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Abstract

An accurate representation of the voltage-dependent,
time-varying energy consumption of end-use electric
loads is essential for the operation of modern
distribution automation (DA) schemes. Volt-var
optimization (VVO), a DA scheme which can decrease
energy consumption and peak demand, often leverages
electric network models and power flow results to
inform control decisions, making it sensitive to errors
in load models. End-use load modeling can be improved
with additional measurements from advanced metering
infrastructure (AMI). This paper presents two novel
machine learning algorithms for creating data-driven,
time-varying load models for use with DA technologies
such as VVO. The first algorithm uses AMI data,
k-means clustering, and least-squares optimization to
create predictive load models for individual electric
customers. The second algorithm uses deep learning
(via a convolution-based recurrent neural network)
to incorporate additional data and increase model
accuracy. The improved accuracy of the load models for
both algorithms is validated through simulation.

Nomenclature

++N
k=1 Operator for row-wise concatenation of N

row vectors of length x. Output dimension:
[N, x].

bs Batch size of deep network training.
d Length of historic data window.
ε Deep network training error tolerance.
fk Solar flux at interval k (W/ft.2).

The Pacific Northwest National Laboratory (PNNL) is
operated by Battelle for the U. S. Department of Energy (DOE)
under contract DE-AC05-76RL01830. This work was funded
by DOE’s Office of Electricity as part of the development
of GridAPPS-D™: a standards-based platform for advanced
distribution system application development [1].

f := [ f1, f2, . . . , fk, fk+1, . . . , fN ]

F i Neural network functional representation at
step i.

Fc, Fp Filter size of convolution, pool layer.
I% Current fraction of ZIP load model.
Iθ Current phase angle of ZIP load model.
k Time interval index. k ∈ (1, 2, . . . , N).
n Number of clusters used in k-means

clustering.
P% Power fraction of ZIP load model.
Pθ Power phase angle of ZIP load model.
Pk Load active power at interval k (W).
P := [P1, P2, . . . , Pk, Pk+1, . . . , PN ].
P̂k Predicted active power at interval k (W).
Qk Load reactive power at interval k (var).
Q := [Q1, Q2, . . . , Qk, Qk+1, . . . , QN ].
Q̂k Predicted reactive power at interval k (var).
Tak Dry bulb temperature at interval k (°F).
Ta := [Ta1 , Ta2 , . . . , Tak , Tak+1 . . . , TaN ].
uk Neural network input, either Pk or Qk.
Vn Load nominal voltage magnitude (V).
Vk Load voltage magnitude at interval k (V).
V := [V1, V2, . . . , Vk, Vk+1, . . . , VN ]

v1
k Neural network row vector for 1st step.

:= [uk, Vk, Tak , fk, . . . , uk+d−1, Vk+d−1,
Tak+d−1 , fk+d−1]

v2
k Neural network row vector for 2nd step.

:= [F 1(vk), Vk, Tak , fk, . . . ,

F 1(vk+d−1), Vk+d−1, Tak+d−1 , fk+d−1]

Xi := ++N
k=1vi

k. Neural network input for step i.
y := [P1, P2, . . . , PN , Q1, Q2, . . . , QN ]

ŷ := [P̂1, P̂2, . . . , P̂N , Q̂1, Q̂2, . . . , Q̂N ]

Yi Neural network output for step i.
Z% Impedance fraction of ZIP load model.
Zθ Impedance phase angle of ZIP load model.
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1. Introduction

End-use load models are an essential element
of distribution planning and many operational
systems [2, 3]. Volt-var optimization (VVO) is one
such operational distribution automation (DA)
system that is dependent on accurate end-use
models to reduce annual energy consumption,
reduce peak power demand, and to manage
power factor. Early VVO deployments relied
on local measurements (voltage and/or current)
at voltage regulators, shunt capacitors, and
remote end-of-line points [4, 5]. Many modern
VVO applications utilize measurements in
conjunction with models of both the electric
network and end-use loads in order to improve
VVO performance [6–8].1 However, model-based
schemes are sensitive to the accuracy of both
their network and load models, and the load
models often have a high level of uncertainty.
Model-based VVO schemes typically use a simple
load allocation where the feeder peak load, service
transformer nameplate ratings, and a limited
number of system measurements are used to
estimate power demand for each end-use load.
The resulting demand for each load is combined
with the network topology and then used in a
power flow calculation to determine the voltage
at each point on the feeder [9]. The sparse set
of measurements in the load allocation, and the
resulting poor load estimates, can lead to large
errors in the power flow solution.

Due to errors in load models, phenomena such
as the conservation voltage reduction (CVR) may
not be correctly quantified or fully leveraged by
VVO systems [10], impacting the ability to reduce
annual energy consumption and peak demand,
two of the largest business drivers for VVO
systems [8]. The use of customer “smart” electric
meter data from advanced metering infrastructure
(AMI) systems can improve the performance of
model-based VVO schemes, and other DA systems
that rely on accurate load models [11].

Since the performance of technologies
such as VVO are dependent on distribution
network parameters, topology, and load, current
state-of-the-art model-based applications use
voltage-dependent load models [6, 8]. Typically, a
small set of models is derived for each customer

1Electric distribution feeders in North America are typically
operated radially, but the term “network” is often used
when describing feeder topology and attributes of connected
elements (e.g., line impedance).

class (e.g., industrial, single-family residential,
etc.). These models may be changed seasonally
and/or for weekdays vs. weekends. However,
load composition varies on smaller timescales
and depends on a variety of factors, such as
ambient temperature [12]. For example, the
voltage-dependent energy consumption of a
customer’s composite load will be different when
an air conditioner is running versus when it
is not. Additionally, load composition varies
between customers within a class. When it is
cold, the energy consumption of a large residential
home with a natural gas furnace will respond
differently to voltage variations than an apartment
with resistive heating. The deployment of new
sensors and systems, such as AMI, provide
additional sources of information to develop
voltage-dependent and time-varying end-use load
models to support operations.

There is significant work in the literature
investigating how to integrate new sources of
sensor data with the goal of improving load
models and/or system operation. In [13], AMI
voltage magnitude data is used for a model-based
VVO system, but not to generate load models. The
authors of [6] vary ZIP load model2 coefficients
seasonally for their model-based VVO system
and note that improved load modeling could
improve VVO performance. Load decomposition
from 15-minute AMI data is described in [14],
and the challenges of using such a coarse data
resolution are discussed. In both [15] and [16],
customer demand is disaggregated into individual
appliances, and then ZIP load models are fit
for each assumed appliance. In [15], these
appliance models are then used in a model-based
VVO scheme. In [17], the need for data-driven,
time-varying load models for distribution system
applications such as VVO is discussed. The work
uses AMI power and voltage measurements offline
to create ZIP load models for individual buildings
for different time ranges. While the work in the
literature has shown that improved load models
can increase DA/VVO performance, the majority
of existing methods are not able to integrate AMI
data to create near-real-time, frequently-updated,
predictive, per-customer load models.

This paper presents two independent and novel
algorithms for creating data-driven, time-varying
ZIP load models for individual electric customers.

2ZIP load models are comprised of constant impedance (Z),
constant current (I), and constant power (P) components and
are discussed in detail in Section 3.
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The first algorithm is light-weight from both a
data and computation perspective and could
readily be deployed to a modern DA system.
The second algorithm provides more accurate
predictions, but requires more data, extensive
training, and significant computation power,
making deployment on current DA systems more
challenging. Both algorithms advance the state of
the art for modeling and forecasting individual
customer electric demand and provide better
predictions than traditional load allocations,
resulting in improved DA/VVO performance.
The first algorithm uses k-means clustering [18],
least-squares optimization [19], and nominally
two weeks of historical data to create predictive
load models, while the second leverages neural
networks and deep learning to incorporate
additional data into the model formulation [20,21].
Both algorithms use historic 15-minute average
active power (P), reactive power (Q), and voltage
magnitude (V) measurements from each customer
meter, joined with feeder-level temperature
(Ta) and solar flux (f). These data are used to
form data-driven, time-varying, predictive ZIP
load models which can be used to obtain more
accurate power flow results. Since operational DA
technologies such as VVO often solve the power
flow repeatedly while searching for an optimal
solution, improved load models can help these
technologies get closer to the true optimal solution.

The rest of the paper is organized as follows:
Section 2 presents the meter data used by the two
algorithms, Section 3 presents the ZIP load model,
Section 4 presents the two algorithms in detail,
Section 5 provides experimental results for both
algorithms, and Section 6 concludes the paper and
discusses future work.

2. Synthetic Meter Data

The work presented in this paper uses synthetic
meter data created with the GridLAB-D™

simulation environment [22]. Annual time-series
simulations are conducted using feeder
“R2-12.47-2” from a publicly available set of
prototypical distribution feeders [10], [23].
This prototypical feeder is representative of
feeders in the North Central/Eastern U.S., has
a nominal voltage of 12.47 kV, and represents a
moderately-populated suburban area. The model
uses detailed multi-state end-use load models,
and the one-year time-series simulation (which
generates meter data) is run with a 30-second

minimum simulation time step.
In the simulation, a total of 898 individually

metered residences are modeled in detail.
The thermal properties of buildings and their
heating, ventilation, and air-conditioning (HVAC)
systems are represented by an equivalent thermal
parameter (ETP) model to approximate HVAC
response (electrical and thermal) to voltage, solar
gains, temperature, humidity, and thermostatic set
points [10]. The simulation’s weather is driven
by typical meteorological year (TMY) data [24].
Beyond the HVAC ETP models, each residence
has additional end-use loads which are modeled
as multi-state water heaters and a collection of
ZIP loads, all of which operate on time-varying
schedules. To represent variations between
customers, all HVAC ETP, water heater, and
ZIP load parameters are varied while ensuring
total feeder load closely matches real-world,
head-of-feeder power measurements. In addition
to representing realistic feeder behavior, this
modeling process provides representative models
of individual loads [10].

In this work, results focus on a selection
of 16 representative electric customers. These
16 customers were selected for their collective
diversity of underlying device types, building
models (size, insulation properties, etc.), and
locations on the feeder. Table 1 presents details
for four customers for which detailed results are
presented later on.

Table 1. Details for Selected Customers
Meter Housing Type Cooling Heating EWH* PP**
1 Single Family Electric Gas N N
3 Single Family Electric Gas N N
9 Apartment Electric Resistance N N
13 Single Family None Gas Y N
*EWH: Electric Water Heater; **PP: Pool Pump

Each customer’s meter is assumed to be capable
of measuring average active power, reactive
power, and voltage magnitude on a 15-minute
basis: a common AMI interval [25, 26]. In this
work, it is assumed that the AMI data are available
for use immediately after each interval; future
work will investigate the effects of delayed and/or
noisy measurements. The same feeder-level dry
bulb temperature (Ta) and solar flux (f) is used for
all customers.

3. End-use Load Modeling

The ZIP load model represents an electric load’s
power consumption as a function of terminal
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voltage magnitude, representing the load as the
sum of constant impedance (Z), current (I), and
power (P) elements [27]. ZIP load models are
available in most distribution simulators.

Oftentimes, ZIP model parameters are
determined at the device level by varying input
voltage, measuring active and reactive power
consumption, and then performing a constrained
curve-fit to determine model parameters [10].
In this work, 15-minute average P, Q, and V
from simulated AMI data are used in the creation
of time-varying ZIP models for each electric
customer. The ZIP model equations are defined in
(1)-(3).

Pk =Sn

[
V2

k
V2

n
Z% cos(Zθ) +

Vk
Vn

I% cos(Iθ) + P% cos(Pθ)

]
(1)

Qk =Sn

[
V2

k
V2

n
Z% sin(Zθ) +

Vk
Vn

I% sin(Iθ) + P% sin(Pθ)

]
(2)

1 = Z% + I% + P% (3)
To reduce the number of variables for

algorithmic use, new variables are introduced
in (4)-(6):

P̄ :=
Pk
Sn

, Q̄ :=
Qk
Sn

, V̄ :=
Va

Vn
(4)

a1 :=Z% cos(Zθ), a2 := I% cos(Iθ), a3 :=P% cos(Pθ)
(5)

b1 :=Z% sin(Zθ), b2 := I% sin(Iθ), b3 :=P% sin(Pθ)
(6)

The variables in (4)-(6) are substituted into
(1)-(3) to derive the reduced ZIP equations shown
in (7)-(9):

P̄ := V̄2a1 + V̄a2 + a3 (7)

Q̄ := V̄2b1 + V̄b2 + b3 (8)√
a2

1 + b2
1 +

√
a2

2 + b2
2 +

√
a2

3 + b2
3 = 1 (9)

4. Algorithms for Creating
Data-Driven, Time-Varying ZIP
Load Models

As previously discussed, historical 15-minute
average P, Q, and V measurements from
each of the 16 customer meters mentioned in
Section 2 are used to derive a single, aggregate,

predictive ZIP load model for each meter and
each future time interval. ZIP models are used
due to their ubiquitous presence in today’s
distribution simulators, the relative ease with
which parameters can be computed, and the ease
of which P and Q can be computed in a distribution
simulation. Fifteen minute average Ta and f are
used in the process. In the following sections, the
two novel algorithms employed to create these
ZIP models are discussed: k-means clustering
coupled with least-squares optimization (KMLS),
and deep learning (DL). Both algorithms make
predictions every 15-minutes and are intended
for use in near-real-time, power-flow-based DA
applications, such as VVO. The KMLS algorithm
requires significantly less data and computation
time than the DL algorithm, but as discussed in
Section 5, the DL algorithm can provide more
accurate predictions.

4.1. Algorithm 1: k-Means Clustering and
Least-Squares Optimization

Given a set of historical P, Q, and V
measurements for a given meter, we solve for the
set of variables a1, a2, a3, b1, b2, and b3 in (5)-(6)
that minimizes the average sum of squares of the
residual. This objective function is presented in
(10), and is constrained by (9).

1
N

N

∑
k=1

{[
P̄k −

(
V̄2

k a1 + V̄ka2 + a3
)]2

+
[

Q̄k −
(
V̄2

k b1 + V̄kb2 + b3)
]2
} (10)

To derive a predictive ZIP model for an
individual electric customer for the upcoming
15-minute interval, the KMLS algorithm works as
follows:

1. The most recent two weeks of historic
measurement data (P, Q, V, Ta, and f) are
obtained.

2. These data are then filtered to only include
data with a similar day of the week (weekday
vs. weekend), and a time of day that is ± 30
minutes from the prediction time in question.

3. Initialize n = 1 (number of clusters).

4. Filtered data are separated into n clusters
via k-means clustering. Active and reactive
power, dry bulb temperature, and solar flux
are used as cluster features.
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5. Present (non-historic) temperature and solar
flux measurements are used to compute
Euclidean distance to each of the n clusters.
The cluster with the smallest Euclidean
distance from present temperature and solar
flux is considered best.

6. P, Q, and V data within this best cluster
are then used in a sequential least-squares
program to derive the ZIP model, where
Sn = median(|P + jQ|) for P and Q within
the best cluster.

7. Data from the best cluster and the
corresponding ZIP model parameters
are substituted into the objective function
(10), and the result is tracked.

8. Steps 4-7 are repeated, with n = n + 1.
If the length of the vectors in the best
cluster is below a predefined threshold (four
in this work), no ZIP fit is performed.
Looping terminates when n is sufficiently
large such that no cluster can possibly have
more measurements than the predefined
threshold.

9. After looping terminates, the ZIP model
that results in the minimal value of (10)
is considered best and is used as the
predictive model for this electric customer
and upcoming time interval.

The sliding two-week data window in Step
1 helps avoid using older data which may not
be representative of the present. The choice of
using a two-week window was made through
experimentation, but other window sizes are
possible, impacting both prediction accuracy and
computation (time, memory, etc.).

The minimum number of measurement sets
per cluster constraint in Step 8 helps avoid
using too little data. E.g., fitting a ZIP model
to only two measurement sets will result in
a very small value of (10), but likely won’t
result in accurate predictions. Increasing this
minimum measurements value can also decrease
computation time by decreasing loop iterations.

While the components that make up the
KMLS algorithm are not new (e.g., least-squares
optimization), the end-to-end algorithm is
novel. The combination of historical AMI data,
environmental data, clustering, and least-squares
optimization for ZIP model creation can help
real-time or near-real-time DA applications such

as VVO obtain more accurate power flow results,
thus leading to improved operation.

4.2. Algorithm 2: Deep Learning with
Neural Networks

One shortcoming of the KMLS algorithm is that
if running in a near-real-time environment, the
amount of historic data used should be limited to
keep computation time reasonable. Additionally,
the input data to the algorithm may or may not
be representative of the future (e.g., if there is
an impending heat wave, but the previous two
weeks were mild), which can lead to inaccurate
predictions. With deep learning (DL) techniques,
many combinations of conditions are examined
in training (e.g., P, Q, V, Ta, f), and the algorithm
“learns” how to predict given current and past
conditions. The use of more data along with
intensive training can allow DL techniques to
produce more accurate predictions.

In this work, a deep neural network comprised
of multiple sub-networks is implemented. A
convolutional neural network (CNN) is used for
feature extraction [28], and a recurrent neural
network (RNN) with long short-term memory
(LSTM) cells [29] is subsequently used for feature
memorization and prediction. Finally, a series
of dense (DENSE) [21] layers transform the
LSTM predictions into one-dimension. To our
knowledge, this is the first use of a deep neural
network to create time-varying, predictive ZIP
load models for individual electric customers. The
following subsections describe the network layers
and overall architecture.

CNNs are specialized networks for processing
grid-type data (e.g., time series or images) [28],
where each network layer transforms its input
volume through a differentiable function. For this
work, two types of layers are used in the CNN:
convolution (CONV) and pooling (POOL).

A CONV layer computes the output of neurons
that are connected to local regions of the input
(dimension [bs × d × 1] for a single feature).
Each neuron computes a dot product between its
weights and a small connected region in the input.
The resulting value is then input to the scaled
exponential linear unit (SELU) activation function
[21]. The output of a CONV layer (dimension
[bs × d × Fc]) is passed to a POOL layer, which
performs down-sampling. The resulting output is

of dimension [bs ×
(
(d−Fp)

Fp
+ 1
)
× Fc] [28].
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After the CNN extracts features from the time
series AMI data, the LSTM cell architecture from
[29] memorizes the extracted features.

DENSE layers are layers where each neuron in
the layer is connected to every neuron in the next
layer [21]. Successive DENSE layers of decreasing
size reduce the final output to one dimension.

The network layers previously discussed are
used to model a1, a2, tan(Zθ), tan(Iθ), and tan(Pθ).
Table 2 gives an ordered overview of the deep
network architecture. The first input dimension,
2880, is the number of 15-minute intervals in a
30-day month. The second input dimension, 240,
comes from using a data window of d = 60 with
the four-featured vector v1

k .

Table 2. Deep Network Architecture for Modeling

ax and tan(θ)
Layer
Type

Input
Dimension

Output
Dimension

Activation
Function

CONV [2880× 240× 1] [2880× 240× 200] SELU
POOL [2880× 240× 200] [2880× 120× 200] N/A
CONV [2880× 120× 200] [2880× 120× 100] SELU
POOL [2880× 120× 100] [2880× 60× 100] N/A
CONV [2880× 60× 100] [2880× 60× 50] SELU
POOL [2880× 60× 50] [2880× 30× 50] N/A
CONV [2880× 30× 50] [2880× 30× 25] SELU
LSTM [2880× 30× 25] [2880× 40] N/A

DENSE [2880× 40] [2880× 20] SELU
DENSE [2880× 20] [2880× 10] SELU

DENSE [2880× 10] [2880× 1] SELU (for ax)
tanh (for tan(θ))

The architecture for tan(θ) ensures that
tan(θ) ≤ 1 by using the tanh activation function in
the last DENSE layer. In order to satisfy (9), a3 is
reformulated in (11):

a3 =
1− a1

√
1 + tan2(Zθ)− a2

√
1 + tan2(Iθ)√

1 + tan2(Pθ)

(11)
In (11), the square root results in a vanishing

gradient problem in the deep network framework.
To circumvent this, three terms of the binomial
expansion of (11) are used to approximate a3. Then,
the ax and tan(θ) terms are used to derive the bx
terms given in (6).

The first step of training involves learning F 1,
using the input-output pair (X1, Y1). Training runs
until ‖Y1 − F 1(X1)‖2 ≤ ε Likewise, the second
training step learns F 2 using the input-output pair
(X2, Y2), and runs until ‖Y2 −F 2(X2)‖2 ≤ ε. Each
training step is conducted via batch processing
with all relevant data for one month.

Since training is performed offline, but
predictions are performed in near real time, each
successive prediction relies on more predicted
values in its input, X (specifically, P̂ and Q̂). The
inclusion of predictions in the input leads to

error accumulation, which is mitigated by the
novel second training step. The full training and
prediction process is described with an example:

Given historical data for months 1 and 2,
predictions are made for month 3. The first
step of training uses month 1’s data, and the
resulting network is used to formulate predictions
for month 2. The second training step uses both
the predicted and actual data for month 2 to train
the network on how error is accumulated. The
network then formulates predictions for month 3.
In an operational setting, the network would need
to be retrained monthly.

5. Results, Analysis, and Discussion

The goal of this work is to develop ZIP
load modeling algorithms that use AMI and
environmental data to create predictive models in
near real time. The resulting models can then be
used by power-flow-dependent DA applications.

As an initial validation step, both algorithms
are given V, P, and Q for simple, static ZIP
models. The resulting predicted active and reactive
power for each model match the expected P
and Q, validating the basic functionality of both
algorithms. The results presented in this section
focus on the algorithms’ predictions for each
individual customer’s aggregate demand, rather
than this simple validation procedure.

To evaluate both the KMLS and DL algorithms
for individual customer aggregate demand,
different ZIP models are derived for each of the 16
meters described in Section 2 for every 15-minute
interval in the simulation year. The meter data
for deriving the predictive ZIP models is purely
historical, i.e. the training and testing data are kept
strictly separate. For each prediction interval, P̂
and Q̂ are computed by substituting the actual V
and derived ZIP model parameters into (1) and (2).
These predicted power values are then compared
with the actual power values from the meter data.

5.1. Definition of Evaluation Metrics

Table 3 describes the metrics used to evaluate
the performance of the ZIP modeling algorithms
[30]. Mean bias error (MBE), mean absolute error
(MAE), root mean quadratic error (RMQE), root
mean square error (RMSE), and accuracy (Acc)
are all used. For accuracy, values closer to one
are better. For all other metrics, closer to zero is
better. For a single meter, y and ŷ are comprised
of both active power (Watts) and reactive power
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(var) and have length 2N, where N is the number
of 15-minute intervals in a year.

Table 3. Performance metrics for load modeling

algorithms
Metric Equation Description

MBE
1

2N

2N

∑
k=1

(ŷk − yk)
Assess prediction bias.
Range: [−∞, ∞].

MAE
1

2N

2N

∑
k=1
|ŷk − yk |

Evaluate uniform
prediction errors. Range:
[0, ∞].

RMQE
( 1

2N

2N

∑
k=1

(ŷk − yk)
4)0.25

Evaluate prediction
accuracy, higher penalty
for large errors than
RMSE. Range: [0, ∞].

RMSE
( 1

2N

2N

∑
k=1

(ŷk − yk)
2)0.5

Evaluate prediction
accuracy while penalizing
large errors. Range: [0, ∞].

Acc
1

2N

2N

∑
k=1
|ŷk − yk |/yk

Mean absolute percent
correct. Range: [0, 1].

5.2. Aggregate Results Compared with
Load Allocation

To compare the KMLS and DL algorithms with
current modeling practices, a simple proxy for
load allocation is implemented. Each of the 16
electric customers is represented by a ZIP model
with static coefficients from [31]. For every meter
and time interval, Sn is updated with the value
computed for KMLS in Step 6 of Section 4.1, and
then P̂ and Q̂ are computed. The use of the Sn term
from the KMLS algorithm may result in increased
modeling accuracy compared to current load
allocation algorithms, which typically use a small
set of feeder-level measurements and secondary
transformer ratings to estimate power demand for
each electric customer. Unfortunately, the load
allocation algorithms used today are proprietary
and built into distribution management systems,
making them unavailable for true comparison.

Table 4 presents aggregated performance
metrics for all meters. Here, y and ŷ contain all
actual and predicted values for all meters for the
entire year. Table 4 shows that the KMLS and DL
algorithms outperform the simple load allocation
method for all metrics.

Table 4. Combined performance metrics for all

meters
Algorithm MBE MAE RMQE RMSE Acc
Load
Allocation 50 814 2619 1575 0.16

KMLS -27 258 1892 776 0.82
DL 3 87 1836 403 0.91

5.3. KMLS and DL Algorithm Results

Fig. 1 visually compares both algorithms’
performance metrics (defined in Table 3) for

individual meters for all predictions over the entire
simulation year. The KMLS results have a negative
MBE for all meters except meter 13, indicative of
the KMLS’ tendency to miss new peaks due to its
sliding two-week data window. The DL algorithm
predictions result in a negative MBE for half of
the meters and a positive MBE for the other half:
for this subset of meters the DL algorithm does
not have a strong tendency to underpredict or
overpredict.
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Figure 1. Metric comparison between KMLS and DL

for one year of 15-minute predictions.

For MAE, Fig. 1 shows that DL performed
better for all meters. However, examining RMQE
and RMSE shows that KMLS outperforms DL for
some meters. Note that for meter 7, the DL RMSE
is slightly below that of KMLS, but DL’s RMQE is
significantly higher than KMLS’. This indicates DL
had more large prediction errors than KMLS for
this meter.

With respect to accuracy, Fig. 1 shows that DL
outperforms KMLS for 14 meters. DL accuracy
ranges from 83% to 98%, while KMLS ranges from
70% to 94%.

Actual and predicted power for meter 1 in June
are shown in Fig. 2 and 3 for KMLS and DL,
respectively. In Fig. 2, the predictions closely

Page 3061



track the actual values but tend to miss abrupt
periods of increased demand. This is a direct
result of the sliding two-week data window used
by KMLS. If a large peak has not been seen, the
algorithm is less likely to predict a future large
peak. This under-prediction could possibly be
improved by adding more weight to Ta and f in
clustering and/or including historic data from a
previous year. Fig. 3 shows that the DL algorithm’s
active power predictions track the actual values
more closely than the KMLS algorithm. However,
in this case, the DL algorithm tends to overpredict
reactive power.
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Figure 2. KMLS actual and predicted power for

meter 1 in June.
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Figure 3. DL actual and predicted power for meter 1

in June.

Fig. 4 and 5 show actual and predicted
power for meter 9 in January for KMLS and DL,
respectively. Similar to Fig. 2, Fig. 4 shows
that while KMLS does well at predicting overall,
it underpredicts most peaks. The DL algorithm
predictions in Fig. 5 closely match for both
active and reactive power, but reactive power
mins/maxes are under/overestimated.

5.4. Algorithm Alternatives

Both algorithms can be altered in a multitude of
ways that can affect accuracy and/or computation
time. This section presents some relevant
algorithm alternatives.

At times, the cluster selection described in
Section 4.1 selects clusters that do not lead
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Figure 4. KMLS actual and predicted power for

meter 9 in January.
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Figure 5. DL actual and predicted power for meter 9

in January.

to a model that makes accurate predictions.
An alternative cluster selection method can
improve accuracy: Instead of only using present
temperature and solar flux in cluster selection,
average active and reactive power for the historical
data are also used as cluster selection parameters.
In computing these averages, P and Q from the
historic data are further filtered before means
are computed. Filtering is performed such that
the only times that remain match the upcoming
prediction interval. I.e., if predicting ZIP
coefficients for 09:30 a.m., the average P and Q
used in cluster selection will only come from
historical measurements timestamped 09:30 a.m.

Fig. 6 shows the predicted vs. actual active
power for meter 13 for both cluster selection
methods. The best linear fit to the data is presented
as a line. The standard cluster selection results in
a coefficient of determination (COD, also known
as R2) between the regression line and the data of
0.05, and the alternative cluster selection results in
a COD of 0.89 (closer to 1 is better). While this
alternate cluster selection showed a significantly
improved prediction for meter 13, it does not
perform well for all meters at all times. Future
work may investigate when it’s best to use each
clustering method.

Two alternative training methods for DL
are explored: classification-based two-stepped
training and one-stepped training. In
classification-based two-stepped training, the
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Figure 6. Predicted vs. actual active power for

meter 13 using the KMLS algorithm. (a): Standard

clustering (b): Alternative clustering

training process is the same as the two-stepped
training process, except the first training step
is performed with all data from an initial
classification of meters based on their properties
(column labels in Table 1), instead of for every
meter. The second training step is carried out for
each individual meter. The one-stepped training
process is the first step of training without using
the second step.

Table 5 illustrates a comparison of the three
training methods, applied to meter 3. Parallel
training is performed on an 8 core, 16 thread,
2.1GHz processor. While the two-stepped training
described in Section 4.2 performs the best, the
training is the most computationally intensive. The
classification-based, two-stepped training strikes a
balance between accuracy and training time, while
the one-stepped training does not perform well
due to error accumulation.

Table 5. Training Methods for Meter 3 Comparison

Method Trainable
Parameters

Time
(hrs) Acc RMSE

Two-stepped 339,768 7.23 0.96 54
Classification-based

two-stepped 169,884 3.34 0.71 1312

One-stepped 169,884 3.38 0.43 3987

5.5. Computational Considerations

One advantage to the KMLS algorithm is that
it does not require large amounts of data or
significant processing time to derive a predictive
ZIP model. After acquiring two weeks of data, the
average time to compute the ZIP coefficients for
a single electric customer is roughly one second
(time includes entire algorithm in Section 4.1).
Since each customer’s fit is independent, this is a
highly parallelizable problem. The fitting can be
performed in a distributed fashion, possibly even
at the meters themselves.

As shown in Table 5, the two-stepped DL
algorithm can take more than seven hours to
train per meter. In practice, DL computational

requirements would likely necessitate centralized
training. Once trained, the time to make a
prediction is on the same order of magnitude as
KMLS, approximately one second.

Overall the presented DL algorithm
outperforms the KMLS algorithm. However,
deep learning requires more data, training time,
and computational power.

6. Conclusions and Future Work

As DA control schemes such as VVO move
toward model-based operation, it becomes
imperative to have accurate predictive load
models to ensure control decisions are made
based on accurate power flow results. This
paper presents two algorithms for performing
data-driven, time-varying load modeling on a
per-customer basis in the electric distribution
system. The first uses two weeks of historical data,
k-means clustering, and least-squares optimization
to derive a predictive ZIP load model, and the
second uses a convolution-based recurrent neural
network with long short-term memory.

To evaluate both algorithms, customer power
demand is predicted with each algorithm’s derived
ZIP models, and compared with the actual
customer demand. For this work, both algorithms
derive a new predictive ZIP model for every
15-minute interval in a one-year simulation. The
results demonstrate that both algorithms can
provide accurate predictions and perform better
than a simple load allocation method.

The KMLS algorithm, while novel, is relatively
simple and very practical. It could be deployed
on modern advanced distribution management
or AMI systems to improve model-based DA
applications, such as VVO. The DL algorithm, also
novel, is more accurate but requires more data,
computing power, and training time. Deployment
would likely require centralized training and
would be more difficult to implement.

Future work will focus primarily on two
areas. First, the presented algorithms will be
validated with utility data, and methods to
increase deployability will be explored, such as
transfer learning. Second, these algorithms will be
integrated into near-real-time VVO schemes that
are being developed as part of the GridAPPS-D
program under the U.S. Department of Energy’s
Advanced Grid Research Program [1].
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