
Communications of the Association for Information Systems Communications of the Association for Information Systems

Volume 46 Article 26

6-2020

The Paradox of Choice: Investigating Selection Strategies for The Paradox of Choice: Investigating Selection Strategies for

Android Malware Datasets Using a Machine-learning Approach Android Malware Datasets Using a Machine-learning Approach

Shweta Sharma
National Institute of Technical Teachers Training and Research, shweta.cse@nitttrchd.ac.in

Naveen Kumar
University of Oklahoma

Rakesh Kumar
National Institute of Technical Teachers Training and Research

C. Rama Krishna
National Institute of Technical Teachers Training and Research

Follow this and additional works at: https://aisel.aisnet.org/cais

Recommended Citation Recommended Citation
Sharma, S., Kumar, N., Kumar, R., & Krishna, C. (2020). The Paradox of Choice: Investigating Selection
Strategies for Android Malware Datasets Using a Machine-learning Approach. Communications of the
Association for Information Systems, 46, pp-pp. https://doi.org/10.17705/1CAIS.04626

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for
inclusion in Communications of the Association for Information Systems by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/cais
https://aisel.aisnet.org/cais/vol46
https://aisel.aisnet.org/cais/vol46/iss1/26
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol46%2Fiss1%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17705/1CAIS.04626
mailto:elibrary@aisnet.org%3E

C

ommunications of the

A

I

S

 ssociation for nformation ystems

Research Paper DOI: 10.17705/1CAIS.04626 ISSN: 1529-3181

Volume 46 Paper 26 pp. 619 – 637 June 2020

The Paradox of Choice: Investigating Selection
Strategies for Android Malware Datasets Using a
Machine-learning Approach

Shweta Sharma

Department of Computer Science and Engineering

 National Institute of Technical Teachers Training and
Research

India

shweta.cse@nitttrchd.ac.in

 Naveen Kumar

Price College of Business

University of Oklahoma

USA

Rakesh Kumar

Department of Computer Science and Engineering

 National Institute of Technical Teachers Training and
Research

India

C. Rama Krishna

Department of Computer Science and Engineering

 National Institute of Technical Teachers Training and
Research

India

Abstract:

The increase in the number of mobile devices that use the Android operating system has attracted the attention of
cybercriminals who want to disrupt or gain unauthorized access to them through malware infections. To prevent such
malware, cybersecurity experts and researchers require datasets of malware samples that most available antivirus
software programs cannot detect. However, researchers have infrequently discussed how to identify evolving Android
malware characteristics from different sources. In this paper, we analyze a wide variety of Android malware datasets
to determine more discriminative features such as permissions and intents. We then apply machine-learning
techniques on collected samples of different datasets based on the acquired features’ similarity. We perform random
sampling on each cluster of collected datasets to check the antivirus software’s capability to detect the sample. We
also discuss some common pitfalls in selecting datasets. Our findings benefit firms by acting as an exhaustive source
of information about leading Android malware datasets.

Keywords: Malware Detection, Data Analytics, Android Package Kits (APKs), Clustering, Machine Learning, Malware
Dataset Selection.

This manuscript underwent peer review. It was received 03/27/2019 and was with the authors for 3 months for 1 revision. Alvin
Leung served as Associate Editor.

http://aisel.aisnet.org/cais/

Communications of the Association for Information Systems 620

Volume 46 10.17705/1CAIS.04626 Paper 26

“It’s difficult to imagine the power that you’re going to have when so many different sorts of data are available.”

—Tim Berners-Lee, Inventor of the World Wide Web (Michael, n.d.)

1 Introduction

In 2018, the global population of smartphone users reached about 2.53 billion (Statista, 2019c). These
smartphones predominantly used the Android mobile operating system (OS), which had an 88 percent
market share in that year (Statista, 2019a). Android’s open-source software allows millions of developers
to deploy applications (commonly known as apps) on the Google Play Store or third-party platforms (e.g.,
SlideMe, F-Droid, torrents, etc.) that users can download to customize their smartphones accordingly. As
of 2018, the Google Play Store contains around 2.6 million apps (Statista, 2019b) that facilitate diverse
tasks such as writing documents, shopping online, renting homes, or requesting food delivery.

Due to its open-source software stack, Android has gained popularity compared to other operating
systems; unfortunately, this feature means cybercriminals often target it as well. Attackers create malign
Android apps or malware—spoofed versions of genuine apps that they deploy on Google Play Store or
third-party sources——to attract users. After users successfully install malware on their device, it can
perform malicious functions such as stealing, deleting, modifying, or hiding data.

Consequently, much research has focused on analyzing and detecting Android malware with many tools
and services, such as malware datasets. Thus, in order to facilitate research on malware detection,
researchers have developed a secondary market of extensive lists of known malware (i.e., malware
datasets). These malware datasets include Contagio, Drebin, AndRadar, Ransomware, VirusShare,
AndroZoo, HelDroid, and Genome. These datasets focus on profiling malware as comprehensively as
possible. In this study, we evaluate some critical aspects of the leading malware datasets and provide
guidelines to help firms and researchers select the malware datasets whose malware antivirus software
has the most trouble detecting. To the best of our knowledge, this work constitutes the first to critically
examine an available array of Android malware datasets.

2 Motivation

In recent years, individuals have begun to use smartphones not only for communication but also for
writing documentation, generating PDFs, sending emails, and so on. Further, today’s smartphones from
companies such as OnePlus, Samsung, HTC, and Asus have enough random access memory (RAM) that
they allow users to run multiple apps simultaneously without compromising speed. Users can access
various apps (such as mobile banking, social networking, online shopping, games, etc.) on smartphones
that perform similar tasks to software programs on desktop computers. Cybercriminals, however, can
make money more easily from smartphones than personal computers (PC). For example, malware can
send an SMS from a user’s phone to a premium-rate number where a network operator will debit the
charging cost from the user even though the malware triggered the action (La Polla, Martinelli, &
Sgandurra, 2013).

While much literature has discussed malware detection for Microsoft Windows (on PC), the research on
malware for Android devices remains an emerging field due in part to the relative lack of datasets.
Moreover, one cannot apply PC security solutions to Android smartphones due to the latter’s limited
resources (such as CPU and battery) and apps’ different features (such as permissions, intents, global
positioning system (GPS), etc.). In the existing literature, researchers have extracted features from
Android malware and performed experiments in which they have trained machine-learning models to
detect malware. However, attackers continually develop malware with new strategies, such as making it
undetectable for long periods of time (known as zero-day malware). The new types of Android malware
continuously emerge in different forms, including spyware, grayware, ransomware, adware, and so on.

Unique Android malware variants with different signatures and features continue to grow in number. For
example, in a study in the ELE Times (ELE Times, 2018), unique malware samples grew by 43 percent,
whereas the number of malicious families grew by 32 percent. Moreover, anti-malware software cannot
detect newer types of malware including viruses, trojans, grayware, and ransomware (Sen, 2018). Thus,
to perform experimental work using machine learning models, practitioners and researchers need updated
and comprehensive Android malware datasets for feature extraction. Furthermore, given that practitioners

621 Investigating Selection Strategies for Android Malware Datasets Using a Machine-learning Approach

Volume 46 10.17705/1CAIS.04626 Paper 26

require high-quality data (which contains metadata, the purpose behind its creation, sample types, and
measurement errors), we need to compare existing datasets in detail (Link et al., 2017).

As such, we conducted a comprehensive study on Android malware datasets to identify their key aspects.
We extracted features (i.e., permissions and intents) of all the datasets we collected and grouped them
into clusters according to similarities in their acquired features. We also used antivirus software to analyze
random samples from each database cluster to check whether it detected malicious code. Practitioners
and researchers can use our findings to select the most appropriate dataset which consists of malicious
samples that remain undetected by antivirus software.

3 Contribution

One cannot consider experiments on detecting Android malware that do not use an appropriate Android
malware dataset complete. For example, practitioners and researchers working on detecting Android
ransomware (a type of malware that demands ransom from victims via cryptocurrency to decrypt/unlock
their files on mobile phones (Sipior, Bierstaker, Borchardt, & Ward, 2018)) specifically need an Android
ransomware dataset for research. Since creating a primary dataset (i.e., collecting malware oneself) can
involve considerable costs in human labor and other resources, researchers and practitioners often use
secondary datasets (data that others (often in cooperation) have collected) that include malware samples.

In particular, for such experiments, researchers and practitioners require raw data in the form of Android
package kits (APKs) that they can reverse engineer and convert into a readable format (Java/XML). They
then extract the features (such as permissions, intents, system calls, etc.) from the malicious and benign
samples’ XML and Java code. Finally, they employ various machine-learning models (e.g., logistic
regression, support vector machine, neural network, etc.) that use these features as input to classify and
detect Android malware.

Many studies have used primary datasets (Andronio, Zanero, & Maggi, 2015; Arp et al., 2014; Chen et al.,
2018) and secondary datasets (Ab Razak et al., 2018; Saracino, Sgandurra, Dini, & Martinelli, 2016; Xiao,
Zhang, Mercaldo, Hu, & Sangaiah, 2017; Yuan, Lu, & Xue, 2016) to detect Android malware. However, no
study has examined existing Android malware datasets to identify their characteristics, what malware
types they cover, what difficulties researchers face while selecting them, and whether antivirus software
can detect the malware that they contain.

In particular, we clustered all the datasets we collected after reverse engineering them and extracting their
features to identify malware with similar kinds of features. We then used VirusTotal (a Web interface to
scan malware with over 70 antivirus software programs) to analyze random samples from each cluster
and determine which ones the available antivirus software detected the least. We conducted this study to
familiarize practitioners and researchers with these datasets and enable them to appropriately choose a
dataset—one of the most useful resources for their work. For example, researchers and practitioners who
develop detection methods for Android malware need datasets that comprise malicious samples that most
antivirus software cannot detect. This study also helps researchers and practitioners by providing
information on datasets that include benign samples.

This paper proceeds as follows: in Section 4, we review the literature on aggregating and using datasets.
In Section 5, we introduce the leading Android malware datasets: Contagio, Drebin, AndRadar,
Ransomware, VirusShare, and AndroZoo. In Section 6, we present implementation and experimental
details. Specifically, we extract features from all malicious samples in each dataset such as permissions
(allowing apps to access data stored on the smartphone) and intents (abstract objects that an app uses to
request an action from another app) after performing reverse engineering. We also discuss how we
performed clustering based on similarity in the extracted features from each dataset and then analyzed
malware samples in VirusTotal. In Section 7, we investigate each dataset to identify the common pitfalls in
data selection. In Section 8, we outline the evaluation metrics we used to determine how effectively
antivirus software could detect malware in the large datasets. Finally, in Section 9, we conclude the paper.

4 Literature Review

Since the literature lacks research studies on Android malware datasets, we reviewed research papers in
which authors collected datasets (from other fields) and used them to detect Android malware. As Figure
1 shows, we divided the literature survey into two parts: 1) dataset aggregation and 2) dataset utilization.

Communications of the Association for Information Systems 622

Volume 46 10.17705/1CAIS.04626 Paper 26

Figure 1. Literature Survey

4.1 Dataset Aggregation

Dataset aggregation refers to collecting and merging datasets from numerous sources such as the
Internet, speech, image, sports, and medical records. We found several studies in which researchers
performed experimental work on secondary datasets to identify malicious activities.

Smith et al. (2011) discussed the reasons behind choosing secondary datasets. They explored steps to
first clarify the research topic to choose an appropriate dataset and then understood it properly to perform
meaningful analysis on it. Paranthaman and Thuraisingham (2017) collected malware for Windows PC
and Android OS. They focused on choosing the best tool to analyze malware rather than studying
datasets. However, they did not cover all Android malware sources as they focused more on malware on
Windows PC.

Galal, Mahdy, and Atiea (2016) collected the Windows PC malware dataset from VirusSign (2019) and
performed dynamic analysis on it by executing the samples in a virtual environment. They analyzed
malicious samples’ application program interface (API) calls and employed machine-learning techniques
(such as decision trees, random forest, and support vector machine) to detect malware. Sharma, Krishna,
and Sahay (2019) collected the Windows PC malware dataset from Kaggle’s Microsoft Malware
Classification Challenge. They performed static analysis by examining how frequently opcode occurred
and applied a feature-selection method (fisher score) to obtain top-most features. They employed
machine-learning techniques (such as Logistic Model, J48, REPTree, and Naïve Bayes) in WEKA tool to
detect the malware.

Bailey et al. (2007) collected Internet malware samples from the network security community and Arbor
Malware Library. They examined these samples using antivirus software including McAfee, F-Prot,
ClamAV, Trend, and Symantec to identify unique labels. They found that each antivirus labeled the same
malware differently. They observed that antivirus software could not recognize the total number of unique
labels that exist for malware. Guo, Cheng, and Kelley (2016) gathered a social networking dataset by
crawling MySpace to detect malware propagation. They built a network in organizations by extracting
information and social links from user-profiles and user-friend pages, respectively. They analyzed virus
and worm features by simulating their propagation process using a susceptible infected recovered (SIR)
model and calculated the risk with hierarchical regression. Xiao, Lin, Sun, and Ma (2019) collected the
malware dataset from VX Heaven and performed dynamic analysis by executing the samples in Cuckoo
Sandbox. They also worked on protecting Internet of things (IoT) devices from malware by employing
deep-learning techniques such as neural network-stacked auto-encoders.

4.2 Dataset Utilization

Dataset utilization refers to employing a particular type of dataset such as an Android malware dataset.
Chen et al. (2018) generated their own Android ransomware dataset and performed static and dynamic
analyses to detect malware. They analyzed widgets (e.g., labels and list views) and activities (e.g.,

623 Investigating Selection Strategies for Android Malware Datasets Using a Machine-learning Approach

Volume 46 10.17705/1CAIS.04626 Paper 26

capturing photos and dialing a phone). They recorded the coordinates of users’ clicks on the layout
screen. During the observation, if users initiated no click operation to encrypt files, they considered the
encryption operation an abnormal activity that Android ransomware performed. Andronio et al. (2015)
prepared their own dataset (i.e., HelDroid) and used natural language processing to dissect and detect
mobile ransomware. They classified sentences as scary, payment, porn, law, and copyright to detect
Android ransomware. They searched for lockNow(), onKeyDown(), and onKeyUp() methods to detect
screen-locking due to Android ransomware and performed static taint analysis on smali code to detect
encryption.

Similarly, Arp et al. (2014) created their own dataset (i.e., Drebin) and performed static analysis on dalvik
executable (dex) and manifest files. They collected features such as hardware components, requested
permissions, intents from manifest files, and application program interface (API) calls, and network
addresses from dex files. Then, they applied the support vector machine (SVM) algorithm to collected
features to separate two features classes (malicious and benign) with maximum margins. Xiao et al.
(2017) collected malicious samples from the Drebin dataset and analyzed system call sequences. They
considered one system call equivalent to one word and one system call sequence to one sentence. They
employed a deep-learning technique (long short-term memory) to detect Android malware. Onwuzurike et
al. (2019) used the Drebin dataset and performed static analysis on Java bytecode to collect features
such as API calls using Androguard and call graphs using Soot and FlowDroid. They built a Markov chain
to create a feature vector by transitioning the abstracted calls from one possible state to another. Then,
they applied random forests, the SVM algorithm, and k-nearest neighbor machine-learning algorithms to
feature vectors to classify apps as malicious or benign.

Moreover, Yuan et al. (2016) used the Contagio and Genome datasets to detect Android malware. They
performed static analysis on extensible markup language (XML) and dex files to extract features including
permissions and APIs. Then, they ran the apps in a sandbox to dynamically analyze their network
communication, SMS, encryption, and phone calls. They employed deep neural networks on extracted
features to detect Android malware. Saracino et al. (2016) developed a framework called MADAM by
using Genome, Contagio, and VirusShare datasets to detect different types of Android malware. They
analyzed system calls, admin privileges, processes, user activity, apps running in the foreground, SMS,
contact list, permissions, ratings, and marketplace to detect rootkits, ransomware, spyware, botnet,
installer malware, and SMS trojans. They trained collected features with the k-NN classifier (k = 1) to
classify the app as genuine and malicious. Cai, Meng, Ryder, and Yao (2019) collected malicious samples
from the VirusShare, Drebin, and Genome datasets. They performed dynamic analysis in an Android
emulator to extract features such as method calls and inter-component communication calls. They
employed a machine-learning technique (random forest) to detect malware.

Allix, Bissyande, Klein, and Le Traon (2016) created the AndroZoo repository by collecting millions of
malicious and benign Android apps for research purpose. Ab Razak et al. (2018) collected benign apps
from the AndroZoo repository and malicious apps from the Drebin dataset. They analyzed permissions as
a feature to differentiate malicious and genuine apps. They used particle swarm optimization and the
information gain algorithm to select the top-most features. After they selected features, they employed
various machine-learning techniques (random forest, multilayer perceptron, k-NN, adaptive boosting, and
J48 decision trees) to detect Android malware. They found that multilayer perceptron displayed the most
accurate results. Pektaş and Acarman (forthcoming) collected benign apps from the AndroZoo repository
and performed pseudo-dynamic analyses to extract call graphs from operation codes (opcodes) by
modifying the Androguard tool. They employed a deep neural network that they developed by convolving
opcode sequences to classify apps as malicious or benign.

To the best of our knowledge, researchers have not fully studied and analyzed Android malware datasets
to identify their characteristics, what malware types they cover, what difficulties researchers face while
selecting them, and whether antivirus software can detect malware that they contain. Accordingly, we
address the following research question (RQ):

RQ: Which Android malware dataset contains malicious samples that antivirus software
detects the least often?

Communications of the Association for Information Systems 624

Volume 46 10.17705/1CAIS.04626 Paper 26

5 Dataset Collection

In this section, we provide information about different Android malware datasets for practitioners and
researchers to locate these datasets more conveniently. In particular, in Table 1, we provide information
about the following datasets: Contagio, Drebin, AndRadar, Ransomware, VirusShare, and AndroZoo.

Some datasets require login credentials for download and/or a password to decompress downloaded files,
while some datasets require an API key. For example, one needs an API key from AndroZoo repository’s
authors to download a bunch of android package kits (APKs) together from Github. Further, the datasets
differ in size: some have many more APKs than others. Some contain all types of malware, while others
contain specific types of malware. Some contain malicious samples, while others contain both malicious
and benign samples. The datasets also differ in age. Based on these classifications, we discuss the
Android malware datasets in the following subsections.

Table 1. Accumulated Datasets

Reference(s) Dataset Size
Number

of
samples

Collection date Sources

Requirements

Login
credentials

Password to
decompress

files
API key

Parkour
(2011)

Contagio 9 GB
215

APKs
June, 2011, to
March, 2018

Website 1 X ✓ X

Drebin
(2016)

Drebin 6 GB
5,500
APKs

August, 2010,
to October,

2012
Website 2 ✓ ✓ X

Lindorfer et
al. (2014b)

AndRadar 25 GB
7,800
APKs

June to
November,

2013
Email X X X

Chen et al.
(2018)

Ransomware 2.5 GB
2,300
APKs

2017 Email X ✓ X

Virusshare
(n.d.)

VirusShare *

31 million
malware
samples
(including

APKs)

2011 ~ Website 3 ✓ ✓ X

Allix et al.
(2016), Li et

al. (2017)
AndroZoo *

9 million
APKs

2014 ~ Website 4 X X ✓

Key: * : varies, ~: ongoing
Website 1 = “http://contagiominidump.blogspot.com/”
Website 2 = “https://www.sec.cs.tu-bs.de/\simdanarp/drebin/”
Website 3 = “https://virusshare.com/”
Website 4 = “https://androzoo.uni.lu/”, “https://github.com/ArtemKushnerov”

5.1 Contagio

Contagio, a mini-dump repository, provides the latest malicious samples, threats, observations, and
analysis for practitioners and researchers. This dataset contains 215 malicious android package kits
(APKs) (approx. 3 GB). Mila Parkour (2018)—a security researcher—collected the samples from June,
2011, to March, 2018. The dataset also contains MAC OSX and Windows OS malware (approx. 3 GB),
malicious traffic in packet capture (PCAP) format (approx. 2 GB) and executable (EXE) format (approx.
350 MB). One can access the dataset and download samples from
http://contagiominidump.blogspot.com/. However, one needs a password to decompress files, which one
can directly request from the author (the website displays her contact information).

5.2 Drebin

Drebin dataset promotes research on detecting Android malware and provides malicious samples with
extracted features sets to practitioners and researchers. This dataset contains 5,500 malicious APKs from
180 distinct malware families (approx. 6 GB). Arp et al. (2014) collected the samples from August, 2010,

625 Investigating Selection Strategies for Android Malware Datasets Using a Machine-learning Approach

Volume 46 10.17705/1CAIS.04626 Paper 26

to October, 2012. The dataset also contains feature vectors (API calls, permissions, URLs, intents) found
in malware samples. One can access the dataset and download samples from https://www.sec.cs.tu-
bs.de/~danarp/drebin/download.html. One can request login credentials and the password to download
and unzip the samples from the authors (the website displays their contact information).

5.3 AndRadar

AndRadar dataset promotes research on identifying malicious apps in alternative markets (i.e., third-party
markets from where users download the apps) that contain specifically ad-aggressive apps (adware). This
dataset contains 7,800 malicious APKs (approx. 25 GB). Lindorfer et al. (2014b) collected the samples
from June to November, 2013, from approximately 10 alternative markets (such as Slideme, Lenovo,
Aptoide, etc.). The dataset contains comma-separated values (CSV) files with approximately 4,500 APKs
that the authors identify by their message digest (MD5) hashes with the corresponding package name and
market name in which they found the APKs. The CSV files contain duplicate MD5 hash values because
the dataset contains different versions of malicious apps. One can request the dataset directly from the
authors (their research paper contains their contact information). One does not need any login credentials
or API key to download/access the samples.

5.4 Ransomware

Ransomware dataset provides Android ransomware samples from different families (such as
Fakedefender, Simplocker, Koler, and so on) to the research community. This dataset contains 2,300
malicious APKs (approx. 2.5 GB). Chen et al. (2018) collected the ransomware samples from an antivirus
company (ANTIY) and blogs (Chebyshev & Unuchek, 2014; Jarvis, 2013) in 2017. The dataset contains
Android ransomware samples along with their MD5 hashes. One can request the dataset and the
password to decompress downloaded files from the authors (their research paper contains their contact
information).

5.5 VirusShare

VirusShare.com, a malware repository, allows incident responders, practitioners, security researchers,
malware analysts, and other morbidly curious people to easily access live malicious samples. This
repository contains approximately 34 million malware samples (as of 2019) for all types of operating
systems. For Android, the repository provides malicious APKs with MD5 hashes for all malware samples.
VirusShare has collected, indexed, and freely shared malware samples to analysts, practitioners,
researchers, and the information security community since 2011 (Virusshare, n.d.). However, Elish, Shu,
Yao, Ryder, and Jiang (2015), Lindorfer et al. (2014a), and Saracino et al. (2016) began using this dataset
from 2014. One can access the dataset and download samples from https://virusshare.com/. One can
directly request login credentials from the administrators (the website displays their contact information).

5.6 AndroZoo

AndroZoo, a repository, contains a rich collection of Android malicious and benign apps from 16 different
Android markets such as Genome, Appchina, Anzhi, Fdroid, 1mobile, PlayStore, and so on. Of these, only
the Genome dataset contains malicious samples. Allix et al. (2016) collected approximately nine million
APKs as of August, 2019. Additionally, they provide a CSV file for APKs with their SHA256, SHA1, MD5,
apk size, dex size (size of the dex file), dex date (date attached to the dex file), pkg name (name of the
Android package), vercode (version code), vt detection (antivirus software in VirusTotal that detected APK
as a malware), vt scan date (date of detection), and markets (to which APK belongs). One can download
the dataset with a tool (az) from GitHub1. However, one requires an API key to access it, which one can
request from the dataset creators (the website displays their contact information).

6 Implementation and Experimental Details

In this section, we discuss how we performed reverse engineering and feature extraction on the samples
in each dataset to extract features such as permissions and intents. Based on the extracted features, we
performed Gaussian mixture model (GMM) clustering on each dataset to group malware with similar kinds

1 https://github.com/ArtemKushnerov/az

Communications of the Association for Information Systems 626

Volume 46 10.17705/1CAIS.04626 Paper 26

of features in a single cluster. GMM clustering is an unsupervised machine-learning technique that does
not require a labeled dataset for experimentation (Kumar, Venugopal, Qiu, & Kumar, 2018). Subsequently,
we randomly chose samples from each cluster and used VirusTotal to analyze them to determine whether
anti-virus software could actually detect malware. We used a system with the following specifications to
perform the experiments: Windows 8.1 Pro 64-bit operating system, Intel Core i7-4770 CPU @ 3.40GHz,
and 8.00 GB memory (RAM). We show the overall structure in Figure 2, which we explain in the following
subsections.

Figure 2. Overall Structure

6.1 Reverse Engineering

The datasets contained malicious samples in the form of Android package kits (APKs). Android uses the
APK file format to transmit and install apps on mobile phones. We performed reverse engineering with
ApkTool to disassemble all malicious APKs in each dataset into a readable format. The ApkTool
(iBotPeaches, 2019) generates dex files, manifest.xml files, and smali files for each APK. We show the
commands we used to disassemble the Android app with ApkTool in Figure 3 where “d” corresponds to
decompiling the APK and “b” corresponds to repackaging the APK.

Figure 3. ApkTool Commands

>> java –jar apktool.jar

>> apktool d appname.apk

I: Loading resource table...

I: Decoding AndroidManifest.xml with resources...

I: Decoding values */* XMLs...

I: Baksmaling classes.dex...

...

...

>> apktool b appname

I: Smaling smali folder into classes.dex...

I: Building resources...

I: Building apk file...

I: Built apk...

627 Investigating Selection Strategies for Android Malware Datasets Using a Machine-learning Approach

Volume 46 10.17705/1CAIS.04626 Paper 26

6.2 Feature Extraction

After disassembling the APK using reverse engineering, we analyzed AndroidManifest.xml file to extract
features such as permissions and intents. We wrote a Python script to extract features that stored the
output in comma-separated values (CSV files). We extracted permissions and intents from the
AndroidManifest.xml files.

6.2.1 Permissions

All Java-written applications must receive permission from Android during installation. Android provides
security to users by informing them about the permissions that any application obtains. Therefore, Android
developers declare permissions in AndroidManifest.xml with the < uses−permissions > tag (see Figure 4).
Thus, if an application wants access to the calendar, contacts, microphone, location, or any other API,
then Android will message the user to either allow or deny the access. However, overclaiming permissions
poses a drastic issue in Android that leads to information and monetary losses. For example, if a
dictionary application requests unnecessary permission (e.g., READ_ PHONE_STATE), it can exploit the
permission by sending the phone’s state such as its IMEI number without users’ consent. Attackers can
use this feature to read users’ private information such as SMS, logs, and so on.

Android contains approximately 300 permissions that any application can use. Of these 300, 24 pose a
higher risk to users’ private data (Android, 2018). We list these 24 permissions in Table 2.

6.2.2 Intents

Intents are abstract objects in Android that an app uses to request an action from another app component.
It switches the user from one app to another app based on action (e.g., showing a map, taking a photo,
sending a message) it would like to perform. Basically, intents represent the glue that coordinates
interactions between activities, services, and broadcast receivers. Just like permissions, Android
developers declare intents in AndroidManifest.xml with the < action > tag (see Figure 4). Intents contain
operations that an application component will perform (Tam, Feizollah, Anuar, Salleh, & Cavallaro, 2017).
Attackers can use this feature to launch activities such as to obtain device administration privileges.

Figure 4. AndroidManifest.xml File

Communications of the Association for Information Systems 628

Volume 46 10.17705/1CAIS.04626 Paper 26

Table 2. Dangerous Permissions in Android OS

Dangerous permission group Dangerous permissions Description

CALENDAR READ/WRITE_CALENDAR Read/write the user's calendar data

CALL_LOG

READ /WRITE_CALL_LOG Read/write the user's call log

PROCESS_OUTGOING_CALLS
Read the dialed number during an outgoing

call

CAMERA CAMERA Access the camera

CONTACTS
READ /WRITE_CONTACTS Read/write the user's contacts data

GET_ACCOUNTS Access to the list of accounts

LOCATION ACCESS_FINE/COARSE_LOCATION Access precise/approximate location

MICROPHONE RECORD_AUDIO Record audio

PHONE

READ_PHONE_STATE
Read access to phone state (ongoing calls,

list of Phone Accounts)

CALL_PHONE
Start a phone call without using the Dialer

to confirm the call

ADD_VOICEMAIL Add voicemails in the voice box

USE_SIP Use SIP service

SENSORS BODY_SENSORS
Acquire data collected by sensors (heart

rate sensor)

SMS

SEND/RECEIVE/READ_SMS Send/receive/read short message service

RECEIVE_WAP_PUSH
Receive wireless application protocol push

messages

RECEIVE_MMS
Monitor incoming multimedia messaging

service

STORAGE READ/WRITE_EXTERNAL_STORAGE Read/write external storage

6.3 Clustering

After accumulating features (i.e., permissions and intents) from each dataset sample’s
AndroidManifest.xml file in CSV files, we performed clustering based on the extracted features to bifurcate
each dataset’s malware samples into clusters. We performed the clustering in such as a way that a
malware sample in one cluster resembled the other malware samples in the same cluster and did not
resemble the malware samples in other clusters. We applied GMM clustering to group the malware with
similar features in the same cluster. We performed the experiment with Python 3.6 on Colaboratory (a free
GPU cloud service from Google).

Gaussian mixture modeling is a machine learning-based clustering algorithm that models datasets into
clusters according to different Gaussian distributions. It calculates the probability of each sample
belonging to a cluster after computing mean (to determine the data’s center), variance (to determine the
data’s spread), and mixing probability (to determine the Gaussian function’s size).

We used the probability density function for one-dimensional Gaussian distribution as follows:

𝐺(𝑋|µ, 𝜎) =
1

𝜎√2𝜋
𝑒−(𝑥−µ)2/2𝜎2

, (1)

where X shows the data points, µ is the mean, 𝜎2 is the variance, and π is the mixing probability.

We used the probability density function for multi-dimensional Gaussian distribution as follows:

𝐺(𝑋|µ, ∑) =
1

√2𝜋|∑|
exp (−

1

2
(𝑋 − µ)𝑇∑−1(𝑋 − µ)), (2)

where X shows the data points, µ is the d-dimensional vector, ∑ is the covariance matrix, and π is the
mixing probability.

629 Investigating Selection Strategies for Android Malware Datasets Using a Machine-learning Approach

Volume 46 10.17705/1CAIS.04626 Paper 26

GMM follows the probabilistic model to automatically learn the subpopulation from the total population. It
implements the EM algorithm, which contains two steps (an expectation step and maximization step) to
calculate the model’s parameters (Kumar, Venugopal, Qiu, & Kumar, 2019). The expectation step
calculates weights, whereas the maximization step updates the location and shape of all samples.

In our experimental work, several Android malware samples possessed common features in each dataset.
For example, approximately 2,200 samples in the ransomware dataset asked for the same permission
(i.e., RECEIVE_BOOT_COMPLETED). Thus, we used the GMM clustering algorithm, which allows soft
assignments, to allow overlapping between clusters.

6.4 Analysis in VirusTotal

After grouping malware with similar types of features in a single cluster, we performed random sampling
on it to select malware samples from different clusters for analysis in VirusTotal and, thus, check whether
antivirus software could actually detect the malware.

The website VirusTotal (VirusTotal, n.d.) analyzes files and URLs to detect malware. It has a Web
interface and API through which it scans the malware on over 70 antivirus and URL/domain blacklisting
services. It notifies the user whether the submitted file/URL is malicious or not, provides the detection
label for each malware, states whether a URL belongs to a particular botnet, and provides other
information. We submitted APKs after we performed random sampling on each dataset cluster to
VirusTotal for analysis. VirusTotal computes the hash values of each APK and submits the APK to
antivirus software (such as Avast, Fortinet, McAfee, Microsoft, etc.), which provides a detection output
(whether the APK is malicious or not).

7 Common Pitfalls in Dataset Selection

In this section, we discuss common pitfalls in selecting the datasets in terms of sample size,
standardization, sample demarcation, and sample depletion:

Sample size: some Android malware datasets do not support robust statistics due to their small size. For
example, Contagio contains only 215 APKs. Researchers may not find this data self-sufficient for use in
research studies. Therefore, Mercaldo, Nardone, Santone, and Visaggio (2016), Saracino et al. (2016),
and Yuan et al. (2016) integrated this dataset with other datasets such as Genome, VirusShare, and
HelDroid. Further, the reverse-engineering process also eradicates some malware.

Insufficient standardization: researchers need proper standardization to create and use Android
malware datasets. For example, the Drebin, AndRadar, VirusShare, and Ransomware datasets use hash
values to store each sample’s file name. While Contagio and AndroZoo use the name of corresponding
malware to store each sample’s file name. The file name stored as hash value suits research studies
more than the name of malware because using hashing removes duplicate samples.

Samples demarcation: the AndroZoo repository does not separate malicious APKs from benign ones,
although its creators provide a CSV file with ratings to show how many antiviruses consider that the app is
malware. However, some malware (e.g., zero-day) evades VirusTotal’s security checks (Saracino et al.,
2016). Similarly, VirusTotal does not differentiate different types of malware in the datasets we collected
(i.e., Drebin, AndRadar, VirusShare, and AndroZoo) as spyware, trojans, ransomware, grayware, rootkits,
and so on. Thus, if, for example, practitioners and researchers want to perform experiments to detect only
trojans, then they have to run each sample from these datasets in VirusTotal to know its category. In the
same way, the Ransomware dataset does not differentiate samples according to their type (i.e., locker or
crypto). Thus, if researchers or practitioners use this dataset to conduct a study entirely on locker
ransomware, then they may find it difficult to differentiate different ransomware types.

Samples depletion: the reverse-engineering process obliterates some APKs in each dataset. For
example, the Ransomware dataset initially contained 2,288 APKs; however, after we applied reverse
engineering, that number fell to 2,076 malicious samples. The depleted samples did not preserve any
XML, smali, or Java files in them, and, thus, we could not use them for analysis.

Communications of the Association for Information Systems 630

Volume 46 10.17705/1CAIS.04626 Paper 26

8 Performance Evaluation and Experimental Results

In this section, we discuss several performance metrics to evaluate how well the antivirus software could
detect malware in the large datasets that we present in Section 5. To the best of our knowledge, no study
has compared Android malware datasets in detail. Thus, we referred to related research papers from
another field on the same theme (i.e., dataset collection and analysis) in order to choose the performance
metrics. For example, Sakar et al. (2013) used true positive (TP), false positive (FP), true negative (TN),
and false negative (FN) values to calculate how accurately Parkinson disease can be diagnosed using
Parkinson speech dataset. They used an indistinguishable dataset (i.e. a dataset with all types of
samples) and, hence, merged these values to classify instances as positive and negative.

In comparison to the literature, we examined datasets with only malicious samples (e.g., Contagio, Drebin,
AndRadar, Ransomware, VirusShare, and the Genome dataset in the AndroZoo repository) and with only
benign samples (e.g., several datasets in the AndroZoo repository: PlayStore, 1mobile, fdroid, torrents,
etc.). Thus, the TP and FP values belong to the datasets with malicious samples, whereas the TN and FN
values belong to datasets with benign samples.

True positives (TP): While submitting APKs, we examined the malicious apps that antivirus software
detected—that is, the true positives (TP). Figure 5 shows the TP percentage for 10 dataset samples2 that
we randomly selected from clusters in each dataset. Out of these datasets, the AndRadar dataset had the
fewest TP followed by VirusShare, Ransomware, Contagio, Drebin, and Genome (in the AndroZoo
repository).

False positives (FP): While submitting APKs, we examined the malicious apps that antivirus software
mistakenly considered benign—that is, the false positives (FP). K7antivirus, Malwarebytes, Microsoft, and
other anti-malware software could not detect some Android malware. Figure 6 shows the FP percentage
for 10 dataset samples3 randomly selected from clusters in each dataset. Out of these datasets, the
Genome dataset (in the AndroZoo repository) had the fewest FP followed by Drebin, Contagio,
Ransomware, VirusShare, and AndRadar.

True negatives (TN): While submitting APKs, we examined the number of benign apps that antivirus
software successfully detected—that is, the true negatives (TN). Since only the AndroZoo repository
contained benign samples (refer to Section 5.6), we calculated the TN values for 10 dataset samples4 that
we randomly selected from clusters in benign datasets in the AndroZoo repository. We considered the
other datasets to have a TN value of 0 since they did not contain benign samples.

False negatives (FN): While submitting APKs, we examined the number of benign apps that antivirus
software mistakenly considered malicious—that is, the false negatives (FN). Since only the AndroZoo
repository contained benign samples (refer to Section 5.6), we calculated the FN values for 10 dataset
samples5 that we randomly selected from clusters in benign datasets in the AndroZoo repository. We
considered the other datasets to have a FN value of 0 since they did not contain benign samples.

2 Table 3 shows the average of TP values.
3 Table 3 shows the average of FP values.
4 Table 3 shows the average of TN values.
5 Table 3 shows the average of FN values.

631 Investigating Selection Strategies for Android Malware Datasets Using a Machine-learning Approach

Volume 46 10.17705/1CAIS.04626 Paper 26

Figure 5. True Positive (Percentage) of Six Malicious Datasets

Figure 6. False Positive (percentage) of Six Malicious Datasets

Communications of the Association for Information Systems 632

Volume 46 10.17705/1CAIS.04626 Paper 26

We now explain why some datasets achieved high TP and some achieved low FP, which one can see in
Figures 5 and 6.

The AndroZoo repository contains malicious samples in the Genome dataset file, which includes Android
trojans (malicious apps that masquerade as benign apps to perform damaging actions such as stealing
SMS, contacts, IMEI number, and photos and sending such things to a remote server without users’
consent). Commercial antivirus software can easily detect Android trojans. Hence, these samples had the
most TP and correspondingly the fewest FP.

The Drebin dataset primarily contains Android trojans that antivirus software can easily detect. Therefore,
this dataset had a high antivirus detection rate and, thus, a high number of TP. However, it also contains
adware and riskware samples that had a low TP percentage; and can cause harm if cybercriminals exploit
them. Hence, Microsoft, Malwarebytes, K7AntiVirus, and other antivirus software did not detect these
apps.

The Contagio dataset contains Android trojans samples. It also contains grayware, adware, and
potentially unwanted program (PUP) samples that Microsoft, Malwarebytes, K7AntiVirus, and other
commercial antivirus software did not detect. Hence, it had fewer TP and more FP compared to the
AndroZoo and Drebin datasets.

The Ransomware dataset contains Android ransomware samples in many variants such as Koler, locker,
Jisut, and more. These samples had fewer TP and more FP compared to AndroZoo, Drebin, and Contagio
as antivirus software did not detect most ransomware samples. Because locker ransomware obtains only
one dangerous permission from users (READ_PHONE_STATE), which many legitimate apps also use,
Malwarebytes, Microsoft, K7AntiVirus, and other antivirus software failed to detect these samples.

The VirusShare dataset contains many different Android malicious samples, such as riskware, adware
(responsible for throwing advertisements on screen), PUA, trojans, and so on. Out of these samples,
riskware, adware, and PUA samples had few TP and many FP. In particular, the PUA and riskware
samples had few TP since Avast, McAfee, Microsoft, Fortinet, Kaspersky, and other antivirus software did
not detect them.

The AndRadar dataset also contains many different Android malicious samples such as PUA, adware,
riskware, and more. These samples had the fewest TP and most FP compared to other datasets since
Avast, Microsoft, Malwarebytes, Symantec, and other antivirus software did not detect them.

Based on these values, we calculated how accurately the antivirus software performed for each dataset.

Accuracy here refers to the ratio of how accurately anti-virus software can correctly detect malicious and
benign samples compared to the total number of input samples. We calculated it using Equation 3:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (3)

The equation produces an accuracy value: low values suggest a dataset contained samples that antivirus
software detected the least often. Table 3 shows the results for malicious and benign samples from the six
malicious datasets (i.e., Contagio, Drebin, AndRadar, Ransomware, VirusShare, and the Genome dataset
in AndroZoo) and one benign dataset (PlayStore, 1mobile, fdroid, torrents, and so on in Androzoo) that we
randomly selected from clusters that contained similar kinds of samples. Applied to these samples, the
AndRadar dataset had the lowest accuracy value (26.5%) followed by VirusShare, Ransomware,
Contagio, Drebin, and AndroZoo.

Table 3. Dataset Accuracy

Dataset
Avg. TP
values

Avg. FP
values

Avg. TN
values

Avg. FN
values

Accuracy (%)

AndRadar 14.9 41.4 0 0 26.5

VirusShare 18.4 40.3 0 0 31.3

Ransomware 29.2 32.1 0 0 47.6

Contagio 32.7 27.4 0 0 54.4

Drebin 38.5 22.3 0 0 63.3

AndroZoo 41.3 19.9 60.4 0.2 83.6

633 Investigating Selection Strategies for Android Malware Datasets Using a Machine-learning Approach

Volume 46 10.17705/1CAIS.04626 Paper 26

9 Discussion and Conclusions

Due to global smartphone usage’s ubiquity and Android’s rise as the dominant mobile operating system,
we collected and compared samples of leading Android malware datasets. In each dataset, we
characterized applications according to their availability, which ranged from free direct downloads and
open-source software apps to protected applications, which may include services or subscriptions that
require user credentials or API keys. We stored each sample’s extracted features (i.e., requested
permissions and intents that prompt users for access privileges) in a file after we performed reverse
engineering. In each dataset, we grouped samples with similar features in a single cluster using machine-
learning techniques. Using VirusTotal, we investigated random samples that we collected from each
cluster to check how well antivirus software detected them.

We compared the results among different datasets to find the dataset with malicious samples that
antivirus software detected the least often. To the best of our knowledge, we present the first study that
focuses on collecting and examining Android-specific malware datasets in order to help practitioners and
researchers select a dataset that contains malicious samples that antivirus software detects the least
often and on evaluating malware-detection techniques to improve the security on Android devices. We
found that, in the case of malicious dataset samples, antivirus software detected AndRadar samples the
least often since that dataset contains extreme adware samples.

Our findings act as an exhaustive information source about the leading Android malware datasets. Our
results provide key information to managers and technical experts working in various organizations who
work on securing Android-based smartphones. Decision makers can use the information we provide to
choose the best dataset to implement machine-learning algorithms for detecting and preventing Android
malware. In the future, we plan to extend this work to include more features. Moreover, we need a robust
mechanism to detect further types of Android malware (such as adware and grayware), which antivirus
software cannot detect as yet.

Communications of the Association for Information Systems 634

Volume 46 10.17705/1CAIS.04626 Paper 26

References

Ab Razak, M. F., Anuar, N. B., Othman, F., Firdaus, A., Afifi, F., & Salleh, R. (2018). Bio-inspired for
features optimization and malware detection. Arabian Journal for Science and Engineering, 43(12),
6963–6979.

Allix, K., Bissyande, T. F., Klein, J., & Le Traon, Y. (2016). Androzoo: Collecting millions of android apps
for the research community. In Proceedings of the International Conference on Mining Software
Repositories (pp. 468-471).

Android. (2018). Permissions overview. Retrieved from
https://developer.android.com/guide/topics/permissions/overview

Andronio, N., Zanero, S., & Maggi, F. (2015). Heldroid: Dissecting and detecting mobile ransomware. In
Proceedings of the International Symposium on Research in Attacks, Intrusions and Defenses (pp.
382-404).

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. (2014). DREBIN: Effective
and explainable detection of Android malware in your pocket. In Proceedings of the International
Symposium on Network and Distributed System Security (pp. 23-26).

Bailey, M., Oberheide, J., Andersen, J., Mao, Z. M., Jahanian, F., & Nazario, J. (2007). Automated
classification and analysis of Internet malware. In Proceedings of the International Workshop on
Recent Advances in Intrusion Detection (pp. 178-197).

Cai, H., Meng, N., Ryder, B., & Yao, D. (2019). DroidCat: Effective android malware detection and
categorization via app-level profiling. IEEE Transactions on Information Forensics and Security,
14(6), 1455-1470.

Chebyshev, V., & Unuchek, R. (2014). Mobile malware evolution: 2013. Kaspersky. Retrieved from
https://securelist.com/mobile-malware-evolution-2013/58335/

Chen, J., Chiheng, W., Zhao, Z., Chen, K., Du, R., & Ahn, G.-J. (2018). Uncovering the face of Android
ransomware: Characterization and real-time detection. IEEE Transactions on Information Forensics
and Security, 13(5), 1286-1300.

Drebin. (2016). The Drebin dataset. Retrieved from https://www.sec.cs.tu-bs.de/~danarp/drebin/

ELE Times. (2018). Mobile malware attacks on the rise as holiday season nears. Retrieved from
https://www.eletimes.com/mobile-malware-attacks-on-the-rise-as-holiday-season-nears

Elish, K. O., Shu, X., Yao, D. D., Ryder, B. G., & Jiang, X. (2015). Profiling user-trigger dependence for
Android malware detection. Computers & Security, 49, 255-273.

Galal, H. S., Mahdy, Y. B., & Atiea, M. A. (2016). Behavior-based features model for malware detection.
Journal of Computer Virology and Hacking Techniques, 12(2), 59-67.

Guo, H., Cheng, H. K., & Kelley, K. (2016). Impact of network structure on malware propagation: A growth
curve perspective. Journal of Management Information Systems, 33(1), 296-325.

iBotPeaches. (2019). APKTOOL. Retrieved from https://ibotpeaches.github.io/Apktool/

Jarvis, K. (2013). Cryptolocker ransomware. Secureworks. Retrieved from
https://www.secureworks.com/research/cryptolocker-ransomware

Kumar, N., Venugopal, D., Qiu, L., & Kumar, S. (2018). Detecting review manipulation on online platforms
with hierarchical supervised learning. Journal of Management Information Systems, 35(1), 350-380.

Kumar, N., Venugopal, D., Qiu, L., & Kumar, S. (2019). Detecting anomalous online reviewers: An
unsupervised approach using mixture models. Journal of Management Information Systems, 36(4),
1313-1346.

La Polla, M., Martinelli, F., & Sgandurra, D. (2013). A survey on security for mobile devices. IEEE
Communications Surveys & Tutorials, 15(1), 446-471.

Li, L., Gao, J., Hurier, M., Kong, P., Bissyande, T. F., Bartel, A., Klein, J., & Le Traon, Y. (2017).
AndroZoo++: Collecting millions of Android apps and their metadata for the research community.
arXiv:1709.05281.

635 Investigating Selection Strategies for Android Malware Datasets Using a Machine-learning Approach

Volume 46 10.17705/1CAIS.04626 Paper 26

Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Van Der Veen, V., & Platzer, C.
(2014a). Andrubis—1,000,000 apps later: A view on current Android malware behaviors. In
Proceedings of the International Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (pp. 3-17).

Lindorfer, M., Volanis, S., Sisto, A., Neugschwandtner, M., Athanasopoulos, E., Maggi, F., Platzer, C.,
Zanero, S., & Ioannidis, S. (2014b). AndRadar: Fast discovery of Android applications in alternative
markets. In Proceedings of the International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (pp. 51-71).

Link, G. J. P., Lumbard, K., Conboy, K., Feldman, M., Feller, J., George, J., Germonprez, M., Goggins, S.,
Jeske, D., Kiely, G., Schuster, K., & Willis, M. (2017). Contemporary issues of open data in
information systems research: Considerations and recommendations. Communications of the
Association for Information Systems, 41, 587-610.

Mercaldo, F., Nardone, V., Santone, A., & Visaggio, C. A. (2016). Ransomware steals your phone: Formal
methods rescue it. In Proceedings of the International Conference on Formal Techniques for
Distributed Objects, Components, and Systems (pp. 212-221).

Michael, M. (n.d.). How to think differently about data, insights, strategy, and analytics. Retrieved from
https://www.markmichael.io/insights/forget-big-data-data-types-that-really-matter/

Onwuzurike, L., Mariconti, E., Andriotis, P., Cristofaro, E. De, Ross, G., & Stringhini, G. (2019).
MaMaDroid: Detecting android malware by building Markov chains of behavioral models. ACM
Transactions on Privacy and Security, 22(2), 1-34.

Paranthaman, R., & Thuraisingham, B. (2017). Malware collection and analysis. In Proceedings of the
International Conference on Information Reuse and Integration (pp. 26-31).

Parkour, M. (2011). Contagio mobile. Retrieved from http://contagiominidump.blogspot.com/

Parkour, M. (2018). Blogger. Retrieved from https://www.blogger.com/profile/09472209631979859691

Pektaş, A., & Acarman, T. (Forthcoming). Learning to detect Android malware via opcode sequences.
Neurocomputing.

Sakar, B. E., Isenkul, M. E., Sakar, C. O., Sertbas, A., Gurgen, F., Delil, S., Apaydin, H., & Kursun, O.
(2013). Collection and analysis of a Parkinson speech dataset with multiple types of sound
recordings. IEEE Journal of Biomedical and Health Informatics, 17(4), 828-834.

Saracino, A., Sgandurra, D., Dini, G., & Martinelli, F. (2016). Madam: Effective and efficient behavior-
based Android malware detection and prevention. IEEE Transactions on Dependable and Secure
Computing, 15(1), 83-97.

Sen, R. (2018). Challenges to cybersecurity: Current state of affairs. Communications of the Association
for Information Systems, 43, 22-44.

Sharma, S., Krishna, C. R., & Sahay, S. K. (2019). Detection of advanced malware by machine learning
techniques. In M. Pant, T. K. Sharma, O. P. Verma, R. Singla, & A. Sikander (Eds.), Soft
computing: Theories and applications (pp. 333-342). Jhansi, India: Springer.

Sipior, J. C., Bierstaker, J., Borchardt, P., & Ward, B. T. (2018). A ransomware case for use in the
classroom. Communications of the Association for Information Systems, 43, 598-614.

Smith, A. K., Ayanian, J. Z., Covinsky, K. E., Landon, B. E., McCarthy, E. P., & Wee, Christina C., &
Steinman, M. A. (2011). Conducting high-value secondary dataset analysis: An introductory guide
and resources. Journal of General Internal Medicine, 26(8), 920-929.

Statista. (2019a). Global market share held by the leading smartphone operating systems in sales to end
users from 1st quarter 2009 to 2nd quarter 2018. Retrieved from
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-
systems/

Statista. (2019b). Number of available applications in the Google Play store from December 2009 to
December 2018. Retrieved from https://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/

Communications of the Association for Information Systems 636

Volume 46 10.17705/1CAIS.04626 Paper 26

Statista. (2019c). Number of smartphone users worldwide from 2014 to 2020 (in billions). Retrieved from
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

Tam, K., Feizollah, A., Anuar, N. B., Salleh, R., & Cavallaro, L. (2017). The evolution of Android malware
and Android analysis techniques. ACM Computing Surveys, 49(4), 1-41.

Virusshare. (n.d.). Virusshare. Retrieved from https://virusshare.com

VirusSign. (2019). MALWARE-LIST. from https://www.virussign.com/index.html

VirusTotal. (n.d.). VirusTotal. Retrieved from https://www.virustotal.com

Xiao, F., Lin, Z., Sun, Y., & Ma, Y. (2019). Malware detection based on deep learning of behavior graphs.
Mathematical Problems in Engineering. Retrieved from
https://www.hindawi.com/journals/mpe/2019/8195395/

Xiao, X., Zhang, S., Mercaldo, F., Hu, G., & Sangaiah, A. K. (2017). Android malware detection based on
system call sequences and LSTM. Multimedia Tools and Applications, 76, 1-21.

Yuan, Z., Lu, Y., & Xue, Y. (2016). Droiddetector: Android malware characterization and detection using
deep learning. Tsinghua Science and Technology, 21(1), 114-123.

637 Investigating Selection Strategies for Android Malware Datasets Using a Machine-learning Approach

Volume 46 10.17705/1CAIS.04626 Paper 26

About the Authors

Shweta Sharma received BTech degree in Information Technology from Himachal Pradesh University,
Shimla, India, in 2013 and MTech degree in Computer Science and Technology (specialization in Cyber
Security) from Central University of Punjab, Bathinda, India, in 2016. She is pursuing doctoral research on
Android Security from Department of Computer Science & Engineering at National Institute of Technical
Teachers Training & Research (NITTTR) Chandigarh.

Naveen Kumar is an Assistant Professor of Management Information Systems in the School of Business,
University of Oklahoma, Norman. He received his PhD from the University of Washington, Seattle. His
research focuses on applying deep learning and other artificial intelligence techniques in social media and
information systems. His work has been published in Information Systems Research, Journal of
Management Information Systems, Strategic Management Journal, and others. Before joining academia,
he worked as a researcher in the high-tech industry, solving complex business problems in IT, Finance,
and Manufacturing using advanced machine-learning techniques.

Rakesh Kumar is an Assistant Professor in the Department of Computer Science and Engineering at
NITTTR Chandigarh. He received his PhD in Computer Engineering from N.I.T. Kurukshetra. His key area
of interest includes MANET, Cloud Computing, Scheduling Algorithms, and Wireless Sensor Networks. He
has number of International/National conference/journal publications to his credit.

C. Rama Krishna is a Professor in the Department of Computer Science & Engineering at NITTTR,
Chandigarh. He received his PhD from IIT Kharagpur. His research area includes Wireless
Communications & Networks, Computer Networks, Distributed Computing, Cryptography and Cyber
Security. Dr. Krishna has published numerous papers in different International journals and conferences.

Copyright © 2020 by the Association for Information Systems. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and full citation on
the first page. Copyright for components of this work owned by others than the Association for Information
Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission to
publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-
mail from publications@aisnet.org.

	The Paradox of Choice: Investigating Selection Strategies for Android Malware Datasets Using a Machine-learning Approach
	Recommended Citation

	Sharma, Shweta; Kumar, Naveen; Kumar, Rakesh; Krishna, C. Rama: The Paradox of Choice: An Investigation of Android Malware Datasets Selection Strategies using Machine Learning Approach, Communications of the Association for Information Systems

