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Abstract

Forced oscillations occur in power systems when a
piece of equipment injects a periodic disturbance into
the system. Under certain conditions, these oscillations
can become large and widespread, impacting the
system’s reliability. Several methods have been
proposed to identify the oscillation’s source so that
it can be addressed. One of the most promising is
based on Dissipating Energy Flow (DEF). In this paper,
a new expression for the DEF is developed under
a set of commonly observed conditions. Based on
this new expression, three new DEF estimators are
proposed. The performance and sensitivities of these
estimators, along with a previously published method,
are evaluated using statistical methods. Results from
simulated and measured power system data validate
the DEF estimators and highlight the advantages and
disadvantages of each.

1. Introduction

The development of extensive phasor measurement
unit (PMU) networks has led to a vastly improved
wide-area view of power systems. One application
that has drawn considerable attention in recent years is
the identification and mitigation of forced oscillations
(FOs). Forced oscillations occur when the system
is subjected to a periodic input, resulting in swings
in voltage, frequency, and power. These inputs vary
widely and can be caused by equipment failures,
malfunctioning control systems, or abnormal operating
conditions [1, 2]. Representative examples include
a misoperating turbine governor [3], a hydro unit
undergoing vortex oscillations while operating in the
rough zone [4], and a malfunctioning steam extractor
control valve [5]. Forced oscillations have also been
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found to originate from oscillating loads [3] and
inverter-based generation sources [6].

As noted in [3] and [1], FOs occur regularly in
power systems. Most events do not pose a significant
threat to grid reliability. However, system-wide
high-energy oscillations do occur, particularly when the
FO frequency aligns with the frequency of a natural
system mode of oscillation [1, 3, 4, 5]. Even if a FO is
not a threat to reliability, it may limit system operation
and cause additional wear on equipment. For these
reasons, it is important that utilities are able to quickly
identify an oscillation’s source.

Identifying the source of a FO is a challenging
problem. Due to the interaction between the oscillation
and the system’s dynamics, FOs are not always largest
near their source. Even methods using a model to
account for the system’s dynamics may fail under
certain conditions [7]. Additionally, the wide variety
in equipment, control systems, and operating conditions
that can cause a FO make it difficult to develop a
method general enough to be applied in all situations.
Despite these difficulties, many methods based on
PMU measurements have been proposed. A survey of
localization methods is presented in [2]. The authors
classify methods into four major categories: damping
torque, mode shape estimation, traveling wave theory,
and energy. An energy-based method of particular
promise is the focus of this paper.

The Dissipating Energy Flow (DEF) method
calculates the flow of dissipating transient energy
through the network using PMU measurements [8].
It is shown in [8] that system components producing
energy are the oscillation sources. In [1], the method
is refined for practical use by band-pass filtering
measurements at the frequency of the oscillation. The
authors of [1] also note the superior reliability of the
DEF method in comparison with alternatives based on
evaluation with a test case library [9]. The method
was transformed to the frequency domain and extended
to monitor a system component’s damping contribution
using ambient measurements in [10].
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This paper makes several contributions to the study
of the DEF method. First, a new expression for the
DEF under certain common conditions is derived. Based
on this expression, three novel methods to estimate the
DEF are proposed. The advantages and disadvantages
of these methods are evaluated alongside the approach
in [1]. Where previous papers have evaluated methods
based on a limited set of test cases, the results presented
here go further by evaluating the statistical performance
of DEF estimators using simulated cases. The methods
are also evaluated using measured data to show their
practicality under real-world conditions. The methods
and results presented in this paper will help the DEF
method be applied in the most effective possible way.

The rest of the paper is organized as follows. In
Section 2, the new expression for the DEF is derived.
Methods for evaluating the expression are proposed
in Section 3 and then evaluated in Section 4. A
discussion of results is provided in Section 5, followed
by conclusions in Section 6.

2. A New Expression for Dissipating
Energy Flow

In this section, a new expression for the DEF is
derived. The derivation begins from the expression for
DEF provided in [8], which depends on measurements
of active power, reactive power, system frequency, and
voltage magnitude. Denote the measurements of active
power as

P (t) = Ps + Pf (t) (1)

where Ps is the steady-state term and the FO term is

Pf (t) = AP cos(ωFOt+ θP ) (2)

whereAP , ωFO, and θP are the amplitude, frequency in
radians per second, and phase of the FO. Additionally,
let Q(t) = Qs + Qf (t), Ω(t) = Ωs + Ωf (t), and
V (t) = Vs + Vf (t) denote measurements of reactive
power, system frequency, and voltage magnitude. The
FO components of these measurements have the same
form as (2). The angular frequency Ω(t) arises in the
derivation for DEF in [8] as the derivative of voltage
angle. In this paper, the scaled first-order difference
of the measured voltage angle is used to obtain the
“measurement” of Ω(t). This approach is commonly
used to avoid the variation in frequency measurements
between different PMU manufacturers. To simplify
notation, the dependence on time of FO components
will be omitted for the remainder of the paper, i.e.,
Pf (t) = Pf .

As the result of periodic disturbances, FOs can
typically be well represented as a sum of sinusoids
at harmonic frequencies [11, 12]. For the initial

development, a single sinusoid is considered. As
discussed later, practical implementation of the derived
algorithms addresses these harmonics so that the theory
developed here holds.

As detailed in [1, 8, 10], the DEF can be expressed
in terms of measured power system quantities as

W =

∫
Pfd(θf ) +

∫
Qfd(Uf ) (3)

where θf denotes the FO component of the voltage
angle, and Uf denotes the FO component of U(t) =
ln(V (t)). Because Pf , θf , Qf , and Uf are all functions
of time, the integrals can be rewritten as

W =

∫ T

0

PfΩfdt+

∫ T

0

QfU
′
fdt (4)

where T is the analysis length in seconds, which is
selected to contain an integer number of FO cycles, and
′ indicates the first derivative. To obtain an expression
for U ′f , note that

U(t) = ln(Vs +AV cos(ωFOt+ θV ))

≈ ln(Vs) +
AV
Vs

cos(ωFOt+ θV )
(5)

for Vs � AV (see the appendix for further discussion).
Letting Us = ln(Vs), AU = AV

Vs
, and θU = θV ,

U(t) = Us +AUcos(ωFOt+ θU )

= Us + Uf (t).
(6)

The derivative of the FO component follows as

U ′f = −ωFOAUsin(ωFOt+ θU ). (7)

With each term in (4) expressed as a sinusoid,
the expression for the DEF can be greatly simplified.
Applying the trigonometric identity

cos(α)cos(β) =
1

2
cos(α− β) +

1

2
cos(α+ β), (8)

the first integral can be written as∫ T

0

PfΩfdt =
1

2
APAΩ

∫ T

0

[cos(θP − θΩ)

+ cos(2ωFOt+ θP + θΩ)]dt

(9)

Noting that the integral of a sinusoid over an integer
number of periods is equal to zero,∫ T

0

PfΩfdt =
T

2
APAΩcos(θP − θΩ). (10)
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Similarly, applying the trigonometric identity

cos(α)sin(β) =
1

2
sin(α− β) +

1

2
sin(α+ β) (11)

allows the second integral in (4) to be expressed as∫ T

0

QfU
′
fdt =

T

2
AQAUωFOsin(θQ − θU ). (12)

Combining the results in (10) and (12) leads to the final
expression

W =
T

2
[APAΩcos(θP − θΩ)

+AQAUωFOsin(θQ − θU )]

(13)

3. Evaluating the New Expression

The expression for DEF in (13) is general in that
there are multiple ways for it to be evaluated using
synchronized measurements. Three approaches are
explored in this paper.

Though the DEF is expressed in terms of continuous
time in the previous section, the PMU data used to
estimate it is sampled at a regular interval. Thus, the
methods discussed in this section are derived using
discrete time notation. Let k = 0, 1, . . . ,K − 1
denote the sample indices within the analysis window
corresponding to a sampling period Ts such that t =
k × Ts. Then the term ωkFO = ωFO × Ts denotes the
FO’s frequency in radians per sample.

3.1. DFT Approach

In the first approach, the amplitudes and phases
in (13) are estimated based on the Discrete Fourier
Transform (DFT) of the measurements. Begin by noting
that

DFT{P (k)− Pµ}|ωk=ωk
FO
≈ P̂f (ωkFO) (14)

where Pµ denotes the average of P (k) over the

analysis window and P̂f (ωk) denotes the DFT of Pf (k).
Because Pf (k) is a cosine, it follows that

P̂f (ωkFO) =
K

2
AP 6 θP . (15)

Similar relationships hold for the other measured
quantities. Thus, amplitude and phase estimates can
be obtained by removing the mean from each set of
measurements, calculating the DFT, and finding the
magnitude and phase at the frequency of the FO. These
estimates are then plugged into (13) to estimate the DEF.

3.2. Cross-Spectrum Approach

The second approach also leverages the calculation
of DFTs for each type of measurement. In fact, the
resulting DEF estimates are identical to those in the first
method. However, the amplitude and phase for each
measurement are not directly estimated. The approach
is included here because it links the results derived in
the previous section to another published method.

To begin, consider the cross-power spectral density
(CPSD) [13] evaluated at the FO frequency:

SPΩ(ωkFO) =
1

K
P̂f (ωkFO)Ω̂∗f (ωkFO)

=
K

4
APAΩ 6 (θP − θΩ)

=
K

4
APAΩ[cos(θP − θΩ)

+ jsin(θP − θΩ)]

(16)

Here ∗ denotes the complex conjugate and j =
√
−1.

Similarly,

SQU (ωkFO) =
K

4
AQAU [cos(θQ−θU )+jsin(θQ−θU )].

(17)
Comparing (16) and (17) with (13), the CPSD-based
estimator can be expressed as

W = 2Ts
[
Re{SPΩ(ωkFO)}+ ωFOIm{SQU (ωkFO)}

]
(18)

whereRe{·} and Im{·} are functions returning real and
imaginary components, respectively.

The CPSDs in this expression can be estimated using
the DFTs of measured data as in (14). While successful
spectral analysis of stochastic signals typically requires
long record lengths, non-rectangular windows, and
averaging of multiple overlapping windows, the same is
not true for the deterministic periodic signals considered
here [13]. This greatly simplifies the design of the DFT-
and CPSD-based DEF estimators.

The result in (18) is closely related to the method
in [10], where an expression for the damping-torque
coefficient is derived that contains the following
frequency-domain formulation of the DEF:

W = 2TsRe{SPΩ(ωkFO) + SQU (ωkFO)}. (19)

This expression was also derived based on (4), though a
very different approach was taken. The paper focuses on
ambient measurements and does not mention FOs. The
similarities between (18) and (19) warrant discussion
and further investigation. However, because the current
paper focuses specifically on DEF estimation for FOs,
the estimator in (19) is not evaluated.
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3.3. Least-Squares Approach

The final approach to estimating the DEF is also
based on estimating the amplitudes and phases of
the FO in each measurement, but it operates in the
time domain. The two previously proposed methods
operate in the frequency domain and ignore additional
signal components and harmonics by only analyzing
the frequency bin corresponding to the the FO. In [1],
these additional components were removed by applying
a band-pass filter centered at the FO’s frequency. The
method proposed in this section accounts for non-FO
signal components by fitting the entire input signal to
a model.

The approach is based on the Least-Squares plus
Sinusoid (LS+S) method for estimating a system’s
electromechanical modes in the presence of FOs
[14]. To do this, it incorporates a FO and its
harmonics into the system model. A least-squares (LS)
approach is used to estimate the system parameters
and the FO amplitudes and phases simultaneously.
In the present application, accurate estimation of the
system’s dynamics, which would require additional
signal processing and careful parameter selection, is not
of interest. Thus, the system model is estimated only to
provide more accurate estimation of the FO parameters.

In the following, an overview of the first stage of the
LS+S algorithm is provided. The second stage is similar
and updates the estimates from the first stage. See [14]
for a complete description. Equations are provided for
active power measurements, but the same approach is
applied for the other measurements. For simplicity, only
a single oscillation frequency will be considered here.
As described in [14], the method can readily be extended
for multiple oscillations.

To begin, redefine the active power measurements as

P (k) = Ps + Pn(k) + Pf (k) (20)

where Pn(k) is a stochastic component due to
random changes, e.g., load, that excite the system’s
dynamics. This component has been ignored up to this
point because frequency domain techniques [10] and
band-pass filtering [1] largely remove its impact. Next,
let

P0(k) = Ps + Pn(k) + Pf (k)− Pµ ≈ Pn(k) + Pf (k)
(21)

The noise component can be modeled as an
auto-regressive (AR) process, resulting in the expression

Pn(k) = −
na∑
i=1

aiPn(k − i) + e(k) (22)

where e(k) represents the noise driving the system’s
dynamics. Applying trigonometric identities and
writing the equation for P0(k) out for na ≤ k ≤ K − 1
leads to the matrix equation

P̄0 =
[
P0 F

]
ψ̄ (23)

where

P̄0 =
[
P0(na) P0(na + 1) · · · P0(K − 1)

]T
(24)

P0 =


P0(na − 1) · · · P0(0)
P0(na) · · · P0(1)

...
...

P0(K − 2) · · · P0(K − na − 1)

 (25)

F =


cos(ωkFO(na)) −sin(ωkFO(na))

cos(ωkFO(na + 1)) −sin(ωkFO(na + 1))
...

...
cos(ωkFO(K − 1)) −sin(ωkFO(K − 1))


(26)

ψ̄ =
[
a1 · · · ana

B C
]T
. (27)

An estimate of the parameter vector can be obtained
through the least-squares solution to (23) as

ˆ̄ψ =
[
P0 F

]†
P̄0 (28)

where † indicates the pseudoinverse. The amplitude and
phase of the FO can then be estimated as

ÂP =

∣∣∣∣∣ 1

Â(ωkFO)

∣∣∣∣∣
√
B̂2 + Ĉ2 (29)

θ̂P = tan−1

(
Ĉ

B̂

)
+ 6

1

Â(ωkFO)
(30)

where parameter estimates are indicated with hats and

Â(ωkFO) = 1+â1e
−jωk

FO

+ â2e
−j2ωk

FO + · · ·+ âna
e−jnaω

k
FO

(31)

is related to the transfer function of the AR model.
Though the LS+S method may appear complex, in

practice it is relatively straightforward to implement.
Measurements are first collected into the matrix P0 and
vector P̄0. Next, the F matrix is formed based on the
frequency of the observed oscillation(s). An estimate of
the parameter vector is calculated using (28), which can
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be implemented easily using a pseudoinverse function,
such as MATLAB’s pinv. Using the resulting parameter
estimates, (29) and (30) are used to estimate the FO’s
amplitude and phase. The process is repeated for each
set of measurements. Finally, (13) is used to estimate
the DEF for each branch.

4. Experimental Results

To evaluate the proposed methods, they were
applied to simulated and measured PMU data during
FO conditions. Application to measured data helps
ensure that an approach is practical for deployment
under real-world conditions. Simulated data was used
to perform statistical evaluations of DEF estimator
performance using repeated trials. To the author’s
knowledge, this is the first publication to evaluate DEF
estimators in this way. The simulated data allows
evaluation of the methods’ sensitivities to variations in
input parameters. Together, the measured and simulated
results provide a good indication of each method’s
performance and viability for practical deployment.

The evaluated methods include the “Direct”
evaluation of (3) suggested in [1], the CPSD approach
proposed in Section 3.2, and the LS method proposed
in Section 3.3. Recall that the DFT method in Section
3.1 is mathematically equivalent to the CPSD approach.
Results are presented in the following subsections with
additional discussion provided in Section 5.

4.1. Results from Simulated Data

Simulated data was generated using the miniWECC
model, a complete description of which is presented
in [15] and the references therein. The miniWECC
is a simplified model of the Western Electricity
Coordinating Council (WECC) system obtained by
equivalencing generation for many areas into single
generators and including only transmission lines with
significant length and a rating of at least 230 kV. In all,
the model has 34 generators, 115 lines and high-voltage
transformers, 54 generator and load transformers, 19
load buses, and 2 DC lines. For data generation, the
nonlinear model is linearized about an operating point
and represented in state-space form. The model has
dominant electromechanical modes at 0.22 Hz with 7%
damping, 0.37 Hz with 5% damping, 0.62 Hz with
6.2% damping, and 0.73 Hz with 6.6% damping. The
relatively low damping ratios of the modes increases the
system’s susceptibility to FOs appearing system wide
[4].

Forced oscillations are modeled as a square wave
input at a generator bus to emulate a limit cycle [16].
The square wave amplitude is specified in terms of the

Table 1. Simulation cases.
Case Freq. (Hz) Amp. (pu) Input Gen.

1 0.37 0.005 1
2 0.37 0.005 7
3 0.37 0.005 14
4 0.37 0.005 21
5 0.37 0.005 30
6 0.22 0.001 1
7 0.22 0.001 7
8 0.22 0.001 14
9 0.22 0.001 21

10 0.22 0.001 30

generator’s input mechanical power. Two sets of cases
are considered, each with a frequency corresponding to
an electromechanical mode. In the “large FO” cases,
a 0.37 Hz square wave with an amplitude of 0.005
per unit is applied. In the “small FO” cases, the
oscillation’s fundamental frequency was set to 0.22 Hz
and its amplitude was set to 0.001 per unit. For each
set of cases, the FO was injected at the five generators
indicated in Fig. 1, leading to the ten cases listed in
Table 1. The DEF was estimated at each of the model’s
34 generators. Examples of the model outputs for two
cases are presented in Fig. 2. The FO was injected
beginning at the 60th second of 180-second simulations.

For each of the 10 cases, 100 trials were generated,
each with a unique realization of the load noise
driving the system and the measurement noise added
to the model’s output. Calculating the mean, standard
deviation, and root mean squared error (RMSE) of the
estimates over these trials provides an indication of
each algorithm’s statistical performance. This approach
is known as a Monte Carlo simulation [17]. For the
purposes of this study, the true DEF was calculated
using (3) applied to sinusoids with amplitudes and
phases calculated based on the transfer functions of the
state space matrices composing the miniWECC model.
Of course, the ultimate goal of DEF-based algorithms is
to correctly identify the source of the FO. The impact
of inaccurate DEF estimation on source localization is
reported in terms of the percentage of trials where the
source generator was accurately identified.

4.1.1. Base Case Performance To begin, each
estimator was evaluated under ideal circumstances.
The FO’s true frequency was utilized and the analysis
window was selected such that the FO amplitude
remained relatively constant. The analysis window was
approximately 60 seconds long and adjusted to contain
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Figure 1. MiniWECC model indicating generators

used to inject FOs. From top to bottom: 1, 7, 14, 30,

21.

Figure 2. Example simulation data from cases 1

(top) and 8 (bottom).

Figure 3. Estimation performance for case 2 (top)

and 7 (bottom). The mean of estimates across trials

are denoted with dots; vertical lines indicate standard

deviation above/below the mean, and max/min

estimates are marked with x.

an integer number of FO periods.
Results from cases 2 and 7 are plotted in Fig.

3 for a subset of generators. These plots reflect
typical performance observed in the ten base cases.
Considering the results from all ten cases, the three
algorithms were found to provide very similar DEF
estimation performance. As expected, the bias and
variance become less significant in cases 1-5, where
the FO amplitude is larger, because the signal-to-noise
ratio (SNR) is higher. The percent of trials where the
oscillation source was correctly identified are listed in
Table 2. Again, the algorithms perform similarly, except
for a slight improvement by the CPSD method in case 8.

Given the similar performance among estimators in
the base cases, their sensitivities to variations in input
parameters are important for selecting a method for
practical deployment. These sensitivities are evaluated
in the following sections.

4.1.2. Sensitivity to Frequency Errors To evaluate
the sensitivity of the DEF estimators to errors in FO
frequency estimates, the RMSE was calculated for
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Table 2. Percent of trials with correctly identified

source in base cases.
Case Direct CPSD LS

1 100 100 100
2 100 100 100
3 100 100 100
4 100 100 100
5 100 100 100
6 99 99 97
7 98 99 97
8 65 72 63
9 100 100 100

10 100 100 100

errors up to 1/60 Hz. This range corresponds to one
frequency bin of a DFT calculated using 60 seconds of
data. DEF estimation performance in terms of RMSE
is plotted for cases 4 and 9 in Fig. 4 for generator 21,
the oscillation’s source. Performance was similar for
other cases and at other generators. The Direct method
significantly outperforms the CPSD and LS methods.
As suggested in [1], a bandpass filter centered at the FO
frequency is applied as part of the Direct method. The
width of the passband makes the method robust to errors
in the FO frequency. The sensitivity of the LS method
to frequency errors was noted in [14].

The impact of DEF estimation errors are reflected
in the source localization results plotted in Fig. 5.
Though the RMSE was similar for the CPSD and LS
methods, the CPSD approach significantly outperforms
the LS algorithm in identifying the oscillation’s source.
Interestingly, the LS method’s localization performance
degrades for the larger FO (case 4).

4.1.3. Sensitivity to Oscillation’s Period In this
section, the impact of analyzing a non-integer number
of oscillation periods is evaluated. To conduct the study,
the length of the analysis window was reduced in several
steps to remove half a period of the analyzed FO. The
results for case 5 are presented in Fig. 6 in terms of
the RMSE at the source, generator 30. This is the most
extreme case, but results consistently showed the CPSD
method impacted in a similar manner. The increase in
RMSE occurs due to leakage. When the DFT is applied
to a non-integer number of cycles of a sinusoid, the
frequency content “leaks” into nearby frequency bins,
causing bias [18]. The other methods showed minimal
impact. There was no appreciable change in the RMSE
for the small FO cases 6-10. Additionally, there was no
consistent impact to the source localization performance
of any algorithm.

Figure 4. Estimation performance at the source

generator for case 4 (top) and 9 (bottom) with

frequency errors.

Figure 5. Source localization performance for case 4

(top) and 9 (bottom) with frequency errors.
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Figure 6. Estimation performance at the source

generator for case 5 with a non-integer number of

cycles.

4.1.4. Sensitivity to Window Selection As noted
in [1], DEF estimation methods should be applied
to analysis windows containing sustained oscillations.
They do not elaborate on how to automatically identify
the analysis window, but an algorithm for estimating
the start and end points of a FO is proposed in [19].
In this section, the impact of errors in the analysis
window selection is evaluated. The FOs in this
study were initiated at the 60th second of 180-second
simulations. For all results so far, the analysis window
ran approximately from seconds 120-180, when the
FO is sustained. To test the sensitivity to window
selection, the approximately 60-second analysis window
was shifted earlier in the simulation in several steps.
For a shift of 90 seconds, the analysis window ran from
30-90 seconds and contained only 30 seconds of the FO.
Typical results are presented in Figs. 7 and 8.

4.2. Results from Measured Data

Tests on measurement data were conducted using
publicly available datasets [9]. The Direct, CPSD, and
LS estimators of the DEF successfully identified the
oscillation source in each of the five available datasets.
Here, the results from analysis of test case three are
described in detail as an example.

As detailed in [9], the 1.13 Hz oscillation was caused
by equipment malfunction in a large generator within
the Independent System Operator of New England
(ISO-NE) system. The oscillation persists for 40
seconds within the three-minute dataset. Thirty seconds
of data was used to obtain the results presented here.
A subset of the frequency measurements from the
substation nearest to the oscillation source are presented
in Fig. 9. Results of the DEF estimation are presented
in Fig. 10. The methods were applied to each of the

Figure 7. Estimation performance at the source

generator for case 1 (top) and 6 (bottom) with shifts

in the analysis window.

Figure 8. Source localization performance for case 1

(top) and 6 (bottom) with shifts in the analysis

window.
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Figure 9. Subset of frequency measurements from

the real-world test case.

Figure 10. Estimates of the DEF for the real-world

test case.

35 branches in the dataset. The branch numbering in
Fig. 10 corresponds to the order the signals appear in the
dataset downloaded from [9]. From Fig. 10 it is apparent
that the DEF is largest on branch 3. The negative
value indicates that the oscillation energy is flowing into
the substation from the source, which agrees with the
information provided in [9].

In Fig. 10, the estimates from each method are in
good agreement. Greater disparity was found in test
cases two and five, where the oscillations were not as
well represented by a sum of sinusoids with constant
amplitudes. Even in these cases, all three estimators
led to the clear and correct identification of the source.
Further discussion of estimator performance is provided
in the following section.

5. Discussion

The simulation results provide a wealth of
information about the performance of the methods
proposed in Section 3 and [1]. Under ideal conditions
when the oscillation has a constant frequency and
amplitude and its parameters are known, each of the

methods performs similarly. This is made clear in Fig.
3. Often, real-world conditions can be well represented
by this case, but the sensitivity of algorithms under
more challenging circumstances is important.

From Fig. 4, it is clear that the Direct method
is much more robust than the CPSD and LS methods
to errors in the oscillation’s frequency. Errors in
DEF estimation result in degraded source localization
performance, as demonstrated in Fig. 5. Though similar
in DEF estimation, the CPSD significantly outperforms
the LS method in source localization.

Including a non-integer number of oscillation
periods in the analysis window was shown to have
a much smaller impact on estimation performance.
Though DEF estimates from the CPSD method were
degraded, source localization remained unchanged.

The importance of identifying time periods
containing sustained oscillations was demonstrated in
Figs. 7 and 8. The Direct method appears to be the most
sensitive to errors in selecting the analysis window and
the LS method appears to be the least sensitive. This
sensitivity may be the least concern because the analysis
window is not particularly difficult to select, especially
in offline analyses. Significant errors did not occur until
large shifts in the analysis window were applied.

Overall, results indicate that all three methods are
viable under certain conditions. The Direct method
performed reliably, but the required filtering may be
disadvantageous in online analyses where the filter
design must be automated. The CPSD method is
advantageous because it does not require filtering, is
very simple to implement, and can analyze multiple
harmonics simultaneously. However, its sensitivities
may limit it. The DFT method provides estimates
identical to those from the CPSD method, but it also
estimates the FO’s amplitude and phase in each signal.
The LS method also provides these estimates, but it
is more complex to implement, requires model order
selection, and is sensitive to errors in the FO parameters.

With each method possessing advantages and
disadvantages, each approach may prove valuable for
different applications. The methods can also be used in
parallel to provide validation for the results, making the
overall implementation more robust.

6. Conclusion

Forced oscillations are a significant concern for
reliable power system operation. Methods are needed
to quickly and accurately identify the oscillation source
so that it can be addressed. The previously proposed
DEF has been shown to be a reliable indicator of a FO’s
source. In this paper, a new expression for the DEF
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under commonly observed conditions was developed.
Based on this expression, three new estimators for
the DEF were derived. The statistical performance of
the methods was evaluated using Monte Carlo trials,
allowing the sensitivity of each approach under various
circumstances to be examined. The new estimators were
also validated using real-world measurements. The new
methods may be used under circumstances that align
with their advantages or deployed alongside the existing
method to provide validation.

Appendix

The approximation in (5) was found empirically.
The following offers some insight and support for its
use. The initial claim was

ln(Vs +AV cos(ωFOt+ θV ))

≈ ln(Vs) +
AV
Vs

cos(ωFOt+ θV )
(32)

for Vs � AV . The condition Vs � AV is well justified
because even large oscillations are not of comparable
size to nominal transmission voltages.

Inverting the natural logarithm on each side of (32),

Vs +AV cos(ωFOt+ θV )

≈ eln(Vs)+
AV
Vs

cos(ωFOt+θV )

= Vse
AV
Vs

cos(ωFOt+θV ).

(33)

Dividing both sides by Vs,

1 +
AV
Vs

cos(ωFOt+ θV ) ≈ e
AV
Vs

cos(ωFOt+θV ). (34)

Noting that the cosine terms are bounded on the interval
[−1, 1] and that AV

Vs
approaches zero for Vs � AV leads

to the final result 1 ≈ 1. Thus, the approximation holds
for the condition Vs � AV .
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