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Abstract

In this paper we describe an aggregate model
of Thermostatically Controlled Loads (TCLs) for
Demand Response (DR) scheduling that, through a
new approximation, makes explicit the dependency
between the feasible control region and the time series
of outdoor temperatures. In turn, the model can
easily account for non-constant, stochastic temperatures
during the control period, expressing the feasible
load control through a set of linear equations and
constraints with stochastic parameters. To highlight this
feature we present a stochastic optimization formulation
for the management of the DR-TCL and compare it
with its deterministic counterpart, and with various
equivalent models aimed at reducing the complexity of
the constraints in the market optimization.

1. Introduction

TCLs are among the most promising candidate
appliances for DR programs [1], as they can offer
considerable flexibility and have virtually no ramping
limits unlike conventional spinning generation. The
first simplified dynamical model for a TCL population
was introduced in [2]. Its aim was to capture the
rebound peak observed after TCLs were interrupted
during an emergency. While some of the recent work
is concerned with the response of TCLs to real-time
pricing (e.g. [3, 4, 5, 6, 7]), in this paper we focus
on direct load control models that are decoupled from
the economic signals that entice consumer participation.
Instead of considering load curtailment, most of the
recent work on DR of TCLs is based on changing
thermostat set-points in order to adjust the load profile
[8, 9, 10, 11, 12] and realize a certain collective response
for load following, regulation and frequency control.
Most population dynamics models in the literature are
reminiscent of the model in [2]. In such models, TCLs
are assumed to have a certain dead-band; the control
consists of switching fractions of the TCLs population

between the ON and OFF states prematurely, relative
to the time they hit the corresponding temperature
threshold, in order to create the intended deviation from
the otherwise-uncontrolled load profile. Work refining
this basic idea is in e.g. [9], [10], [13], [14], [15].
Another relevant line of work has used battery models
to capture the TCL population. Variants of this idea
have been equivalent thermal battery models that are
controlled to follow the least costly control trajectory
[16], and generalized battery model [17] with lower
and upper bounds for electric power consumption. For
the latter, the control is achieved by aggregating and
looping through individual TCLs in a priority-stack,
switching units early until the desired load profile is
obtained. Similar reference-signal control techniques
are described by [18, 19, 20]. The authors of [21]
consider generic DR blocks of certain power, duration
and slack, prioritizing and optimizing the service of
blocks to minimize costs. In [22] the authors describe
a robust economic dispatch market clearing process,
subject to a generic DR uncertainty bounded by a certain
confidence through the scenario approach [23].

The literature cited above assumes ambient
temperatures to be constant, however, knowing that
temperature can both change quickly and randomly,
our work attempts to capture the relationship between
temperature and the range of load attainable by
controlling a large number of TCLs. Most of
the literature on TCL control focuses on scalable
control solutions, but because of the constant ambient
temperature limitation, does not offer a direct method
to include TCL-DR in (stochastic) power system
planning models such as Economic Dispatch (ED).
Only recently work has emerged that allows for
variations in temperature [24, 12, 25, 26, 27]. The
authors of [24] introduce a model that tracks electric
load of TCLs subject to changing ambient temperature,
and later in [12] apply that model to implement a
Model Predictive Controller (MPC) that reacts to a
reference load signal by changing thermostat reference
temperatures. A recent contribution in a similar
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vein to ours is [26, 27], where the authors use a
time-varying equivalent battery model for an aggregate
of space heaters from [25], and solve a robust Optimal
Power Flow (OPF) given the uncertainty of ambient
temperature and of transmission-level wind infeed.
Uncertainty is managed by ensuring feasibility against
a certain number of scenarios [26] or by making the
assumption that the uncertainty can be described by
a jointly-Gaussian distribution [27]. In contrast to
[26, 27] we do not formulate a robust problem, but a
stochastic optimization, where the joint uncertainty of
net-load and temperature is captured through a scenario
tree, and unlike the thermal battery model of [25] we
build a state-space population model which allows us
to more accurately capture the complex inter-temporal
relationships between temperature and constraints
on power and energy. The novelty of our work can
be summarized as follows: (a) we derive equivalent
operational decisions/constraints of DR aggregates
directly as a function of varying ambient temperature,
(b) we show how to utilize this mapping in a decision
problem that incorporates temperature forecasts or
temperature scenario trees, capturing the uncertainty
on the TCL model. Numerical results showcase the
accuracy of our representation and the benefits of using
our optimization framework for DR.

2. Thermal Modeling

Following most of the literature, we assume that the
temperature dynamics of a heat-pump based TCL can be
modeled as a first-order differential equation:

Cθ̇(t) = (θo(t)− θ(t))R−1 +m(t)ηP − ε̂(t)R−1 (1)

withR being thermal resistance, C thermal capacitance,
θ the inside temperature, θo the outside temperature, η
the efficiency of the heat-pump, m(t) ∈ {−1, 0,+1}
the operational mode of the heat pump, P its continuous
electrical power rating1 and ε̂ denoting any noise. The
authors of [11] have surveyed common values for such
models. Extensions to this model include thermal
mass temperatures (see e.g. [15]), adding an additional
state dimension. Even though our formulation could
incorporate thermal mass, in order to streamline the
presentation of our work, we will focus on the simpler
first order model (1).

1Water-heaters can be described using the same principles, with
an additional energy loss component describing the hot water being
replaced by cold water. However, in this paper we will focus on
heat-pump based TCLs, primarily because they are more dependent on
external temperatures than water-boilers, which means that handling
their response requires more care.

2.0.1. Discrete-Time Model Given a continuous
time signal s(t) and a sampling period T , in the
following we adopt the conventions to denote the
samples as s[k] , s(kT ), and their finite difference and
mid-point respectively, as:

ṡ[k] , s[k]− s[k−1] , s[k] ,
s[k] + s[k−1]

2
. (2)

From the RC circuit (1) we make two main
observations. First, we can write the energy stored in the
thermal capacity w.r.t. the reference temperature θr(t)
as:

e(t) = (θ(t)− θr(t))Cη
−1. (3)

The second observation we make from (1) is that the
rate at which energy is gained (or lost) from the outside
environment by a TCL circuit at any given time is
(θo(t) − θ(t) − ε̂(t))(ηR)−1. Unlike most of the
literature which uses θ to describe the individual state,
and track the operational mode (on/off) of the heat-pump
m(t) defined in (1), we will use the joint energy and
reference temperature (e[k], θr[k]) as the individual TCL
state. Contrary to previous models, this approach, as we
will see next, yields an explicit relationship between the
electric load associated to changing state and the future
random ambient temperature θo[k]. The energy Λ[k]
required by a TCL for a transition θ[k−1]→ θ[k] (θ̇[k])
during the k-th interval (k − 1)T ≤ t < kT can, using
(3), be mapped into a change in state ė[k] and reference
temperature θ̇r[k]:

Λ[k] =
C(θ[k]− θ[k − 1])

η
+

1

Rη

∫ kT

(k−1)T
[θ(t)−θo(t) + ε̂(t)] dt

= ė[k] +
Cθ̇r[k]

η
+

1

Rη

∫ kT

(k−1)T
[θ(t)− θo(t) + ε̂(t)] dt. (4)

The first half of (4) captures the energy spent
transitioning between different energy states, while the
second half describes the energy gain over the thermal
resistance due to the temperature difference. Note that
since we are integrating over an interval of length T ,
Λ is defined in terms of energy, like the stored energy
e. Also, while Λ[k] can be either positive or negative,
indicating the direction of pumping (heating or cooling),
the electric energy consumption is equal to |Λ[k]| and it
is always positive. From (4), we have:
Proposition 1 Assume that, during the k-th interval:
1. The outside temperature is a non-stationary discrete
time random process, i.e. θo(t) = θo[k];
2. The reference temperature can only change between
intervals, i.e. θr(t) = θr[k] for (k − 1)T ≤ t < kT ,
3. The leakage across the thermal resistance can be
approximated using the average temperature, θ(t) ≈
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θ[k] = (θ[k] + θ[k − 1])/2,

4. the random error: ε[k] = (Rη)−1
∫ kT
(k−1)T ε̂(t) dt

then, the estimated energy cost is |Λ[k]|:
Approximate TCL energy expenditure |Λ[k]|:

Λ[k] ≈ ė[k]+
T

RC
e[k]+

C

η
θ̇r[k]+

T

Rη

(
θr[k]−θo[k]

)
+ε[k].

(5)
Proof: Using (3) in (4), we have:

Λ[k] = ė[k] +
C

η
θ̇r[k] +

1

Rη

∫ kT

(k−1)T
[θ(t)− θo(t) + ε̂(t)] dt

≈ ė[k] +
C

η
θ̇r[k] +

T

Rη

(
θ[k]− θo[k]

)
+ ε[k]

≈ ė[k] +
C

η
θ̇r[k] +

T

Rη

( η
C
e[k] + θr[k]− θo[k]

)
+ ε[k]

which, grouping the terms, leads to (5). �

3. Demand response model

In the model we assume that an Aggregator provides
the users participating in the direct load control program
with a choice of:
1. A limited set of reference temperatures Sθr and of
possible transitions Eθr ⊆ Sθr × Sθr . For simplicity,
we assume the set to contain contiguous values and
allow only transitions between consecutive values with
a step-size ∆θ, i.e.

Sθr = {θr|θr = i∆θ, i = Imin, Imin + 1, . . . , Imax} (6)

Eθr = {θ̇r|θ̇r = (i− j)∆θ, |i− j| ≤ 1,
(i∆θ, j∆θ) ∈ Sθr}

(7)

where Imin/Imax denote the lowest and highest available
state. Note that we assume the sequence θr[k] to be
user controlled, and that a smart thermostat can translate
the individual wish for a sharp reference temperature
change to a gradual one, honoring Eθr .
2. A temperature dead-bandB, such that |θ(t)−θr(t)| ≤
B; correspondingly the energy states are bounded by:

|e(t)| ≤ E , BCη−1. (8)

In controlling energy transitions, we discretize the
energy state-space with a step-size of ∆e = E/(2U+1),
where U is the number of steps the energy can make
upward or downward, as we assume the state-space to
be symmetric (extending equally far below and above
the reference temperature that corresponds to e = 0).
In addition, we assume that transitions can only cover a
certain number of contiguous energy states. The sets of

states and state transitions are, respectively:

Se = {e|e = ∆eu, u = 0,±1, . . . ,±U} (9)
Ee = {(ė, e)| |Λ[k]| ≤ TP} (10)

where Ee is limited by the electrical power rating P .
Note that some choices of θ̇r 6= 0 may not

be compatible with Ee since, clearly, the possible
transitions for energy and reference temperature are
both constrained by |Λ[k]| ≤ TP , and the desired
change θ̇r may be impossible to achieve in one interval
duration T , i.e. the set Ee as-is may be empty. To
circumvent this limitation and allowing individuals to
freely choose their reference temperature, we consider
the Aggregator to track the target values for reference
temperature and stored energy, and correct the load
response model to account for the delay required to
meet the reference temperature change. As we consider
reference temperature changes to be relatively rare, we
assume that eventually the actual temperature will catch
up with the target value. This implies that a more general
expression to (5) is required, where the restriction Ee
only applies when θ̇r[k] = 0 and is relaxed for θ̇r[k] 6=
0, while still capturing the effect of such transitions
through an energy cost term that lasts multiple periods.
We will return to this point after a few useful definitions.

Energy Cost Model We define the following vectors
(indicated with bold face) of normalized target energy
and reference temperatures:

e[k] =
1

∆e
(e[k−1], e[k])ᵀ,θr[k] =

1

∆θ
(θr[k−1], θr[k])ᵀ

(11)
where for now we assume the target and true stored
energy to be approximately equal, e[k] ≈ e[k]. Clearly:(

ė[k]
e[k]

)
= ∆e

(
−1 1

1
2

1
2

)
e[k] , (12)

and similarly for (θ̇r[k], θr[k])ᵀ. We also define:

Y [k] = (e[k],θr[k]), (13)

and refer to Y [k] as the TCL state transition. To rewrite
compactly (5), we introduce the matrix:

Γ =

(
−1 1/2

1 1/2

)(
1 C

η
T
RC

T
Rη

)(
∆e 0
0 ∆θ

)
(14)

and also use the following notation:

Γ = (γe,γθr ) , a = T (Rη)−1. (15)
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Now consider the case of a TCL having θ̇r[k] = 0.
Simple algebra shows that (5) can be rearranged as:

Λ[k] = γᵀ
e e[k] + γᵀ

θr
θr[k]− aθo[k] + ε[k] (16)

= Tr(ΓᵀY [k])− aθo[k] + ε[k]. (17)

The expression (16) breaks the energy spent in four
terms: (a) the first term depends on e[k] and is subject
to the control action of the Aggregator; (b) the second
term, function of θr[k], is the operating mode chosen by
the user; (c) the third term depends on the random θo[k],
and is due to Mother Nature; (4) the fourth is the random
error ε[k].

For θ̇r[k] 6= 0, we assume that TCLs changing their
reference temperature can spread the energy expenditure
for the transition over Qk periods, as necessary to
fulfill the total energy requirement, with each step not
exceeding the power rating of P times T . Hence, the
energy cost at time k for a TCL can, in general, be
expressed as follows2:
Energy spent for transition Y [k] at temperature θo[k]:

|Λ[k]| =
∣∣∣∑Qk

q=0H[k − q, q] + ε[k]
∣∣∣ (18)

where the energy spent at each interval is:

H[k, q] =


PT 0≤q< Qk

|Tr(ΓᵀY [k])−aθo[k]| − qPT q = Qk

0 otherwise
,

and the number of intervals required is:

Qk =

⌊
|Tr(ΓᵀY [k])− aθo[k]|

PT

⌋
.

Clearly, when Qk = 0 this reduces to the expression in
(17). It is important to notice the explicit dependency
of the energy spent (load response) from the random
ambient temperature.

3.1. Aggregate Quantized Population Model

Let us neglect the effect of ε[k]. The population
model is built with two standard steps. The first consists
of clustering of the parameters (R,C, η), so that the
matrix Γ and coefficient a in (16) are chosen from a
restricted set that approximates well the most common
TCL characteristics, i.e. Γ 7→ Q(Γ) ∈ SΓ, a 7→
Q(a) ∈ Sa:

Q(Γ) = argmin
Γ̂s∈SΓ

‖Γ̂s − Γ‖ , (19)

2Naturally, all the steps that correspond to a certain reference
temperature transition will have the same sign.

and similarly for Q(a). We enumerate all pairs

(Γ̂s, âs) ∈ SΓ × Sa with an index s = 1, . . . , S. Note
that this step yields errors in the load representation,
which we will assume to be bounded. The second
consists in quantizing the action space:

q(e) 7→ (u, v)ᵀ , q(θr) 7→ (i, j)ᵀ , q(Y ) 7→
(
u i
v j

)
(20)

where q is the quantization operator. In this way, the
cost of the pth TCL in the population P is approximated
as follows:

Λ̂(p)[k] = Tr
(
Q(Γp)ᵀq(Y p[k])

)
−Q(ap)θo[k], (21)

and similarly for Ĥ(p)[k, q].

3.1.1. Population model To describe the expected
load from the approximate aggregate model, it is
convenient to break the population into the groups
Ps, s = 1, . . . , S that belong to the different clusters
for the TCL parameters:

`[k] =
∑S
s=1 `

(s)[k] =
∑S
s=1

∑
p∈Ps

E
[
|Λ̂(p)[k]|

]
(22)

For simplicity, let us ignore momentarily transitions in
reference temperature. In this case:

`(s)[k] =
∑

(u,v,i,j)

∣∣∣Tr
(

(Γ̂s)
ᵀ
(
u i
v j

))
− âsθo[k]

∣∣∣E [X(s)ij
uv [k]

]

where X(s)ij
uv [k] denotes the random variable equal to

the population in cluster s that at time k has q(Y p[k]) ≡(
u i
v j

)
; using the δ(x) as an indicator function that is one

only if the array x = 0 and zero else, we can express
this as follows:

X
(s)ij
uv [k] =

∑
p∈Ps

δ
(
q(Y p[k])−

(
u i
v j

))
. (23)

In a nutshell, the expression for `(s)[k] clarifies that
the Aggregator can control the expected load profile by
controlling the expected transitions of the population,
but that the response is a function of the ambient
temperature realization θo[k].

To consider the general case in which customers
can change their reference temperatures, we simply
have to codify the response in terms of energy cost

that corresponds to a particular array
(
u i
v j

)
. That

corresponds to:
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Quantized profile for energy spent for transition
(
u i
v j

)
:

H(s)ij
uv [k, q]=


P (s)T 0 ≤q<Q(s)

k

λ
(s)ij
uv (θo[k])− qP (s)T q = Q

(s)
k

0 otherwise
(24a)

where the total energy spent for the transition is:

λ(s)ijuv (θo) =
∣∣∣Tr
(

(Γ̂s)
ᵀ
(
u i
v j

))
− âsθo

∣∣∣ (24b)

and the duration of the load response is:

Q
(s)
k =

⌊
|λ(s)ijuv (θo[k])|

P (s)T

⌋
. (24c)

leading to the general expression:

`(s)[k] =
∑

(u,v,i,j)

+∞∑
q=0

H(s)ij
uv [k− q, q]E

[
X(s)ij
uv [q]

]
, (25)

indicating that the model has memory.

4. Control model

The key to scalability of the control lies in assuming
that the Aggregator can broadcast commands that are
cluster specific, but not customer specific, by controlling
only the expected population trajectory as opposed to
its exact values. Hence, the decision variable for the
Aggregator are:

D(s)ij
uv [k] , E

[
X(s)ij
uv [k]

]
, (26)

and the aggregator objective is to shape the
expected load, which is a linear function of (26)
(c.f. (25)):
Forecast of flexible TCL load response:

`[k] =
∑S
s=1 `

(s)[k] (27a)
`(s)[k] =

∑
(u,v,i,j)

∑+∞
q=0H

(s)ij
uv [k − q, q]D(s)ij

uv [q]

(27b)

In plain English, each D(s)ij
uv [k] is the expected number3

of TCLs in cluster s transitioning from state u to state v
and reference temperature i to j over period k.

Randomized control policy The expectation in (26)
can be made an explicit function of the transition

3While not explicitly stated, since the policy is randomized, the
case where the population participants vary can be handled with no
change in the optimization formulation, by a scaling factor equal to
the probability that nodes exit the control.

probabilities π(s)ij
k (v|u) that are specified as commands

by the Aggregator for a randomized policy. In
fact, the instructions are the probabilities for changing
normalized energy from value u to value v. This
presumes that the execution of the commands consists
of choosing at random to switch normalized energy
u to v and reference temperatures i to j with

probability π
(s)ij
k (v|u). Let Π

(s)i
k (u) denote the state

probability, i.e. the probability that a TCL is in
normalized energy state u and normalized reference
temperature i. Under the randomized control policy

δ
(
q(Y p[k])−

(
u i
v j

))
is a Bernoulli random variable

with probability π(s)ij
k (v|u)Π

(s)i
k−1(u) of being equal to

1. This implies that:

D(s)ij
uv [k] = |Ps|π(s)ij

k (v|u)Π
(s)i
k−1(u). (28)

From Chapman-Kolmogorov theorem for Markov
chains:

Π
(s)j
k (v) =

∑
(u,i) π

(s)ij
k (v|u)Π

(s)i
k−1(u), (29)

which, in turn, implies that:

|Ps|Π(s)j
k (v) =

∑
(u,i)D

(s)ij
uv [k] (30)

Combined with (26), equation (30) means that the
Aggregator can evaluate the randomized policy values
based on the optimum values of Dij

uv[k] as follows:

π
(s)ij
k (v|u) =

D
(s)ij
uv [k]∑

(u′,i′)D
(s)i′i
u′u [k − 1]

. (31)

The values of π(s)ij
k (v|u) are the instructions that are

broadcast to the TCLs to plan their switching.

4.1. Feasible action space and its
representation

By deciding the values for D
(s)ij
uv [k] over the

horizon, the Aggregator can shape the expected
aggregate load of (27a) within a feasible region

determined by the constraints that exist on D
(s)ij
uv [k].

The following are known to the Aggregator before
solving for D over a horizon KT :
1. A temperature forecast or scenario, θo[k].
2. The initial population of each cluster, and

|Ps|Π(s)i
0 (u), i.e. the initial spread of individuals across

reference temperatures (i) and states (u), for all s, i, u.
3. The thermostat schedule of all individuals; more
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specifically, the number of TCLs going from one
reference temperature to another at time k:

ρ(s)ij [k] =
∑
(u,v)

X(s)ij [k] =
∑
p∈Ps

∑
(u,v)

δ
(
q(Y p[k])−

(
u i
v j

))
(32)

The feasible action space is described, in order,

by the following constraints on D
(s)ij
uv [k]: (33a)

indicates that population transitions are non-negative;

(33b) comes from the fact
∑

(v,j) Π
(s)j
k (v) = 1

and (29), and can be interpreted as the conservation
of population mass; (33c) comes considering (31)

and because
∑

(v,j) π
(s)ij
k (v|u) = 1; (33d) comes

from accounting for the thermostat plans of the TCL
population; (33e) forces the model to spread evenly
the population transitioning from i to j throughout the
departing reference temperatures state-space; finally,
(33f) expresses the Aggregator restrictions on the
reference temperature state transitions, as discussed in
Section 3. Note that the set (33g) improves on (10) by
forcing those individual changing θr[k − 1] → θr[k] to
arrive in the top/bottom of the dead-band, depending on
the reference temperature change.
Feasible action space for TCL population:

D(s)ij
uv [k] ≥ 0 ∀s, i, j, u, v (33a)∑

(v,j)

∑
(u,i)

D(s)ij
uv [k] = |Ps|; ∀s (33b)∑

(v,j)

D(s)ij
uv [k] =

∑
(u′,i′)

D
(s)i′i
u′u [k − 1] ∀s, i, u (33c)

ρ(s)ij [k] =
∑
(u,v)

D(s)ij
uv [k] ∀k, i, j. (33d)

∀k∈K, and ∀s, u, i, j such that i 6= j and ρ(s)ij [k]>0:

∑
(v)

D(s)ij
uv [k] =

ρ(s)ij [k]∑
(j′) ρ

(s)ij′ [k]

∑
(j′,v)

D(s)ij′

uv [k]

(33e)
D(s)ij
uv [k] = 0 ∀

(
u i
v j

)
6∈ E(s)(θo[k]), (33f)

where:

E(s)(θo)=
{(
u i
v j

)∣∣∣(∣∣∣Tr
(
Γ̂s

(
u i
v j

))
−âs

∣∣∣≤ PT and i=j
)

∪
(
v = (i− j)U and |i− j| = 1

)}
(33g)

Alternatively, in vector form, we refer to the vector
of the TCL load as ` ∈ RK , and use D for
the tensor of the decision variables, i.e. all values
D

(s)ij
uv [k],∀s, u, v, i, j, k in their respective sets. We can

describe the constrained problem that includes (27) and

(33) generally as ` ∈ L where:

L(θo) = {` | `(θo) = M(θo)D , A(θo)D ≤ b , D ≥ 0}
(34)

where ` ∈ RK , (A(θo), b) represent (33), while
the decision space of D is high dimensional, with
dim(D) = S ·

∑
k

∣∣E(s)(θo[k])
∣∣, and M(θo) maps a

decision to load for a particular temparture realization.

4.2. Reduction of Constraints

The complexity of the full model described remains
quite high, making it undesirable for direct inclusion
in conventional operational models, such as a Unit
Commitment (UC) or OPF. To make the life of
Independent System Operators (ISOs) easier, the
expectation is often that such models can fit into existing
market structures; for example, that they behave and
are constrained like a generator. The problem of
fitting the generator model to an aggregate of TCLs,
is similar to that of fitting such models to large scale
storage, to bid in the energy markets. Conservative
approaches use a price forecast to determine the exact
amount offered to sell or buy ahead of time, or limit
the bid min/max to avoid energy constraints violations.
Riskier approaches increase the min/max range to better
leverage the market, resorting to real-time markets or
paying penalties when deliverability becomes an issue.

DR models, in general, require defining a load
baseline profile `b = (`b[0], . . . , `b[K − 1]). Using
the model in Section 4 one can estimate the baseline
consumption of a TCL aggregate by constraining to
zero the stored energy states and estimate the aggregate
load that corresponds to all individuals following the
reference temperature closely4. With that in mind,
below we propose different TCL-DR representations.
Both of them will depend on the random realization of
the temperature profile.

4.2.1. Negative Generator Model The output of
this model is a set of constraints `min ∈ RK and `max ∈
RK , where we allow the ISO to choose any load profile
within the hyper-rectangle `min ≤ ` ≤ `max. To obtain
the min/max values one can, for example, solve:

max
`min,`max

‖`max − `min‖ s.t. `min ≤ `b ≤ `max. (35)

The choice of norm (more generally, distance) should
reflect the general objective of obtaining a vector that

4Note that the Aggregator can still control the shape of the baseline,
pricing the customer consumption based on their choice of reference
temperature. However, we assume that the construction of bids takes
the `b as a given.
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is as far away from the baseline load, so as to have
the largest possible generator capacity range, with the
exact measure possibly differing on case-by-case basis,
since particular periods may be more profitable. For a
TCL aggregate the generator ramping constraint is not
helpful, as there is little inertia preventing sharp jumps
in consumption between periods.

4.2.2. Arbitrary Constraint Set Model
Unfortunately, the practice of mapping flexible
load to a negative generator is bound to capture a very
small portion of the full feasible region. It is important
to notice, however, that ISOs are not concerned with the
individual decisions D, but only with `. Also, many
decisionsD give the same load `, i.e. the mapping is not
injective. Finding a direct and compact description of
the feasible space L is, however, not a simple problem,
which deserves its own treatment. Here, for the sake of
comparison, we propose the following heuristic. Given
a particular temperature profile θo, we use a set of cost
vectors C = {c1, . . . , cW } and solve:

arg,min` c
T
w` s.t. ` ∈ L(θo). (36)

If we take the convex hull of the vertices [`1, . . . , `W ],
we obtain a region L′ ⊂ L. As W → ∞, L′ → L; the
problem becomes choosing the C that reveal the vertices
of L that are most efficient. First, note that the problem
(36) can be solved in parallel. Secondly, the problem
(36) is simply a conventional minimization problem;
given a price vector cw we obtain the load profile `w that
is the least costly way to meet the constraint set (34). If
C are price forecasts that contain the future price, we
know that the optimal load profile will be contained in
the set L′, making them reasonable choices for search
directions. We convert the descriptions of these feasible
regions from vertices (V ) of the polytope to a half-space
(H) representation, i.e.:

A′`′ ≤ b′. (37)

In principle this conversion is an NP-hard problem
[28], but with a reasonably small set of vertices in L′
and K ≤ 24 the conversion is quick on a modern
computer. The constraints (37) can be placed directly
into the standard OPF/ED problems, and as long as
the optimal price (or a scalar thereof) of the ISO
formulation is contained in the set C, we can obtained
the optimal solution ` as if we directly placed (34)
into the formulation. Note that constraints on energy,
such as those that may come out of TCL equivalent
battery models are a special case of this constraint
set A′, but imposing that limitation on the structure

of A′ only decreases the expressable flexibility which
is particularly problematic if the temperature θo is
changing throughout the time horizon.

5. A Stochastic Security-Constrained
Economic Dispatch (SSCED) with
responsive TCLs

A straightforward way to incorporate uncertainty in
power system models is to apply standard stochastic
programming techniques, where one optimizes a
collection of plans for different scenarios that reflect
the underlying uncertainty on the future. More
specifically, this section describes a rolling horizon two
stage Security-Constrained Economic Dispatch (SCED)
optimization, where we consider the joint uncertainty of
net-load and outdoor temperature, while being secure
against the loss of a any single generator (G − 1). In
the first stage, we make decisions based on the realized
uncertainty; these decisions account for a second stage
consisting of several possible future trajectories. We
consider a time horizon of K intervals, each of length
T seconds such that we look KT seconds into the
future. We describe the formulation in nodal form, that
is, instead of indexing variables and parameters by time
k and scenario s we simply index them by the node
number n, where each node has the parent node n−. We
denote the set of generators by G, the set of generator
outages by Gout, and the set of TCL aggregates as M,
and define the vector of decision variables as χ =
[x, x̂,x, `, ˆ̀, `], which we seek to choose to optimize
the expected cost by solving:

min
χ

∑
g∈G

∑
n∈V π{n}

(
Cg

X(xg{n}) + C
g
X(xg{n})

)
(38a)∑

g∈G x
g{n} =

∑
m∈M `m{n}+ L{n} ∀n ∈ V (38b)

P g ≤ xg{n} ≤ P g − xg{n} ∀n ∈ V, g ∈ G (38c)∣∣xg{n} − xg{n−}∣∣ ≤ P g
ramp ∀n ∈ V, g ∈ G (38d)

`m ∈ Lm(θo) ∀m ∈M (38e)

`m − `m ∈ Lm(θo) ∀m ∈M (38f)∑
g∈G x̂

g
g′{n}+

∑
m∈M

ˆ̀m
g′{n} = xg{n} ∀n ∈ V, g′ ∈ Gout

(38g)

0 ≤ ˆ̀m
g′{n} ≤ `

m{n} ∀n ∈ V,m ∈M, g′ ∈ Gout (38h)

0 ≤ x̂gg′{n} ≤ x
g{n} ≤ P g

resv ∀n ∈ V, g ∈ G, g′ ∈ Gout

(38i)

xgg{n} = 0 ∀n ∈ V, g ∈ Gout (38j)

The objective (38a) is to minimize the cost of generation
xg{n} and reserves xg{n} subject to the cost functions
CgX and C

g

X . Constraint (38b) describes the base-case
(non-outage) balance between generation xg{n}, TCL
load `m{n} and the remaining net-load L{n}. Further,
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(38c) and (38d) describe conventional min/max power
and ramp constraints, where xg{n} is the reserve
allocation of unit g at node n, with n− indicating the
parent of node n. Constraints (38e) and (38f) ensure that
the base-case TCL load and its upper reserve allocation
of TCL aggregatem are contained within the feasible set
Lm. Constraint (38g) ensures we have enough reserves
to replace any single generator outage, while (38h) and
(38i) ensure that the maximum reserve allocation xg and
`
m

is greater or equal to the individual outage responses
x̂g and ˆ̀m. Finally (38j) ensures an outaged unit can not
contribute to its own replacement reserves. The feasible
region Lm can be the full model described by (34),
the negative/virtual generator model obtained through
(35), the constraint set defined in (37), or another convex
inner approximation of the actual feasible space.

Remark 1 Note that with a convex Lm, constraints
(38e) and (38f) are not sufficient to guarantee that
any combination of the individual reserve responses
ˆ̀m
g′{n} are feasible. However, due to the nature of

the TCL model lacking inherent ramping constraints
while having prominent energy constraints, we can
interpret (38f) and (38e) as bounds on not only power
but also energy, and any power profile contained within
these limits thus also respects this energy bound. This
assumptions means that the probability of falling outside
the feasible region Lm during some sequence of reserve
events is small, but non-zero. This approximation is
also apparent for generators; the standard SCED model
does not properly bound generator ramps between any
possible sequence of reserve events. The message here
is that (a) these reserve bounds are approximations
and (b) many N − 1 events captured by conventional
SCED/SCUC models are rare.

6. Numerical Simulations

Numerical simulations were performed using Python
and a collection of scientific programming libraries, as
well as utilizing Gurobi 8 for solving LP models.

The load and renewable infeed data are from
California ISO (CAISO); the corresponding temperature
data for seven California locations from the National
Oceanic & Atmospheric Administration (NOAA) [29].
From [11] we assume the population to be clustered,
with a centroid reflecting any combination of the
parameters R ∈ {1.5, 2, 2.5} ◦C/kW, C ∈ {1.5, 2, 2.5}
kWh/◦C and Sθr = {69, 72, 75, 78, 81} ◦F. From
[30] we assume 7, 000, 000 households use heat-pump
air-conditioning. In order to obtain realistic parameters
for the simulations, we reverse the model in (33) and
use a simple linear regression to estimate how the
population is spread between R/C clusters as well as

NOAA
temperature
samples θo

CAISO
net-load
samples

Map
temperatures

to
base-TCL-load

`b

Subtract
base-TCL-load
from net-load

Combine Data

Generate
tree through

recursive
k-means
clustering

Map
base-TCL-load
centroids back
to temperature

Rescale
net-load
for RTS

Figure 1. The process from input data to
multi-variate scenario tree.

Table 1. Costs for the RTS case generators.

Unit Type CX CX

Oil/Steam ( U12) [55.15, 57.98] [27.57, 28.99]
Oil/CT ( U20) [127.40, 132.60] [63.70, 66.30]
Hydro ( U50) [0.00, 0.00] [0.00, 0.00]

Coal/Steam ( U76) [15.76, 16.40] [7.88, 8.20]
Oil/Steam (U100) [43.01, 44.32] [21.50, 22.16]

Coal/Steam (U155) [12.14, 12.64] [6.07, 6.32]
Oil/Steam (U197) [47.85, 49.31] [23.93, 24.65]

Coal/Steam (U350) [11.79, 11.79] [5.90, 5.90]
Nuclear (U400) [4.38, 4.47] [2.19, 2.23]

how reference temperature changes over the course of
the day. In practice, an Aggregator would know the
individual R/C/θr parameters of its population, and
would cluster based on that knowledge. The way the
scenario trees were generated is illustrated in Figure 1.

Simulation Setup We solve a rolling-horizon SCED
with a two hour look-ahead window and a resolution of
15 minutes (T = 900s, K = 8). For 7 sample days we
build scenario trees of net-load and temperature for each
starting interval, using the closest (in terms of aggregate
load) 50 sample days (excluding the target day) from
our original data-set of 293 summer week-days (see
Figure 1). We test two variants of (38), in both cases
considering any single generator outage Gout ← G:
(i) A stochastic SCED with 3 future scenarios.
(ii) A deterministic SCED with a single forecast.
For the SCED↔ TCL interface we simulate:
(a) An inflexible TCL aggregate, that consumes `b.
(b) A virtual/negative generator model (35).
(c) A set of arbitrary constraints (37).
(d) The full set of constraints (34) included in the SCED.
All TCLs start at midnight in an energy neutral state
(u = 0) and finish each rolling horizon window at
u = 0. We use the IEEE RTS system as a starting-point
for the simulations, but model it as a single bus system,
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Table 2. Summary of average costs for different
solutions, and the percentage savings compared

with the no DR solution.
Interface (i) Stoc. SCED (ii) Determ. SCED
(a) No DR 3, 407, 291 (0.0%) 3, 407, 028 (0.0%)
(b) Virtual Gen 3, 300, 076 (3.1%) 3, 293, 324 (3.3%)
(c) Constr. Set 3, 101, 865 (9.0%) 3, 103, 868 (8.9%)
(d) Full Model 3, 004, 401 (11.8%) 3, 024, 382 (11.2%)

(a)

(b)

(c)

Figure 2. Using scaled CAISO data from July
20th 2017, Figure (a) shows the TCL load for

the different models, (b) shows the energy
stored/borrowed from the TCL aggregates, while

(c) shows the reserves provided by generators.

with linear generator cost functions whose parameters
are shown in Table 1.

Results Table 2 shows the average cost over the
7 sample days for different model combinations.
Unsurprisingly, there is a clear trend where increased
flexibility reduces costs, with the full model saving
over 11% compared with no DR, and the constraint
set tripling the savings from the virtual generator, from
approximately 3% to 9%. Comparing the deterministic
with the stochastic we see a 0.6% improvement in
the stochastic results, but this improvement is largely
lost when using the constraint set approximation,
and slightly negative for the virtual generator. The
small improvement can be explained by (a) the small
uncertainty over the two-hour look-ahead horizon
reflected by a Pearson autocorrelation coefficient in the
range of [0.88, 0.98] for the different locations, (b) the
high flexibility of the TCLs allowing the operator to

react quickly and cheaply to forecast deviations and
(c) the small number of scenarios considered and the
relatively primitive approach to scenario generation.

Figure 2 shows how the different models react
for the sample day of July 20th 2017. First, in (a),
we can see that all the solutions incorporating DR
consume less power throughout the day compared with
the non-controllable (no DR) counterpart. In (b),
we see the aggregate energy stored in the aggregate
population, where the sign indicates whether the average
temperature sits above (positive) or below (negative) the
reference temperature. We can see the inflexible and
virtual gen. models hardly deviate from the reference
temperature, while the constraint set increases it slightly
to reduce thermal losses. There are more fluctuations in
the full model, as it utilizes variations in temperature
to cool more efficiently, but it also decreases the
average temperature (“storing energy”) to allow for
more reserve potential. The reserve capacity coming
from generators is shown in Figure 2(c), where we
see significant portion of the reserves being replaced
by the TCLs as the DR model becomes more flexible,
with the TCLs at times covering between 75% and
90% of the reserve requirements. The generator reserve
reduction varies considerably throughout the day, but
interestingly, the stochastic full model seems to be able
to deliver substantially more reserves compared with its
deterministic counterpart.

7. Conclusions

This paper provides a model of the aggregate
feasible operation region of TCLs that allows to capture
its uncertainty directly, as a function of the random
outdoor temperature. The paper further shows how
this model can be used, either directly or indirectly
through approximations, inside power system planning
models such as SCED or UC, subject to weather
forecasts or a set of potential future scenarios. The
numerical section explores the different modeling
interfaces with a rolling-horizon SCED model, and
shows how such inclusion can significantly reduce costs
by decreasing overall TCL load as well as allowing
TCLs to partially cover generation reserve requirements,
without significant impact on the residential DR
participants. Future work will target improving the
interface between DR and power system models, with
a special consideration for stochastic programming
applications.
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