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Abstract 
 

A novel method for real-time solar generation 

forecast using weather data, while exploiting both 

spatial and temporal structural dependencies is 

proposed. The network observed over time is projected 

to a lower-dimensional representation where a variety 

of weather measurements are used to train a 

structured regression model while weather forecast is 

used at the inference stage. Experiments were 

conducted at 288 locations in the San Antonio, TX 

area on obtained from the National Solar Radiation 

Database. The model predicts solar irradiance with a 

good accuracy (R2 0.91 for the summer, 0.85 for the 

winter, and 0.89 for the global model). The best 

accuracy was obtained by the Random Forest 

Regressor. Multiple experiments were conducted to 

characterize influence of missing data and different 

time horizons providing evidence that the new 

algorithm is robust for data missing not only 

completely at random but also when the mechanism is 

spatial, and temporal. 

 

 

1. Introduction  
Due to technological advances of solar power 

lowering the price of the photovoltaic (PV) panels and 

the push for cleaner energy, solar power has seen a 

tremendous growth worldwide. During the last decade 

the installed capacity for the number of OECD 

countries, all around the world has grown from 34% to 

82% [1]. In 2017, renewables accounted for 55% of 

the 21 GW of U.S. capacity additions. Solar 

technology showed record 40% growth in power 

generation in 2017 [4]. As of February 2018, 

renewables accounted for 22% of total currently 

operating U.S. electricity generating capacity [2]. The 

tremendous growth in the U.S. solar industry is 

helping to pave the way to a cleaner, more sustainable 

energy future [3]. Furthermore, more solar plants are 

projected to be added to the power generation mix in 

the next few years.  

With the rapid growth of the solar industry, the 

variability and intermittency of this renewable source 

of energy brings about major challenges in energy 

balancing which may affect the system reliability and 

flexibility. Since it can have a direct impact on 

consumers and businesses, it is very important to have 

an accurate real-time forecast of the solar generation 

so that both higher system operation efficiency and 

maximum solar utilization can be achieved [5]. 

Solar generation prediction techniques have been a 

research interest in the past few years. Type-1 and 

interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy 

systems were proposed for the prediction of generation 

of solar power plants [6]. A multi-step scheme is 

developed to predict solar irradiance using weather 

data. A hybrid of the Autoregressive and Moving 

Average (ARMA) and the Time Delay Neural 

Network (TDNN) is applied in [7]. Numerical values 

of the atmospheric transparency index and the surface 

albedo from the NASA SSE database were used to 

develop the model for estimation of amount of solar 

radiation arriving at the arbitrarily oriented surface [8]. 

A promising model based on a vector autoregressive 

(VAR) framework fitted with two alternative methods 

(Recursive Least Squares and Gradient Boosting) is 

introduced [9]. An approach that uses classification, 

training, and forecasting stages is also proposed for 1-

day ahead hourly forecasting of PV power output in 

[10]. First, the classification stage provides a self-

organizing map (SOM) and learning vector 

quantization (LVQ) networks that classify the 

collected historical data. Then, the training stage 

employs the support vector regression (SVR) to train 

the input/output data sets for temperature, probability 

of precipitation, and solar irradiance of defined similar 

hours. Finally, in the forecasting stage, the fuzzy 

inference method is used to select an adequately 

trained model for accurate forecast. The multilayer 

perceptron (MLP), random forests (RF), k-nearest 

neighbors (kNN), and linear regression (LR), 

algorithms were used for solar irradiance forecasting 

[11].  

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 2971
URI: https://hdl.handle.net/10125/64105
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326835373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

Researchers started exploiting recently spatial 

correlations among geographically spread solar PV 

power plants, which led to improvements in the 

prediction accuracy [12-14]. In our previous study 

Gaussian Conditional Random Fields (GCRF) was 

used to forecast the solar power in electricity grids [5]. 

The introduced forecasting technique is capable of 

modeling both the spatial and temporal correlations of 

various solar generation stations.  

Our paper introduces a novel prediction algorithm 

that combines the spatial and temporal embeddings 

and makes accurate predictions on multiple temporal 

horizons. The proposed method demonstrates good 

prediction accuracy, where R2 of 0.91 is obtained for 

the summer model, 0.85 for the winter model, and 0.89 

for the global model. Out of all the types of models 

that were tested (Linear Regression, Normalized 

Linear Regression, Support Vector Regression, 

Random Forest Regression, and Neural Networks), the 

best accuracy was achieved by Random Forest model. 

The robustness of the proposed algorithm was tested 

for different types of missing data cases (completely at 

random, spatial, and temporal) and the high accuracy 

is obtained in all of these instances. 

The rest of the paper is organized as follows. 

Section 2 describes the background about solar 

generation forecast. Section 3 focuses on the 

prediction methodology. The results are presented in 

Section 4. The discussion and future work 

recommendations are in Section 5. Finally, Section 6 

concludes the paper.  
 

2. Background 
 

Solar irradiance Isolar is the power per unit area 

received from the Sun in the form of electromagnetic 

radiation in the wavelength range of the measuring 

instrument [14]. In solar power systems, the 

relationship between the solar power generation Psolar 

and the solar irradiance Isolar for a given material can 

be assumed as a linear relationship: 

𝑃𝑠𝑜𝑙𝑎𝑟 = 𝐼𝑠𝑜𝑙𝑎𝑟 × 𝑆 × 𝜂 (1) 

where Isolar is in (kWh/m2); S is the area of the solar 

panel in m2; and η is the generation efficiency of the 

solar panel material. 

The high proliferation of PV generation in an 

electricity grid is challenging due to two main factors: 

variability and uncertainty [1]. Since it is highly 

dependent on weather conditions that are variable in 

nature, it can be hard to predict. This introduces a new 

challenge to the electric industry [15] compared with 

conventional power plants that are deterministically 

adjusted to the expected load profiles. 

The amount of solar irradiance arriving at the solar 

panel depends on a variety of factors [8]. Some of the 

factors are deterministic and can be calculated using 

geometry, such as geographical location (latitude and 

longitude), and orientation angles of the solar panel 

relative to the Sun (declination angle, the hour angle, 

the zenith angle, the elevation angle, and the azimuth 

angle). Other types of factors are stochastic in nature. 

These include factors affecting the air between the 

solar panel and the Sun, such as concentration of 

atmospheric gases, dust, aerosols and water vapor 

suspended in the air, humidity, the nature of cloud 

cover, etc. While deterministic factors can be 

calculated for any location and any moment in time, 

stochastic parameters are obtained from the weather 

forecast for the future date and time.  

Solar Zenith Angle (SZA) represents the angle 

between the Zenith and the center of the Sun's disc, 

where the Zenith represents an imaginary point 

directly over a particular location [16]. It has a high 

correlation with Global Horizontal Irradiation (GHI). 

The SZA is an important predictor of GHI and during 

the sunny days (without any clouds), SZA alone can 

be used to accurately estimate the solar irradiance. The 

SZA is a mathematically calculated value, it will be 

useful in any prediction model since it can be obtained 

without special equipment.  

During the cloudy days, and especially during the 

days with high variability between sunny and cloudy 

intervals, the SZA is no longer enough for the accurate 

prediction of solar irradiance. In this case the 

stochastic parameters mentioned before have a major 

impact. Since these parameters are not deterministic, 

it is more challenging to provide accurate solar 

radiation forecast in the case of cloudy days.  

In this paper we develop a data based prediction 

model for the forecast of the output power of the PV 

system using GHI, for a set of aggregated areas of a 

size 3 x 3 km. We use the National Solar radiation 

Database [17], and National Digital Forecast Database 

[18] to train and test the model.  

We looked at different temporal horizons of PV 

forecast used in the industry [1]: 

 The day ahead (DA) forecast. In this case the model 

based results are submitted the day before the 

operating day. The prediction is made for 24 hours, 

typically starting at midnight. Different utilities 

reported different times when the forecast is made, 

some make a forecast at 7 am the previous day and 

submit it at 9 am, others may submit the forecast at 

the end of a day shift at 5:30 pm. The last time point 

of forecast in this case could be larger than 24 hours 

in advance, sometimes up to 42 hours in advance. 
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The value of improvements in day-ahead 

forecasting is outlined in [19]. 

 The hour ahead (HA) forecast. This type of forecast 

is submitted 105 minutes prior to each operating 

hour. In some utilities it also contains an additional 

forecast for the next 8 hours of operation. We can 

conclude that this type of forecast predicts for a time 

horizon of 1.75 to 8.75 hours ahead. This type of 

forecast is a primary target of this paper. 

 Sub hourly forecast. Utilities are also in the process 

of integrating the intra-hour forecast, going down to 

5 minutes ahead. While our model is capable of 

addressing such forecast horizon as well, we are not 

focusing on this problem at this time.  

PV forecast methods have different accuracy 

depending on the time horizon of forecast. Some 

methods perform better in a short term and some are 

better for a day-ahead forecast. Fig. 1 shows 

comparison of performance of different methods for a 

range of time horizons [20]. We can observe from Fig. 

1 that cloud motion forecasts based on satellite (yellow 

and white lines) perform better than numerical weather 

prediction based on National Digital Forecast 

Database (NDFD) up to 5 hours ahead. Numerical 

weather prediction demonstrates similar forecast 

accuracy for time horizons going from 1 hour to 3 days 

ahead [1]. 
 

3. Methodology 
 

 In this section we describe the proposed data 

model used in the study. This model leverages the 

correlation between the locations where the data is 

collected with temporal weather data. This section first 

discusses the dataset used, and then introduces the 

proposed model.  
 

3.1 Data  
 

This research focuses on the problem how to 

leverage the correlations between spatial and temporal 

weather data to predict solar irradiation. As a result, 

the collected data has two parts: a network that 

represents spatial locations for the collected weather 

data, and temporal weather data.  

3.1.1 Spatial Data. A set of locations (𝐿) are used in 

this paper. Fig. 2 shows the 288 locations in the San 

Antonio, TX area where the data is collected. Each 

location 𝑙𝑖 in 𝐿 represents a 3 × 3 km area where solar 

irradiation is determined. For each location, the 

longitude and latitude are known which allows us to 

measure the distances between all the locations and 

build a spatial network. The built spatial network will 

be combined with the collected temporal data to make 

predictions for solar irradiation. This model is 

extracting the information that represents how 

different locations are affecting each other.  

3.1.2 Temporal Weather Data. For each of the 288 

locations discussed earlier, weather measurements are 

collected for the year (2017). In this data collection, 

weather measurements are collected every 30 minutes. 

In addition, solar irradiance collected by the National 

Solar Radiation Data Base [17] is spatiotemporally 

correlated with the weather measurements. The solar 

irradiance data also represents a measurement every 

30 minutes for the same locations in San Antonio, TX.  

For each timestamp and in each location, the following 

weather measurements are collected: Dew Point, Solar 

Zenith Angle, Wind Speed, Precipitable Water, Wind 

Direction, Relative Humidity and Temperature. Since 

 
Figure 1. Root mean square error (RMSE) of different solar forecasting techniques obtained over a year at 

seven SURFRAD ground measurement sites [20]. The red line shows the satellite nowcast for reference, i.e. 

the satellite ‘forecast’ for the time when the satellite image was taken.  
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there is data each 30 minutes for 288 locations, the 

total number of data records is around 5 million. 

3.1.3 Target Variable: Global Horizontal 

Irradiance (GHI). Solar irradiance is represented by 

the Global Horizontal Irradiance (GHI) variable. This 

variable is collected every 30 minutes for all locations. 

For each of the 7 weather variables mentioned in 

Section 3.1.2, there is a GHI value corresponding to it.  

3.1.4 Correlation between Weather Variables and 

GHI. There is significant correlation between some of 

the weather parameters and GHI. Table 1 shows the 

values of correlation. We can see that some of the 

parameters have high correlation, such as Solar Zenith 

Angle, and we expect those to be highly influential in 

the regression model.  
 

3.2 Proposed Model 
 

There are several methods of leveraging temporal 

and spatial data. In this model, we combine the 

temporal and spatial data by embedding the spatial 

information using Node2Vec [21], where the spatial 

correlations information is embedded to a new feature 

space (𝑆). The temporal correlations are embedded by 

creating new features that represent the temporal 

correlations.  
3.2.1 Spatial Embedding. This study considers 

spatial and temporal dependencies among 288 

locations. Spatial dependencies of a certain site on 

remaining sites at a specific time can be represented as 

574 variables corresponding to longitude and latitude 

for 287 locations. Data dimensionality is much larger 

when also considering temporal dependencies. Data 

sparsity in such a high high-dimensional 

representation is a major challenge for predictive 

modeling.  

Another serious challenge is effective integration 

of relevant long-range spatial dependencies with local 

spatial information. A fusion of all available 

information can result in large data volume and large 

noise causing course of dimensionality and I/O 

problems, while too aggressive summarization can 

result in loss of important dependencies. One approach 

to address this challenge is to summarize the graph by 

aggregating locations of interest into “supernodes” 

representing larger regions. This can help reducing 

data dimensionality, but requires feature engineering 

which could cause additional challenges. Alternative 

methods, such as geographically weighted regression, 

were proposed to capture spatial interactions, but this 

is a serious challenge since a large spatial lag is 

problematic as it accounts for many irrelevant 

locations, while a small spatial lag ignores longer-

range influences.  

Regression methods based on a naturally 

embedded spatial information (locations) typically 

assume spatial stationarity. For example, 

Autoregressive Statistical Methods adopt a spatial lag 

term to consider the autocorrelation of a neighborhood 

while geostatistical methods use semi-variograms to 

characterize the spatial heterogeneity. This 

assumption is another limitation since in practice 

relationships between variables vary at different 

locations. 

An alternative and more flexible approach is to 

represent spatial data as a graph. This approach is 

appealing, but graphs can also add complexity to any 

learning model. Recently, progress was made in the 

 

Figure 2. Map showing the 288 locations where the 

temporal weather data is collected. 

 

Table 1. Correlation coefficient between each 

weather parameter and GHI 

Number Feature Name Correlation with 

GHI 

1 Dew Point -0.039 

2 Solar Zenith 

Angle 
-0.816 

3 Wind Speed 0.296 

4 Precipitable Water 0.017 

5 Wind Direction -0.107 

6 Relative Humidity -0.734 

7 Pressure -0.105 
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representation learning field by embedding nodes of a 

graph or even entire graphs in a lower-dimensional 

space where standard machine learning methods could 

be used easier. The embeddings are learned and 

extracted by various algorithms. Such algorithms aim 

at conserving the graph structure and simplifying the 

learning models by moving away from graph 

representations. An advantage of using such 

methodologies is that they can potentially uncover 

more complex spatial dependencies that include some 

long-range interactions in addition to influences of the 

local neighborhood. An additional very useful 

property of using such approaches is that they can use 

jointly Euclidean spatial information and non-

Euclidian variables. 

The node embedding process represents the 

original graph in a new feature space S, where S best-

describes the spatial relationships of the nodes in the 

original graph. For instance, if two nodes a, b depend 

on each other in the original graph (i.e.: geographically 

close, or longer-range dependent), this relationship 

will be retained when a, b are represented in S. Hence 

a and b will be close in the new space S. This 

characteristic of the node embedding aims to capture 

essential relationships of the original graph structure 

while simplifying representation to a lower-

dimensional list of feature vectors.  

There are several algorithms to obtain such an 

embedding, two commonly used algorithms are 

DeepWalk [24] and Node2Vec [21]. Both algorithms 

rely on local information obtained by random walks 

used to learn latent space representations. A random 

walk (which is rooted at a vertex 𝑣𝑘) is a stochastic 

process with random variables 𝑊𝑣𝑘
1 , 𝑊𝑣𝑘

2 , … , 𝑊𝑣𝑘

𝑗
, 

where 𝑊𝑣𝑘

𝑗+1
 is a vertex chosen randomly from the set 

of neighbors of vertex 𝑣𝑘. DeepWalk uses a stream of 

short random walks as the basis for extracting 

information from a graph by treating walks as the 

equivalent of sentences. DeepWalk is a generalization 

of a language model aimed to explore the graph 

through walks. In this analogy, the walks can be 

considered phrases in a special language.  

In addition to the ability of DeepWalk to capture 

community information, DeepWalk is able to perform 

local exploration efficiently and is able to 

accommodate small changes in the graph structure 

without global recomputation. DeepWalk has two 

main steps: random walk generator and update 

procedure. In the random walk, a vertex 𝑣𝑘 is 

uniformly sampled from the graph and set as the root 

of the random walk. Then a walk uniformly samples 

from the neighbors of the last visited vertex until the 

maximum length of the walk is reached. In the second 

step, the update procedure called SkipGram updates 

the representations in accordance to the defined 

objective function. SkipGram is a language model that 

maximizes the co-occurrence probability among the 

word within a window in a sentence. Since the random 

walks of a graph can be considered phrases in a 

sentence, SkipGram will maximize the probability of 

its neighbors in the walk. The final representation is 

obtained through a hierarchical softmax process. 

DeepWalk includes optimization and parallelizability 

features, which allows to obtain a good performing 

representation (against a target function) though 32-64 

random walks of a window width of 40.  

Node2Vec is an algorithmic framework that 

generalizes DeepWalk process to provide a flexible 

notion of a node’s neighborhood which allows 

learning richer representations by effectively 

exploring diverse neighborhoods. Node2Vec achieves 

better representations by introducing a search bias 𝛼 to 

its random walks. This allows Node2Vec to explore 

different types of network neighborhoods. 𝛼 allows 

discovering short and long distances by incorporating 

two parameters 𝑝, 𝑞 which guide the walk. The return 

parameter 𝑝 controls the likelihood of immediately 

revisiting a node in the walk while 𝑞, the in-out 

parameter, allows the search to differentiate between 

inward and outward nodes. Unlike DeepWalk, 

Node2Vec is sensitive to neighborhood connectivity 

patterns in networks.  

In Node2Vec, as well as DeepWalk, the number of 

output dimensions is a hyperparameter and must be 

predefined. Using low setting for the number of 

dimensions (<16) can affect the stability of the 

generated space [24]. The literature shows the values 

for the dimensions to be the most effective if set 

between 32 and 128, in integer increments to the 

power of 2. 

To convert the dataset in Fig. 2 using Node2Vec, a 

connected graph is created from the 288 locations. In 

order to achieve this, distances between locations are 

used as edge weights in a fully connected graph. Then, 

Node2Vec is used to convert Fig. 2 to the new feature 

space S, where each location li in L is mapped to a 

vector si in the embedding space S. The final 

conversion is a matrix of size 288 × 𝐷 where D is the 

number of dimensions for S. In Node2Vec, D is a 

hyper-parameter that needs to be determined in 

advance.  
3.2.2 Temporal Embedding. In order to preserve the 

temporal relationship included in the collected data, 

temporal embeddings (𝑇𝐸) are used. Temporal 

embeddings can be useful in modeling temporal data, 

but one must be careful not to over-embed the data. 

This might cause the model to rely on the temporal 

aspect to learn the target variable, and this might lead 

to over-fitting. In this model, two embeddings are 
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created for the time period 𝑇 and used in the model: 

Hour of the day and Season. For hour of the day, it is 

a simple 0 to 23 value of the hours in the day. For the 

season (winter, spring, summer and fall), it is 

determined from the date of each measurement taking 

in consideration the leap years.  
Fig. 3 shows the shape of the dataset after the 

embeddings. Spatial embeddings S are added in 

addition to the temporal embeddings and weather 

attributes. The final embedded data 𝐸 is a 

concatenation of  , weather attributes and 𝑇𝐸 .  

3.2.3 Data Aggregation and Model Flow. Fig. 3 

represents how the data is aggregated and used in 

training the regressor. The ID column represents the 

location ID. Time is a sequential counter. ID and Time 

are not used in any learning and are shown here for 

demonstration purposes only. One can see that for 

each location and each reading, spatial and temporal 

embeddings are appended. In the original dataset, a 

very small number of records (< 0:001%) had missing 

values, and those records were dropped from the 

dataset. The dataset is temporally split for training and 

testing. Section 4.1 discusses how the data is split for 

training and testing purposes.  
 

3.2.4 Regression Model. After data is transformed to 

the shape showed in Fig. 3, a regression model that 

predicts a value for GHI based on the input (𝐸) is built. 

In this study, several regression models were tested, 

including Linear Regression, Normalized Linear 

Regression (Ridge, Lasso), Support Vector 

Regression (rBf kernel, linear kernel), Random Forest 

Regression, and Neural Networks.  

The best accuracy was obtained by the Random Forest 

(RF) Regression [22]. RF is an ensemble of tree 

predictors, where each tree depends on an independent 

and randomly sampled vector with the same 

distribution as all the other trees in the forest. RF is an 

ensemble of B trees {𝑇1(𝑋), … , 𝑇𝐵(𝑋)}, where 𝑋 =
{𝑥1, … , 𝑥𝑝} are independent and randomly sampled 

vectors with the same distribution. The ensemble of B 

trees produces B outputs {𝑌1̂ = 𝑇1(𝑋), … , 𝑌�̂� =

𝑇𝐵(𝑋)} where 𝑌�̂�is the prediction of the bth tree. The 

final aggregation of the regression is an average of the 

individual tree predictions.  
 

4. Results 
 

4.1 Temporal Data Split 
 

The dataset described earlier has a strong temporal 

factor embedded in it. Thus, we utilized temporal 

hold-out validation is reserved for validation instead 

of relying on k-fold cross-validation. Following 

models were trained and tested: 

1. Winter model: using October and November data for 

training and using December data for testing. 

2. Summer model: using June and July data for training 

and using August data for testing. 

3. Global model: using December and August data for 

testing and the remaining months for training. 

The rationale behind this split is the following: for 

Summer and Winter models, we expect to have close 

correlation for these specific months, since the 

weather is somehow similar; for example, during the 

summer months we expect a large number of sunny 

 
Figure 3. Shape of the dataset after the embedding process 
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days, while during the winter months we expect higher 

number of cloudy and variable days. For the global 

model, the idea is to test a generalized model using all 

data, and see if combination of the Winter and Summer 

models produces a good performing global model.  
 

4.2 Test Data 
 

The three models described in section 4.1 use 

weather measurements for training, which means that 

all months of the year except August and December 

are actual weather measurements. In order to have a 

realistic test data, the testing months (August and 

December) are using weather predictions made 3 

hours in advance before the timestamp of the GHI 

measurements. This experimental setup ensures that 

the model is testing a scenario that is very similar to a 

real-world application.  
 

4.3 Data Preprocessing 
 

Original weather data contains a very minimal set 

of missing values (0.01%). The records having 

missing values are removed since the dataset is large 

and the amount of missing data is insignificant. After 

removing missing values, the embedded dataset 𝐸 is 

constructed. Spatial embedding 𝑆 is constructed using 

𝐷 =  32. Furthermore, temporal embeddings 𝑇𝐸  are 

constructed. Since temporal embeddings introduces a 

categorical variable, 1-hot encoding is used to encode 

the categorical variables into a bit-vector where a 

single digit is 1 corresponding to a specific category. 

The last step is to scale 𝐸 to a [0, 1] scale using a min-

max scaler. This is necessary to remove the effects of 

different data scales for different variables. Both 

operations were conducted using Scikit-learn 

preprocessing module [23].  

 

4.4 Model Training and Results  
 

Model test results were evaluated by using 

coefficient of determination denoted as R2, mean 

absolute error (MAE), and root mean squared error 

(RMSE). Best performing regressors was Random 

Forest Regressor, with R2 = 0.91, MAE = 42.76, 

RMSE = 92.8.  

4.4.1 Summer Model. In this model, weather 

measurements from June and July of 2017 are used for 

training while weather predictions for August 2017 are 

used for testing. Table 2 shows the results for the 

summer model. As expected, the summer model has 

good performance, since summer months usually have 

lower variation in the weather, hence more 

predictability of GHI. Fig. 4 shows the predicted GHI 

using the summer model for 100 readings.  

4.4.2 Winter Model. In this model weather 

measurements from October and November of 2017 

are used for training. The weather predictions for 

December 2017 are used for testing. The summer 

model performs better than the winter model. This is 

expected due to the higher number of clear sunny days 

in the summer when the correlation between SZA and 

GHI is very high as explained in Sec. 2. Table 3 shows 

the results for the winter model. 

4.4.3 Global Model. In this model weather 

measurements from December and August of 2017 are 

used for testing and the rest of the months of 2017 are 

used for training. As expected, this model performs 

better than the winter model. Table 4 shows the results 

for the global model.  

 

 

 
4.5 Spatial Embedding Sensitivity Study 
 

There is one hyper parameter D which represents 

the number of dimensions in the spatial embedding. 

Typically, in embedding dimensions several values of 

the power of 2 are tested (32, 64, etc.). In this 

experiment 32, 64 and the default Node2Vec 128 are 

tested. There were no significant differences between 

the dimensions, and this can be interpreted as the graph 

being a symmetrical static grid. Also, another variation 

of the graph is embedded, which was created by 

dropping the top 10% of the links (distance-wise). This 

variation didn't make a difference in the results, and it 

was similar to the results reported earlier. 
 

4.6 Handling Missing Data  
 

Missing data is one of the common problems seen 

in this domain. In the following set of experiments, 

few scenarios of missing data are simulated and tested.  
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1. Random Missing Data: in this experiment data is 

dropped from the dataset completely at randomly. 

An experiment to drop 30%, 50%, 70%, 90% and 

95% of the training data. Given that the training set 

has 3.2 million records, it is expected that dropping 

data randomly will not be highly effective. All 

models performed almost the same. Even the model 

running on 99% performed similarly since 99% is 

around 33K rows of data, which seems to be enough 

to train this model. This will be discussed more in 

Section 5.  
2. Spatial Missing Data: in this experiment, random 

locations are dropped completely from the training 

data. In this experiment, 10, 20, 30, 50, 75, 100 and 

150 locations are dropped completely from the 

training dataset. We still used those locations in the 

testing dataset (testing data didn't change). Similar 

to point 1, the model performed similarly. This 

might be due to proximity of the locations. This will 

also be discussed more in Section 5.  
3. Temporal Missing Data: This experiment is 

conducted in the following ways:  

 Removing a season from the training data (in the 

global model, example: dropping all data from the 

Spring season): this didn't affect the model. The 

model behaved similarly. 

 Lowering the resolution of the training data: the 

original training dataset has readings every 30 

minutes. In this experiment, the resolution of the 

data is lowered to 1, 2, 4, and 8 hours. The model 

behaved similarly with some slight decline. 

The results reported in this section provide 

evidence that the model robust to data missing at 

various mechanisms. Extending the cases of missing 

values is out of scope of this research. Again, more 

discussion is given in Section 5.  
 

4.7 Weather Feature Importance 
 

One advantage of using Decision Tree Regressor is 

that it produces (by default) feature importance for the 

features used, which could be used as feature ranking 

[23]. Fig. 5 shows feature importance for the top 15 

parameters extracted from the Decision Tree 

Regressor trained in the embedded representation. As 

expected, Solar Zenith Angle is the most important 

feature, then humidity and perceptible water are the 

next important features. As we discussed earlier, this 

is expected as Solar Zenith Angle is directly related to 

the amount of solar radiation for the sunny days 

without clouds. In addition, humidity and perceptible 

water can directly affect how the Sun radiation affects 

an area, which has a strong relation to GHI.  

 
4.8 Evaluating Longer Prediction Horizon 
 

Results reported in previous sections were for a 3-

hour horizon. Figure 6 shows prediction accuracy of 

the proposed method predicting 3, 6, and 9 hours 

 

Figure 4. GHI vs. GHI predicted 3 hours ahead for 100 readings using the summer model. 
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ahead. The results are reported for winter, summer and 

global models. All 3 models show good stability over 

the longer horizons. Global model has mean values of 

(R2=0.87, MAE=45.7, RMSE=100.6). In comparison, 

summer model has mean values of R2=0.86, 

MAE=62.2, RMSE=122.1 and winter model has mean 

values of R2=0.83, MAE=36.7, RMSE=87.1). This 

shows that the results are consistent across different 

time horizons. A slight improvement in RMSE was 

observed for the winter model at 9-hour horizon since 

predicting GHI is less complex near the end of the 

daytime.  
 

5. Discussion and Future Experiments 
 

Several aspects about the data generation process 

and results deserve a discussion. The dataset is 

constructed as a combination of satellite data, radar 

data, and mathematical models. This might explain the 

strong performance of the proposed model even when 

trained on a small data subset. On the other hand, GHI 

has temporal patterns (low in the morning, peak during 

the day, and then declines, and goes to 0 at night). This 

is one of the factors that can help in improving the 

performance of the model. Also, this study uses a large 

dataset, and this helped improve the results. Another 

factor is that in conducted experiments locations were 

not far from each other. From Fig. 2, the width of the 

grid is less than 35 miles, which makes the weather 

pattern similar in these locations. Temporal 

embeddings are helping the model and not over-fitting 

the data. An experiment conducted without 'time of 

day' embedding showed that the model is not learning 

the GHI by time only. 
 

6. Conclusion  
 

Following are the contributions of the paper:  

 A novel approach to solar radiation forecast is 

developed based on spatial and temporal 

 
Figure 5. Feature importance 

 

Figure 6: Prediction accuracy 3, 6 and 9 hours ahead by global, summer and winter models 
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embeddings using Node2Vec model for graph 

data. This approach simplifies the learning 

models by moving away from complex graphs. 

The model was developed for the forecast ranging 

from 3 to 12 hours ahead. 

 The performance was tested for multiple 

regression algorithms: Linear Regression, 

Normalized Linear Regression, Support Vector 

Regression, Random Forest Regression, and 

Neural Networks. The Random Forest Regression 

has shown the best results. 

 Variability of prediction accuracy for different 

seasons was explored. As expected, the algorithm 

performed with a very high accuracy in the 

summer when there are more clear sky days. 

During the winter months, the accuracy had a 

slight drop, but was still good and robust even 

when data was missing spatially and temporally.  
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