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Abstract 
 

Electric vehicle (EV) charging can take 

advantage of real-time electricity market price 

volatility. Presuming that an EV must be fully 

charged at a future target time, the EV should choose 

to charge using the lowest future electricity prices 

and thereby minimize electricity cost. Statistical 

methods must be used if forward prices are 

unavailable. In this case, historical prices and trends 

must be mined to anticipate which prices should be 

used to charge the EV. Price persistence, a tendency 

for electricity prices to inexplicably become and 

remain relatively high or low for extended durations, 

is particularly difficult to forecast and mitigate. This 

paper formulates and tests a pragmatic strategy for 

integrating conventional static statistical prices and 

the Bayesian propagation of price persistence from 

the current price to prices in the current and future 

hours. Simulations were conducted to test the cost 

effectiveness of charging strategy using real-time 

electricity prices.1 

 

 

1. Introduction  

 
This paper addresses electric vehicle (EV) 

charging from the economic perspective of a vehicle 

owner when the expense of charging the EV is 

subject to dynamic, real-time electricity pricing. A 

charge controller exists to serve the interest of the EV 

owner. The charge controller has access to historical 

electricity prices, but it has no access to electricity 

load forecasts, generator costs, or transport 

constraints that might be available to utilities, 

transmission operators, market operators, or power 

producers. 

The EV owner parks at a charging station when 

convenient, and the EV’s owner specifies a future 
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time when the EV must be fully charged, which must 

be no earlier than the minimum time needed to fully 

charge the EV. The EV and charging station keep 

track of how much electricity must be supplied to the 

EV if it is to become fully charged. The charging 

algorithm becomes aware of a real-time price just 

prior to the start of a market interval, and a decision 

must be made whether the EV will accept the price 

and charge or await the unknown prices in future 

market intervals. If the price is accepted, the EV 

charges at a constant power for the duration of the 

market interval. 

This scenario is becoming increasingly relevant 

as more EVs are being produced and used, moving 

transportation costs from fossil fuel to electric power 

grids. Rapid growth of renewable energy generation 

may increase the volatility of real-time electricity 

prices. Renewable generation is uncontrolled and 

intermittent and causes flexible resources to be 

dispatched out of their normal economic dispatch 

order. At the same time, energy storage devices like 

EVs, if controlled, might moderate the effects of 

renewable energy intermittency and thereby facilitate 

the continued growth of renewable energy. 

While this paper is motivated by an EV charging 

scenario, the challenge lies primarily with one’s 

ability to forecast near-term electricity prices. 

Electricity price distributions are irregular and time-

variant. Even the most sophisticated electricity price 

forecasts are uncertain. The decision to either accept 

or reject an offered electricity price in a market 

interval is therefore dependent upon the statistical 

probabilities of prices in the remaining time intervals 

in the available charging time window. The accuracy 

of a point price forecast is less relevant. 

Weron [1] provides a comprehensive overview 

of price forecasting issues and methods. Perhaps the 

summary is most useful toward establishing a 

consistent lexicon for price forecasting. The forecast 

approach of interest herein, according to [1], 

performs a short-term forecast using a hybrid 

reduced-form and statistical model, and is applied to 

real-time electricity markets. It’s noted that relatively 
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few articles and conference papers address 

probabilistic forecasts of price densities, as addressed 

herein [1]. The specific form of density forecasting 

used herein, where future price is allocated to a few 

predetermined price intervals, is called threshold 

forecasting. 

Zareipour, et al. [2] was cited by [1] as the first 

publication to teach threshold price forecasting. The 

method is claimed by [2] to be especially appropriate 

for demand-side management, which relies on a price 

threshold, not an exact price forecast. The strength of 

using threshold forecasting is motivated in [2] by 

multiple citations of unimpressive price forecasting 

errors, which are typically much larger than the errors 

of load forecasts in electric power systems. The 

threshold forecast’s categorization accuracy was 

shown to compare favorably with autoregressive 

integrated moving average (ARIMA), transfer 

function, and dynamic regression models. Extraneous 

training inputs like system electricity demand were 

found to produce only modest improvements to the 

forecasts’ categorization accuracy. 

Ziel and Steinert [3] employ methods suitable for 

estimating probabilistic outcomes by price quantile. 

The approach is highly model-based, relying on rich 

knowledge of load and relative contributions of 

various renewable and conventional generation 

resources. The method is targeted for mid- and long-

term price forecasting, but nothing seems to prevent 

its application to short-term price forecasting. 

Jonsson et al. [4] predicts densities of day-ahead 

electricity prices using time-adaptive quantile 

regression. This method outperforms the generalist 

autoregressive conditional heteroscedasticity 

(GARCH) model. The model of [4] first uses the 

point prediction methods of [5] to remove seasonal 

and other trends; however, this underlying reliance 

on a point prediction necessitates fitting the residual 

error between the actual and predicted prices to a 

density distribution model―Gaussian, for example. 

The distribution’s variance is tracked and describes 

the distribution centered on and symmetrical about 

the expected point price. 

Ji et al. [6] propose a state-space-based 

forecasting of locational marginal prices by a system 

operator. The algorithm defines pricing system states, 

from which the impacts of important market 

scheduling activities may be derived. 

Computationally expensive Monte Carlo methods are 

used to estimate price transition probabilities, which 

may hold similarities to what is described as 

Bayesian propagation herein.  

Conejo, Nogales, and Arroyo [7] teach a strategy 

for bidding conventional thermal electricity 

generation into a day-ahead market given uncertain, 

normally distributed (or lognormal) future prices. An 

intermediate step, prior to bidding, is the scheduling 

of the resource. We do not address bidding in this 

paper, although the approach could be extended to 

bidding much as in [7]. This paper avoids any 

assumption of normalcy for future prices. 

Luo, Huang, and Gupta [8] formulate a 

locational pricing practice for public EV charging 

services to ensure their profitability, enhance 

customer satisfaction, and reduce adverse impacts on 

the electric power grid. Customers’ price elasticities 

are recursively learned from historical data. The 

authors therefore rely on real-time wholesale 

electricity price predictions and create multiple 

locational prices for EV charging service providers 

but defer the problem how customers are to make 

practical price-based charging decisions. 

This paper offers these following contributions: 

Upon presuming that non-utility-owned EV 

charging stations will not have access to influential 

pricing input variables (e.g., generator costs) that are 

available to grid operators, a short-term electricity 

price forecast is formulated to rely on only price 

trends and price persistence that may be gleaned from 

historical price data. 

An intuitive representation of successive 

charging decision logic is taught and demonstrated. 

An EV’s decision to charge or not in an impending 

market interval depends only on the impending 

interval’s electricity price, forecasted price 

distributions, the number of market intervals 

remaining in the charging session, and the EV’s 

current state of charge. 

An EV charging algorithm is offered that 

combines advantages from both static price 

distributions and the propagation of transitions 

between defined price bins on those distributions. 

The static information retains price distribution 

irregularities; the Bayesian propagation model 

captures price persistence. The bins’ populations 

dynamically grow or shrink, but the bins’ price 

boundaries, once defined, remain constant.  

The paper’s method is tested using many 

scenarios having different initial EV states of charge, 

different starting times, and different charging 

window durations. The method is found to capture 

about half the theoretically achievable value in a 

challenging real-time market. 

 

2. Price data characterization 

 
Real-time, 5-minute energy prices at the Ontario 

node of the Independent Electricity System Operator 

[9] are used to demonstrate the paper’s approach. 
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Prices from 2018 are used to train and characterize 

the price statistics. Then, prices from the first quarter 

of 2019 are used to test the strategy. 

 

2.1. Static price correlations 

 
We first look at static correlations. These are 

informed by long-term price correlations and should 

not include dynamic effects like lags or price 

persistence. We address hourly, weekly, and longer 

monthly or seasonal price patterns. 

 
2.1.1. Hourly price pattern. Figure 1 shows the 

quartiles of 2018 prices by hour of day. A typical 

diurnal pattern is observed. Median prices tend to be 

relatively high in the morning and late afternoon. The 

variability of prices is also observed to be larger in 

hours from 6:00 to 23:00 than from 23:00 to 6:00. 

Remarkably high priced peak outliers can occur 

nearly any hour of the day. 

Prices in this market frequently become negative. 

 

 
Figure 1.  Price quartiles by hour. A diurnal pattern is 

evident. 
 

2.1.2. Weekly price pattern. Electricity consumer 

behavior often differs by weekday. Weekend days 

may have lower electricity consumption than week 

days. One might therefore expect to also see price 

variability by week day. The quartile plots of Figure 

2 dispel this hypothesis. Weekday prices share very 

similar distributions in this market. 

 

2.1.3. Seasonal price pattern. Figure 3 shows 2018 

price quartiles by month. Monthly and seasonal price 

patterns are observed. 

 
Figure 2.  Price quartiles by weekday. 

Surprisingly, virtually no price pattern is evident 

by weekday. 

 

 
Figure 3.  Price quartiles by calendar month. Clearly 

there are seasonal price patterns. 

 

2.2. Price persistence 

 
The static distributions of the prior section would 

suffice if new prices were randomly drawn from 

these distributions. Instead, one market interval’s 

price is highly correlated to the preceding price. 

Prices tend to remain relatively high or low for 

multiple market periods. Price persistence is 

represented by the prices’ autocorrelation, as shown 

here for weeklong (Figure 4a) and daylong (Figure 

4b) periods. Raw prices remain strongly correlated 

for several hours. The vestiges of price correlation, 

however, take over 4 days to fully dissipate. 
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(a) (b) 

Figure 4.  Autocorrelation of raw price data over a) 1 
week and b) 1 day. 

 

It is precisely this persistence effect that 

motivates the Bayesian propagation strategy. If one is 

to anticipate the statistics of prices within a window 

of future prices so that an EV can be economically 

charged, both the static price distributions and 

models of price persistence must be used. 

 

3. Price correlation models 

 
A contribution of this paper is its melding of 

static, long-term statistical price probabilities and the 

management of persistence effects. The strategy put 

forth in this section grants moderate independence 

between the two statistical components. 

 

3.1. Binned static price statistics model 

 
The creation of correlation models using 

historical data is not new, and this paper claims few 

contributions in this respect. In fact, the simulation 

performance tests used later in this paper used only 

global hourly groups during the formulations of long-

term statistical models, which may attest to the 

insensitivity of this strategy to detailed correlation 

models. We refer to these distributions as static 

because they need not and should not address any 

dynamic, intertemporal effects. Regardless how they 

are derived, correlation models should be constructed 

to capture important correlations.  

This paper does, however, contribute an 

approach to binning of static prices that creates a 

foundation for the Bayesian propagation treatment of 

persistence, to be discussed in the next section. Ten 

equally spaced probability bins are overlaid on the 

cumulative probability price curve in Figure 5. The 

correct number of bins may be debatable, but 10 bins 

were used throughout this paper. The widths of the 

corresponding price bins are seen to vary greatly for 

this example. The feature that sets up the application 

of Bayesian propagation here is that the likelihoods 

(i.e., forecasted populations) of the 10 price bins will 

be allowed to change dynamically, but the price bins 

do not. In a single market interval, 100% of the 

likelihood falls in a single bin; over long periods of 

time, each bin should revert to containing about 10% 

of the prices, the original allocation.  

This practice of using static bins has an effect 

similar to trend removal. A trajectory from Bin 10 in 

one hour to Bin 10 in the following hour represents 

no change in persistence, but the prices in the two 

bins may differ, representing the typical change in 

prices between those two hours. 

 

 
Figure 5.  Hourly static bin prices. A long-term hourly 
distribution is divided into 10 equal-sized bins. These 
bins are separated by nine energy prices. The prices 

that demarcate the bins remain constant, but the sizes 
of the bins are allowed to vary due to persistence. The 

price statistics cause widths of price bins to vary 
greatly. This data happens to represent the period 

10:00 – 11:00 for all 2018. The highest prices have been 
cropped so that price bins may be seen well. 

 

During a training period, all the real-time, 5-

minute energy prices from 2018 at the Ontario node, 

Independent Electricity System Operator [8] were 

collected.  Decile price bins like those in Figure 5 

were defined for each hour of the day. The method 

could be bootstrapped with much less historical 

training data. For example, the method could begin 

with normal distributions based on hours’ price 

averages and standard deviations. Recursive methods 

could be formulated to improve the hours’ actual 

historical price distributions over time. Forecast 

quality should improve as the price distributions are 

made to match those of the forecast hours. In this 

case, recent days or specific month’s distributions 
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(referring to the variability evident in Figure 3) might 

have been preferable. 

 

3.2 Bayesian propagation model 

 
The 2018 price data was further evaluated to 

model the propagation of relative prices within and 

between successive hours. Suppose that the 

likelihoods of the price bins in Figure 5 are resented 

by a vector of probability values , where  is one 

of the ten bins. The sum of the vector members must 

be unity. 

Given a rich history of price data, the likelihoods 

of transitions  from bin  in the first hour to  

in another may be determined. The accent indicates 

bin statistics that are being propagated from other 

known bin probabilities. 

The two hours may be the same hour, indicating 

the likelihood of a bin’s price occurring in the hour 

given that another price has occurred. Often, the 

likelihood of an hour’s price bins are statistically 

related instead to bin likelihoods in the prior hour. 

The propagation of bin probabilities may therefore be 

concisely stated as in (1). 

 

 

(1) 

 

The propagation is described as Bayesian in that 

a hypothesis that a price will fall in a given bin in a 

future hour is updated by evidence of the recently 

published price and the bin in which it lies using (1). 

The propagation of price bin probabilities makes 

storage efficient. The statistics of multiple successive 

hours may be strung together using (1). There is no 

need to evaluate or store the dynamic transitions 

between any hours that are not contiguous. 

 

3.3 Decision logic 

 

At market interval , an energy price  

becomes published and known to the EV charger. 

The challenge is to predict whether the published 

energy price in the impending market interval should 

be used to charge the EV. The static and dynamic, 

propagated price statistics should support this 

decision. For each charging decision (each market 

interval) we calculate the probable total remaining 

cost of charging the EV under two cases:  

 Case 1: charging occurs during the impending 

market interval, which incurs expected 

remaining cost according to (2), or 

 Case 2: The EV does not charge in the 

impending market interval, which incurs 

expected remaining cost according to (3). 

These two alternative costs are directly comparable. 

The cheapest total cost alternative should be chosen. 

Each of (2) and (3) have the scaling product 

, where  is the EV charging power magnitude, 

and  is the duration of the market interval. The 

remaining term in parenthesis is a sum of price  in 

the impending interval plus prices  in later 

intervals. The later prices are relevant only if the 

cumulative distribution  is less than or equal to 

an important ratio that represents the fraction of 

remaining market intervals (excluding the current 

impending one) that must be used to finish charging 

the EV. The current number of needed charging 

intervals  is reduced by one in the charging case (2) 

because the impending interval is indeed used, thus 

reducing the number of future market intervals 

needed for charging. 

 

 

(2) 

 

(3) 

 

4. Example charging decision scenario 

 
This section presents details concerning a single 

decision whether to charge an EV during an 

impending 5-minute market interval for which the 

energy price has been announced. While it’s not 

especially critical to the discussion, the scenario 

conditions happen to be the first charging interval 

starting at 17:20 on Feb. 3, 2019. The EV arrives at 

its charger 60% charged and anticipates a 1-h 

charging window having altogether 12 5-minute 

market intervals. This means that the EV must take 

advantage of 4.8 of the available market intervals if it 

is to become fully charged over the next hour. 
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4.1. Cumulative price distribution from 

component hours 

 
The price $24.63/MWh is determined to reside in 

the fourth price bin for the hour 17:00 – 18:00. The 

bin probabilities may therefore be found in the fourth 

column of the 10 x 10 matrix that represents 

transitions within this hour. More than 50% of the 

expected prices are expected to lie in price bin 4 

according to this column. The likelihoods of the 10 

bins are used to weigh sets of prices in the respective 

binned prices this hour. The bins are further weighted 

by the fact that 7 of the 11 of the remaining market 

intervals lie in the current hour. The weighted 

cumulative distribution for this first hour is shown in 

Figure 6. Its maximum contribution is 7/11=63.6%. 

 

 
Figure 6.  The Bayesian propagation method 

determines the weighted hourly components for all the 
hours in the charging opportunity window based on 
the relative numbers of time intervals in each hour. A 
cumulative price distribution is then assembled from 

all of its weighted hourly component distributions. 
 

The calculation of the weighted cumulative 

distribution for the second hour proceeds much as for 

the first. However, the binned price distributions in 

the second hour are found by multiplying the 10 x 10 

matrix of bin magnitudes in hour starting 18:00 given 

hour starting 17:00, and this matrix is multiplied by 

the vector that was calculated for the first hour prices. 

If the scenario duration had been longer, the process 

would be continued to find hourly component 

distributions for the additional hour or hours. 

The cumulative distribution is then found by 

adding its hourly components. The final cumulative 

distribution represents the likelihoods of prices in 11 

available market intervals excluding the current one 

for which the price has already been published. 

 

4.2. Example charging decision 

 
The cumulative price distribution for the 

available future charging time intervals may now 

support decisions to either charge during the current 

time interval or wait for anticipated cheaper prices. 

Figure 7 compares the respective calculations of 

waiting cost (3) and charging cost (2). If the EV were 

to wait, it must still use 4.8 of the remaining 11 

charging intervals, or 44%. If, however, the EV were 

to charge in the impending time interval, it would 

incur the impending interval’s cost, and need only 3.8 

of the remaining 11 market intervals, or 35%. 

Therefore, the decision to charge or not has 

implications for the average statistical costs of the 

intervals that must still be used. The total costs are 

 if charging2 and  if waiting.3 

The decision is close, but statistically speaking, the 

EV should charge in the impending market interval. 

 

5. Simulation of 3600 test scenarios 

 
Simulation scripts were coded in R statistical 

programming language [9]. This section discusses the 

simulation scenarios that were set up and run to 

compare the performances of this paper’s EV 

charging strategy with two alternative strategies. 

 

5.1. Methods to be compared 

 
Three alternative EV charging strategies are 

compared:  

 This paper’s Bayesian propagation strategy, 

 A conventional, immediate charging strategy, in 

which the first available market intervals and 

prices are always used until the EV has been 

fully charged, and 

 An ideal charging strategy, in which the cheapest 

prices can be perfectly predicted for any future 

charging time window. 

 

5.2. Scenario design 

 
Five-minute, real-time price data was obtained 

from the Independent Electricity System Operator 
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website [8], using Ontario node energy prices and 

sample days from the first quarter of 2019. A set of 

3600 test scenarios was formulated from 

permutations of four categorical variable sets that are 

detailed in Table 1. 

 

 
Figure 7.  Example charge / no charge decision. In this 
example, a decision to charge means that only 35% of 
the future time intervals must be used to complete the 
charge, while waiting means that 44% of them must be 
utilized. The decision affects the anticipated set of low 
remaining prices that must be used to charge the EV. 
The areas under the charging and waiting cumulative 

distribution alternatives yield average anticipated 
prices for the charging and waiting alternatives. 

Finally, one may calculate the sum predicted cost of 
charging, including the cost of using the current 

market interval, with that of waiting. 

 
Table 1. Categorical scenario variables 

VARIABLE # SET 

Day 30 Jan. 1, Jan. 4, Jan. 7, … Mar. 31, 

2019 

Duration 5 1, 2, 4, 8, and 16 [h] 

State of 

charge 

4 20, 40, 60 and 80 [%] 

Start time 6 0:00, 4:20, 8:40,13:00, 17:20, and 

21:40 

 

5.3. Test days and test day prices 

 
A set of 30 scenario days were selected using 

market prices from every third day of the first quarter 

of 2019. The quartile plot of Figure 8 confirms how 

truly diverse and volatile the prices were during the 

selected test days. 

 

 
Figure 8.  Statistics of all energy prices for the 30 
selected scenario days. Prices are shown to be 

diverse, which makes the predictions of prices during 
EV charging opportunity windows particularly 

challenging. 

 

5.4. Impact of time that charging begins 

 
The scenarios were run at a variety of different 

times during the day to make sure that the impacts of 

diurnal cycles could be tested. Figure 9 compares 

quartile plots for the average charging prices of the 

three EV charging strategies at the tested starting 

times. The prices reflect the normal diurnal price 

trend as in Figure 1. The performances of the 

alternative strategies are consistently ordered from 

conventional, Bayesian, and ideal strategies. This 

paper’s Bayesian propagation strategy median prices 

often lie approximately half way between those of the 

other two. 

 

5.5. Impact of charging opportunity window 

duration 

 
The three charging strategies were compared in 

respect to the duration of the charging opportunity 

window duration. The luxury of having a long time 

before the EV must be charged means that one might 

be pickier about which charging prices to accept. 

This was indeed the case for both the Bayesian 

propagation and ideal charging strategies in Figure 

10. As should be expected, the immediate charging 

strategy did not benefit from having longer charging 

opportunity windows. The vehicle using immediate 

charging would simply become fully charged until 

the end of an available charging window. 
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Figure 9.  Quartile plot of average EV charging prices 
for the three charging strategies as a function of the 

time of day when charging commences. 

 

 
Figure 10.  Quartile plots of average charging price for 
the three EV charging strategies as a function of the 

duration of the charging opportunity window. 

 

5.6. Impact of initial EV state of charge 

 
The tested performances of the three charging 

strategies were compared in respect to vehicles’ 

states of charge at the initiation of the charging 

window. A vehicle that is nearly fully charged at the 

start of its charging scenario can be relatively 

selective and wait for the least expensive electricity 

prices. The EV that arrives nearly depleted, however, 

must use many of the charging intervals—even if 

prices are high. This effect is strongly evident in 

Figure 11 for the ideal charging strategy, less so for 

the paper’s Bayesian propagation strategy, and not at 

all for the immediate charging strategy. 

 

 
Figure 11. Quartiles of the average scenario charging 

prices for the three charging strategies as a function of 
the EV’s initial states of charge. 

 

5.7. Comparison of strategies 

 
Figure 12 directly compares the average 

charging prices of the paper’s charging strategy and 

the conventional charging strategy. The paper’s 

strategy tended to pick cheaper electricity prices, on 

average, than did conventional strategy, but not 

always. 

The degree to which the paper’s strategy fell 

short of the ideal is shown in Figure 13. Many of the 

its scenario prices lie close to those of the ideal, but 

outliers reveal that the paper’s strategy is fallible and 

cannot always predict the statistics of prices in the 

charging opportunity window. 

Figure 14 compares the average charging prices 

using the paper’s strategy with the average price of 

charging intervals that have been chosen randomly 

from those in the available charging time window. 

This figure looks different each time it is run because 

of the random selection. The paper’s selection 

strategy is shown to be superior to a random strategy 

for most of the simulated charging periods. 

Based on summed charging prices for the entire 

set of 3600 test scenarios, the paper’s strategy 

reduced the cost of charging in this market by 11.9%, 

on average, over that of conventional charging. 

Interestingly, the paper’s strategy cost 12.0% more 

than the ideal. It is reasonable to say, therefore, that 

the paper’s strategy recaptures about half the 
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theoretical potential economic benefit that is missed 

by the simple conventional charging strategy. 

 

 
Figure 12.  Normalized average electricity cost for the 

Bayesian propagation process versus conventional EV 
charging using the first available market prices. The 

data includes 3600 EV charging scenarios over 30 days 
selected from the first three months of 2019. 

 

 
Figure 13. Average charging prices using the Bayesian 

propagation method versus cheapest prices chosen 
with prescient foresight. 

 

 
Figure 14. Average charging prices using the 

Bayesian propagation method versus when 

intervals are randomly selected. 

 

6. Conclusion 

 
This paper addressed the challenge of selecting 

the most economical dynamic electricity market 

prices to charge an EV, given that an EV arrives, 

monitors its state of charge, and can state the time at 

which the EV must be fully charged. A statistical 

charging strategy is described and takes advantage of 

both long-term price statistics and persistence effects. 

The long-term statistics are addressed and trained 

using conventional methods, but persistence effects 

are modeled using the Bayesian propagation of the 

likelihoods of transitions between current and 

successive hourly price bins. An entire year of market 

data was available to calibrate the model. Then, the 

strategy was tested using new market prices. A set of 

3600 charging scenarios was defined, and the 

performance of the paper’s charging strategy was 

compared with the performances of the immediate 

charging strategy and an ideal strategy having perfect 

foresight. The paper’s strategy was found to capture, 

on average, about half the theoretical economic 

benefits that would be lost using the immediate 

charging strategy. The new strategy’s selected 

charging prices were, on average, almost 12% 

cheaper than those used by the immediate charging 

strategy in this particular market. 
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