot frameworks we tested,
Conpot and GridPot, did seem to be effective,
however; we saw more traffic to them, and more
varied traffic, than to our previous secure-shell and
Web honeypots despite the rarity of ICS sites on the
Internet. GridPot was definitely more successful at
deception than Conpot because it generated a higher

rate of traffic, mostly HTTP. Deception was effective
for both honeypots because most traffic either did not
recognize features of a honeypot or did not care. For
the minority of attackers who either inspect sites or
use scanning tools against them, our sites were
probably easy to recognize as honeypots since they
were not on a specialized subnetwork. However, this
means that a different kind of deception, “fake
honeypots” that are real ICSs with honeypot artifacts
like default Conpot configuration names, could
encourage these attackers to leave.

Future work will explore this as well as adding
more simulated devices and services to ICS
honeypots to keep attackers interested longer. Future
work will also involve industry collaborators. Our
data is available for other researchers to use under
restrictions.

Acknowledgements
This work was supported in part by the NPS

Foundation. The views expressed are those of the
authors and do not represent the U.S. Government.

References

[1] E. Knapp and J. Langill, Industrial Network Security.
2nd ed. Waltham, MA, USA: Syngress, Palo Alto,
CA, 2015.

[2] A. Jicha, M. Patton, and H. Chen, “SCADA
Honeypots: An In-Depth Analysis of Conpot,” in
Proc. of the 2016 IEEE Conf. on Intelligence and
Security Information, Tucson, AZ, USA, 2016, pp.
196–198.

[3] W. Redwood, "Cyber Physical System Vulnerability
Research". Ph.D. Dissertation, Florida State
University, 2015.

[4] S. Blume (Ed.), Electric Power System Basics for the
Nonelectrical Professional, Wiley, New York, 2007,
pp. 53-89.

[5] C. Bodungen, B. Singer, A. Shbeeb, K. Wilhoit, and S.
Hilt, Hacking Exposed Industrial Control Systems:
ICS and SCADA Security Secrets and Solutions. New
York, NY, USA. 2016.

[6] NCCIC, “CrashOverride Malware,” Washington, DC,
USA, Alert ICS-ALERT-17-206-01, 2017.

[7] C. Theohary, “Cyber Operations in DoD Policy and
Plans: Issues for Congress,” CRS Report No. R43848,
2015.

[8] S. Sridhar, A. Hahn, and M. Govindarasu, “Cyber–
Physical System Security for the Electric Power Grid,”
Proceedings of the IEEE, vol. 100, no. 1, pp. 210–
224, Jan. 2012.

Page 1853

[9] R. Joshi and A. Sardana, Honeypots: A New Paradigm
in Information Security, CRC Press, Boca Raton, FL,
2011.

[10] N. Rowe, “Honeypot Deception Tactics”, Chapter 3 in
E. Al-Shaer, J. Wei, K. Hamlen, and C. Wang (Eds.),
Autonomous Cyber Deception: Reasoning, Adaptive
Planning, and Evaluation of HoneyThings, Springer,
Chaum, Switzerland, 2018, pp. 35-45.

[11] C. Zou and R. Cunningham, “Honeypot-Aware
Advanced Botnet Construction and Maintenance,” in
International Conference on Dependable Systems and
Networks (DSN’06), 2006, pp. 199–208.

[12] A. Serbanescu, S. Obermeier, and Y. Der-Yeuan,
“Threat Analysis Using a Large-Scale Honeynet,” in
Proc. of the 3rd Int. Sym. for ICS & SCADA Cyber
Sec. Res., 2015.

[13] S. Litchfield, “HoneyPhy: A Physics-Aware CPS
Honeypot Framework,” M.S. thesis, Dept. of Elec.
and Comp. Eng., Georgia Inst. of Tech., Atlanta, GA,
USA, 2017.

[14] L. Rist, “Gas Tank Monitoring System Honeypot”,
September 2015, available at www.honeynet.org/node/
1269, accessed July 17, 2016.

[15] A. Serbanescu, S. Obermeier, and D.-Y. Yu, “A
Flexible Architecture for Industrial Control System
Honeypots,” in 2015 12th International Joint
Conference on e-Business and Telecommunications,
July 2015, vol. 4, pp. 16–26.

[16] D. Buza, F. Juhász, G. Miru, M. Félegyházi, and T.
Holczer, “CryPLH: Protecting Smart Energy Systems
from Targeted Attacks with a PLC Honeypot, Springer
Chaum, Switzerland, 2014, pp. 181–192.

[17] Digital Bond, Inc., “SCADA Honeynet”, available at
digitalbond.com/tools/scada-honeynet, 2016, accessed
August 20, 2016.

[18] Digital Bond Inc., “Digital Bond’s ICS Enumeration
Tools”, available at github.com/digitalbond/Redpoint,
accessed May 26, 2016.

[19] R. Bodenheim, J. Butts, S. Dunlap, and B. Mullins,
“Evaluation of the Ability of the Shodan Search
Engine to Identify Internet-Facing Industrial Control
Devices,” International Journal of Critical
Infrastructure Protection, vol. 7, no. 2, pp. 114–123,
2014.

[20] B. Radvanovsky and J. Brodsky, “Project SHINE
(SHodan INtelligence Extraction) Findings Report”,
October 2014, available at www.slideshare.net/
BobRadvanovsky/project-shine-findings-report-dated-
1oct2014, October 2014, accessed August 31, 2016.

[21] B. Radvanovsky, “Project RUGGEDTRAX
SCADA/ICS Analysis Findings Report”, available at
www.slideshare.net/BobRadvanovsky/project-
ruggedtrax-findings-report-28nov2015, November
2015.

[22] D. Hyun, “Extraction and Analysis of IOCs Using
Honeypots”, M.S. thesis, U.S. Naval Postgraduate
School, March 2018.

[23] P. Soòky, “Extented Functionality of Honeypots”,
B.S. thesis, Brno University of Technology, available
at dspace.vutbr.cz/bitstream/handle/11012/52363/
16127.pdf?sequence=2, 2015, accessed September 3,
2016.

[24] N. Lu, Z. Taylor, D. Chassin, R. Guttromson, and S.
Studham (June 16, 2005). "Parallel Computing
Environments and Methods for Power Distribution
System Simulation”, Proc. IEEE Power Engineering
Society General Meeting, San Francisco, CA, US,
June 2005, pp. 215-219.

[25] M. Kendrick and Z. Rucker, “Energy-Grid Threat
Analysis Using Honeypots”, M.S. thesis, U.S. Naval
Postgraduate School, June 2019.

[26] J. Brown, “Identifying Honeypots among Internet-
Connected Industrial Control Devices”, M.S. thesis,
U.S. Naval Postgraduate School, expected September
2019.

[27] W. Chong and C. Koh, “Learning Cyberattack
Patterns with Active Honeypots”, M.S. thesis, U.S.
Naval Postgraduate School, September 2018.

[28] B. Henderson, S. McKenna, and N. Rowe, “Web
Honeypots for Spies”, Intl. Conf. on Computational
Science and Computational Intelligence, December
2018, Las Vegas, NV, USA, pp. 1-6.

[29] N. Rowe and J. Rrushi, Introduction to
Cyberdeception, Springer, New York, 2016.

Page 1854

https://digitalbond.com/tools/scada-honeynet
https://ieeexplore.ieee.org/document/1489110
https://ieeexplore.ieee.org/document/1489110
https://ieeexplore.ieee.org/document/1489110
https://ieeexplore.ieee.org/document/1489110
https://ieeexplore.ieee.org/document/1489110

	1. Introduction
	2. Background
	2.1. Electric grids
	2.2. Honeypots for ICSs
	2.3. Network scanning

	3. Experiments with Conpot
	3.1. Methodology
	3.2. Conpot results

	4. Experiments with GridPot
	4.1. Setup
	4.2. Testing
	4.3. GridPot results

	5. Testing scanning for honeypots
	6. Conclusions
	Acknowledgements
	References

