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Abstract

The analysis of events with spatio-temporal context
and their interdependencies is a crucial task in the manu-
facturing domain. In general, understanding this context,
for example investigating error messages or alerts is
important to take corrective actions. In the manufac-
turing domain, comprehending the relations of errors is
often based on the technicians’ experience. Validation
of cause-effect relations is necessary to understand if
an effect has a preceding causality, e.g., if an error is
the result of multiple issues from previous working steps.
We present an approach to investigate spatio-temporal
relations between such events. Based on a time-sensitive
correlation measure, we provide multiple coordinated
views to analyze and filter the data. In collaboration
with an industry partner, we developed a visual analytics
approach for error logs reported by machines that covers
a multitude of analysis tasks. We present a case study
based on real-world event logs of an assembly line with
feedback from our industry partner’s domain experts.
Furthermore, we discuss how our approach is applicable
in other domains.

1. Introduction
The increasing importance of Industry 4.0 is associ-

ated with equipping different machinery with numerous
sensors that provide a constant feed of multivariate data,
logged in large databases. Although the analysis of such
databases is dominated by statistical modeling and ma-
chine learning, the incorporation of visual analytics, has
proven to be a valuable research subfield. New visual
analytics approaches provide a general understanding of
complex dependencies and work flows, e.g., by showing
abnormal process behavior in a production line [1]. In the
context of manufacturing, monitoring systems with live
prediction of possible issues in the machinery are often
a desirable goal. The development of such systems re-
quires expert knowledge to help understand the complex
relation between different events. However, the knowl-
edge of possibly existing correlations is often limited
and based on the experience of domain experts. Further,

it requires specialized knowledge to decide if statistical
correlations are also semantically plausible. Once this in-
formation is accessible, event sequences can be labeled to
improve machine learning methods to detect correlations
automatically. Visual analytics can support the reason-
ing for common event analysis tasks and communicates
complex changes in events during the development and
deployment of such monitoring systems. In addition, ex-
perts can also directly use gained insights to improve the
productivity of a production line. This work focuses on
manufacturing data that was collected from an assembly
line. We collaborated with an industry partner who pro-
vided us access to their recorded data and the knowledge
of domain experts. We analyzed their requirements in
an iterative design process and derived design decisions
for multiple coordinated views that support their anal-
ysis tasks. In our case study, we demonstrate how the
combination of different data views helps find answers
for typical domain specific questions. Our contributions
are: (1) A comprehensive visual analytics approach to
analyze spatial, temporal, and relational questions for
discrete event data. We foster the interplay of event time-
lines, correlation plots, projections, and a spatial layout
view, which supports hypothesis building and validation.
(2) A real-world application of our approach, presented
in a case study with assembly line manufacturing data.
(3) Domain expert feedback and a detailed discussion
of limitations and possible application scenarios for our
approach in other domains.

2. Related Work
The identification and analysis of relations in high-

dimensional or multivariate data is an important task.
With the goal to support experts, there is an ongoing re-
search effort to provide more accurate models for event
dependencies and to make those relations comprehen-
sible by domain experts. In the following, we give an
overview of approaches that use statistics to build re-
lational models to extract correlation information and
discuss visualization approaches that enable users to in-
teractively analyze relations in high-dimensional data.
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Statistical Event Dependency Modeling Modeling
relationships through mathematical inference [2, 3] is
used in many research domains. In the area of computer
vision, statistical inference is used to extract key elements
from images and connect them with ontologies to extract
semantical meaning [4]. When the models are built by
observation-based data, they are implicitly endangered
of including bias to their predictions [5]. Several ap-
proaches intend to identify and prevent bias in the field
of machine learning. For example, Kilbertus et al. [6]
present a concept to identify and remove discriminative
criteria in the data. The prediction and handling of error
events and attacks in networks is similar to the correlation
of events in a production line. Qin and Lee [7] describe
a scenario in which security administrators are hampered
by the abundance of alerts reported within a system. To
reduce the amount of shown information, they build a
correlation graph that clusters alert patterns. In another
approach, Qin and Lee [8] take isolated attack alarms and
correlate them to predict attack plans. Xie et al. [9] use
Bayesian networks to detect attacks with a focus on real
time detection. All presented approaches use graphs or
similar structures to model their correlations. Because we
want to visualize the temporal aspect of the correlating
events, graphs scale not well for interpretation, which is
why we opted for other visual representations of the data.
Further, they are solely based on statistics or machine
learning, often preventing domain experts to understand
how the results came to being. This may result in a lack
of confidence in the results. Our approach enables ex-
perts to verify found correlations by themselves, which
increases the general confidence in the results validity.

Visual Analysis for Event Relationships Various vi-
sualization techniques were proposed to help experts un-
derstand statistical models and the relations in their data.
Van den Elzen and van Wijk [10] present a system to
construct and analyze decision trees based on a node-link
diagram. Further, they use a confusion matrix to pro-
vide information about the nodes’ classification certainty.
Mühlbacher et al. [11] propose to interactively optimize
decision trees with the goal to also enable non-expert
users to select suitable decision trees. Strobelt et al. [12]
extract interpretable patterns of state changes in recur-
rent neural networks to build and validate hypotheses
about the models’ internal functions. Such approaches
can be used to understand, how statistical models operate.
Our approach can be used complementary to validate the
models’ results by analyzing the data directly.

To efficiently identify causal dependencies of events,
the identification of event sequences is very important.
Several approaches exist that extract and visualize se-
quential patterns [13], present the distribution of com-

mon sequences [14]), or even allow to search for fuzzy
sequences [15]. As datasets may contain a large amount
of such sequences, Cappers and van Weijk [16] present
an event querying system that allows for fuzzy searches
that provide feedback, which event sequences match the
searched pattern. Likewise, Krüger et al. [17] use a
visual query language to highlight semantically anno-
tated events to extract or confirm complex movement
sequences. Instead of filtering the data on the model
level, Monroe et al. [18] reduce the visual complexity to
assist users in getting an overview of relevant data. Sedl-
mair et al. [19] analyze in-car communication network
data to identify error and warning messages by defining
state machines for the messages and then visualizing the
states’ transitions over time. Further, the user can vi-
sually compare multiple state machines to find possible
dependencies. Shi et al. [20] show network sensor data
on a radial tree view that represents the network’s rout-
ing logic to detect outliers that need to be investigated.
They use a correlation graph to show the similarity of the
sensor nodes, which is used during the outlier analysis.
Xu et al. [1] present an approach in which they show pro-
cess anomalies by visually aggregating similar process
sequences so that dissimilar sequences are more easily
distinguishable. Their system focuses on the identifica-
tion of errors in a production line, but not necessarily
their correlation or preceding event sequences. Concepts
to extract and analyze event patterns are especially impor-
tant after a hypothesis about correlations between events
was formed. Our approach focuses on the visual anal-
ysis of error correlations and experts can validate their
findings visually with other views.

3. Approach
With emphasis on the analysis of events that are po-

tentially interdependent, we first present the underlying
data model and necessary processing. Furthermore, we
review the requirements of typical analysis tasks for this
type of data. Our requirement analysis and the final de-
sign decisions were derived in an iterative design process
in collaboration with an industry partner that uses assem-
bly line production. Over multiple sessions, we discussed
and adapted the design of the presented visualizations
according to the requirements and the knowledge of the
domain experts. To provide an easier entry point for en-
gineering experts and to address the different levels of
complexity of the requirements, our approach combines
views that provide views known by the experts, such as
the layout of the production line, and scatterplots that
show the correlation of the error classes, which are con-
nected through brushing & linking. To meet this demand,
we decided to use visualizations that are connected with
a brushing & linking approach to provide the data.
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Figure 1: Data model provided by our industry collaboration part-
ner. An event comprises a timestamp, a location, and an event type.
The main definition of an event is generic, the definition of location
and event type are application specific.

Production Line

Process Step Highlighted Available Unavailable

Station

Figure 2: Hierarchical structure of a production line. Each line
has several process steps. These steps contain stations that per-
form the same task in parallel to increase the processing speed.
Stations have a visual indication if data at a station is highlighted
(orange), available (white), or if no events were reported (gray).

3.1. Data Model and Processing
To gain insights about interdependencies between

different types of events, we require the data to meet
specific requirements, which we present in the following.
Further, we describe how we define the event correlation
metric that we use throughout our approach.
Data Properties We assume that the data comprises
time-discrete events with the following information:
Time: the point in time of each event’s occurrence
Location: information about each event’s origin
Event Type: an identifier that describes the event type
Time provides information about the date and time when
the event occurred. The location describes where the
event happened. Event type information relates to the
actual event and can be arbitrarily complex. Figure 1
shows the structure of the data provided by our industry
collaboration partner. The location has a hierarchical
structure: it starts with the production line, which com-
prises several process steps that perform individual tasks
(e.g., welding). These steps contain stations that perform
the individual operations to fulfill the task (see Figure 2).

The events of our industry partner originate from
stations in a specific production line. The event ID is
coupled with the location and the event type includes a
human-readable description of the event. Further, the
event type provides a severity level (information, error,
etc.), which we limited to events that stop the machine

from functioning. An exemplary event is:

Timestamp︷ ︸︸ ︷
04.12.2017 06:11:38;

Location︷ ︸︸ ︷
Line=1; PID=4553; Station=2;

Description: Fehler bei Bewegung X125D X-ACHSE LINKS︸ ︷︷ ︸
Event Type

We will use the term event class to distinguish events
from their specific time-dependent instances.

Pairwise Event Correlation To derive a pairwise cor-
relation between two event classes, there needs to be an
understanding of when two events are similar. In the data
provided by our industry collaboration partner, two sce-
narios can cause an event relation: (1) the entire process
step has a problem and therefore all stations in the pro-
cess step report the same event, and (2) the stations are
part of different process steps and the event is caused by
a product that is being processed by both stations. Thus,
we need to take the temporal and spatial distance of two
given events into account. In the first case, we need to
check if the events are part of the same process step. The
second case, it is necessary to know how long it takes a
product to be transported from station A (which is the
cause of the relation) and station B (which is affected).
Our correlation metric assumes that a correlation caused
by a product that is transported between the stations. The
products are transported on a conveyor belt that runs at
a constant speed. Therefore, the distance between sta-
tions can also be seen as a temporal distance (travel time)
between two given stations. Formally, we define the pair-
wise correlation C(EA,EB) of two event classes EA and
EB through the correlation plausibility of their instances:

C(EA,EB) =

plausible co-occurrences of EA and EB︷ ︸︸ ︷
∑

ei∈EA

∑
e j∈EB

IsPlausible(ei,e j)

|EA|+ |EB|︸ ︷︷ ︸
occurrences of EA and EB

,

where IsPlausible(ei,e j) defines if two events ei and e j

are similar based on their spatial and temporal distance:

IsPlausible(ei,e j)=


0 e j’s station is located before ei’s,
1 the start time of e j is within a rea-

sonable timeframe after ei was re-
ported (see below),

0 else.

The expected travel time between two stations is the
sum of the transport times between stations tt and the
passed stations’ processing times tp. In addition, we
allow a fuzzy time window around the total time to com-
pensate for dynamic changes in the production process
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Figure 3: Schematic description of fuzzy matching. The time
frame is based on the transport time between stations and process-
ing time of the stations themselves with an offset of 10 %. Events
within an allowed time frame are colored in orange.

(e.g., unexpected delays). For the investigated dataset,
we allow for a deviation of up to 10 % for the estimated
time for transport and processing. Figure 3 demonstrates
the described event matching, where colored events are
considered as a match and mismatches are grayed out.

3.2. Requirements and Design Rationales
We aim for a visual analytics approach that provides

insight on the relations between events and their spatial
and temporal coherence. In the long term, our approach
could incorporate an event predictor where the visual-
izations help validate the predictions. The following
requirement analysis is based on typical research ques-
tions for spatio-temporal data as proposed by Andrienko
et al. [21]. Hence, the requirements can be categorized
according to the four categories when, where, what, and
relational coherences. As we focus on the extraction
of possible event relationships, we did not consider the
category compare/relate in our approach.

Category 1: When
The temporal data dimension provides important infor-
mation to answer multiple questions:

Q1 When did an event (re-)occur?

Q2 In which order did different events occur?

To answer these questions, a timeline representing
the discrete occurrence of single events is one of the most
common and therefore familiar visualizations to many
people. As a single timeline with pictograms representing
different event types is limited in terms of scalability,
we distribute the events based on their location along
the vertical axis. For our collaboration partners, it is
important to investigate the temporal order of issues in
the log files with respect to the questions Q1 & Q2 .

Category 2: Where
Spatial context becomes important to identify specific
locations that might be involved in a chain of events:

Q3 Where did an event occur?

Q4 What is the spatial relationship between events
that occur together?

All questions related to the spatial context can be
intuitively represented on a map or plan. In our assem-
bly line example, we provide a floor plan containing the
layout of the machines and the conveyor belts that the
products are transported on. Such a visual representation
indicates the spatial distance between the locations that
reported events, the stations’ connectivity, and the hier-
archical structure of the production line, as described
in Section 3.1. Alternative approaches such as graphs
or list-based representations would abstract too much
from the spatial context, hence we decided for the direct
representation on a map (Figure 7 B ).

Category 3: What
Finding the details about a specific event that incorpo-
rates the information when and where it was reported:

Q5 What happened when an event occurred at a spe-
cific time?

The meaning of an event is not always included in the
data. Usually, domain experts are required to answer this
question. Combining the information provided by the
timeline and the map helps reconstruct what caused an
event. In our case, the event types are already annotated
by our collaboration partner to include human-readable
text (e.g., which component of a machine is not opera-
tional) that is displayed on demand.

Category 4: Relational
Understanding how different events relate to each other
is important to identify possible chains of events that
lead to failures:

Q6 Which pattern does an event belong to?

Q7 Which events usually occur together?

Q8 Which co-occurrences are persistent and which
are outliers?

Q9 Which locations are similar regarding reported
events?

The most common approaches to visualize relations
between data are matrix and graph visualizations. How-
ever, these approaches have limited capabilities when it
comes to visualizing temporal changes. Time-to-space
mappings [22] often result in visualizations that require
much space and animated techniques are not suitable
for comparison. We discarded hybrid visualizations
(e.g., combining graphs and matrices) due to the afore-
mentioned requirement that the proposed visualizations
should be similar to visualizations that the experts are fa-
miliar with. Such approaches are intransparent regarding
the way they aggregate the presented data. To take the
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Figure 4: Visual analysis approach with four linked views for
spatio-temporal event analysis: A In the Timeline View, individ-
ual events can be investigated in full detail. B The Location View
provides the spatial context to specific events. C The Projection
View helps identify multiple and the D The Correlation View pair-
wise event co-occurrences over time.

temporal changes in the dataset into consideration, we
decided to provide two views that present temporal statis-
tical measures and the overall relatedness of the data: (1)
a projection view that indicates high correlations between
event types or locations based on their events by spatial
proximity and (2) a line plot that shows pairwise correla-
tions between event types over time that has analogies to
a parallel coordinates plot where the discrete time steps
are the dimensions. In combination, the relational ques-
tions can be investigated with our proposed analytical
approach. In our case study (Section 4.1), we exemplify
how different issues relate to each other can be found.

3.3. Visual Analytics Approach
Our approach consists of four linked views (see Fig-

ure 4) that provide an overview and detailed temporal
( A ), spatial ( B ), and relational ( C & D ) information.
Experts can search and filter for specific event messages.
The design of our approach aims for a combination of
abstracted overviews for correlation analysis and detailed
views for the temporal and spatial components of the data
that represent the underlying data domain.

A Timeline View This view provides a de-
tailed plot of individual events over time. Each row
corresponds to a station in the production line, the hor-
izontal axis represents time. The rows are ordered first
by the process step and then by the station number. An
alternating background color helps distinguish different
process steps. A tooltip provides detailed information
about individual events. By selecting an area on the time-
line, the contained events’ locations and event classes are
highlighted in the other views.

B Location View Spatial context is important
to relate events with the location of the process steps and
stations where they occurred. Hence, a map is available
in the Location View. Stations that do not contain any
events for the analyzed range of time are grayed out,

while selected stations are highlighted in orange. In case
experts select events in other views, the stations where
the selected events were reported from are highlighted.
This view helps to interpret correlations from the views
C (temporal correlation) and D (projection of event/loca-
tion similarity) and provides detailed information about
the spatial domain of the data.

C Projection View Since event classes can cor-
relate although they are located at process steps that are
far apart, a general overview of their overall correlation
is necessary. Our approach includes a view that projects
the correlation matrix of the event classes or locations
based on t-distributed stochastic neighborhood embed-
ding (t-SNE) [23, 24] onto a two-dimensional plane. This
way, the potential correlations are displayed through spa-
tial proximity. Due to the data loss during the dimension
reduction process, not all of the event classes can be
placed correctly. To prevent users from assuming event
type relations due to falsely placed event types, we indi-
cate the placement quality of each event class with a color
coding.Our placement quality uses the measure proposed
by Mokbel et al. [25]. Users can set projection quality
threshold with a slider to filter event classes.

D Correlation View This view provides an ab-
stracted overview of the pairwise event class correlations
over time as a line chart. Each line corresponds to a
specific pair of event classes. On the horizontal axis, the
temporal dimension of the data is discretized by modi-
fiable time intervals. The default interval is one week
due to the production line’s schedule. Within each inter-
val, the correlation measure defined in Equation 3.1 is
used. To prevent data loss, only the source event must
start within the time interval, whereas the affected event
can also be later. As this view is prone to visual clutter,
experts can use a slider to set a threshold to filter the
shown event class pairs either based on average or maxi-
mum correlation. Selecting lines in the correlation view
highlights those lines in orange, whereas other lines are
grayed out. The affected event classes and their corre-
sponding events are also highlighted in the other views.

Combination of Views By a combined analysis of the
linked views, all questions mentioned in Section 3.2 can
be addressed. We provide examples how to derive in-
sights of the corresponding categories in Section 4.1.
System Architecture Our prototype is implemented
with C# and .NET Framework 4.6. The data is stored
in a relational Microsoft SQL Server database.We use
Dapper1 to map the data from the database to our client’s
data model. The front-end is implemented as a Windows
Presentation Foundation (WPF) desktop client. During

1 https://github.com/StackExchange/Dapper
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an analysis run, data from a specified timespan is re-
trieved from the server and processed on the client. We
used the SciChart WPF Framework2 to implement the
Correlation, Timeline and Projection Views.

4. Evaluation
We evaluated our approach with three domain experts

from our industry collaboration partner in two stages:
(1) We gathered findings with our approach, according
to the questions Q1 – Q9 . Our case study demonstrates
how to extract these findings (Section 4.1). (2) We inter-
viewed the three domain experts in a feedback session
(Section 4.2). We presented how the findings can be
derived with our approach. Following the demonstra-
tion, we handed out questionnaires and asked the experts
to rate the findings, the importance of the individual
questions, and the visualization views. Afterwards, we
discussed the individual findings and improvement sug-
gestions with the experts. We applied a Likert scale that
ranged from 1 (not expected/not useful/impossible) to
7 (very expected/very useful/very easy) for the ratings.
Further, the experts had the option to give no answer.
The first expert was only involved in the evaluation and
did not know the system before, whereas the latter two
experts were also involved during the development of
our prototype. The same experts participated in all parts
of the study. One expert is responsible for the produc-
tion line where the analyzed events originated from. The
second expert is a project leader tasked with the advance-
ment of industry 4.0 concepts, for example, to make
collected data available to workers in an understandable
way. The third expert is a team leader and responsible
for the implementation of the accessibility of data on the
shop floor level in the factory.

Initially, we derived nine findings with our prototype.
Table 1 presents these findings along with ratings from
two of the three domain experts (see Section 4.2 for de-
tails). The second expert opted out of the insight rating,
as she is not involved in the daily routine of the produc-
tion line and cannot assess the plausibility of specific
findings. Section 4.1 demonstrates, how these findings
can be acquired.

4.1. Case Study
Following the general analysis questions introduced

in Section 3.2, our case study demonstrates, how the
approach can be applied to derive findings (Table 1). The
dataset analyzed for our evaluation comprised 20,872
error events reported over a timespan of four months.
All events occurred in the same production line, which
contains 19 process steps and 96 stations in total. As
different parts of the event data are relevant to answer
2 https://www.scichart.com/

Figure 5: The Timeline View provides an overview of rare (high-
lighted events at the top) and frequent events (highlighted events
at the bottom). The highlighted events within process step 4553;
Station 4 contain the error type Fehler bei Bewegung AAA.

a question (e.g., temporal or spatial information), users
may choose different views to enter the analysis.

When did errors occur? (F1–F3)
One of the most relevant questions regarding the tempo-
ral aspect of the data are if there are events that occur
very frequently or just occasionally. Especially the first
question can be efficiently solved with the Timeline View
(Figure 7 A ). Experts may search for a time range where
a station reports many events. This provides a quick
overview if the reported events are all of the same class
or if multiple event classes contribute to the high amount
of error reports. To inspect a specific event class, users
can filter for all events of the type of interest (e.g., by
using the text search) to inspect its occurrences in the
Timeline View. In Figure 5, process step 4553; Station
4 reports a high number of events. After selecting the
events during the second week of January, the selection
output shows that 139 of the 143 events are the event
type Fehler bei Bewegung AAA. By highlighting all er-
rors of this event class, it becomes clear that this error
is the most often occurring event type throughout the
entire analyzed range of time (880 of 1069 events). We
reported this as Finding F1 to the interviewed experts of
our industry partner (see Table 1).

Where are the stations that reported errors?

(F4 & F5) / →
The most intuitive way to solve questions related to space
is to use the Location View(Figure 7 B ). With the linked
views, experts can either quickly locate the station that
reported a specific error or find event types related to a se-
lected location. In more complex scenarios, the view can
be used to provide a link between an abstract pattern of
events. For example, the pattern highlighted in Figure 6a
seems to recur over time. Through a selection of one
pattern occurrence it becomes apparent that all events
occur at the same process step, but at different stations
(see Figure 6b). This insight is part of the Findings F5 &
F6 (see Table 1).

Which events or locations are related? (F6–F9)

/ → / /
Due to its complexity, finding relations between event

classes is more difficult. Usually, an interesting pattern

Page 1335



Table 1: Nine findings presented to the domain experts. All findings were derived with respect to the related analysis questions. The
experts rated the findings according to how useful they are to improve the manufacturing process (1 = not useful – 7 = very useful). Some
of the findings were anonymized to protect the industry collaboration partner’s intellectual property.

Finding Description Related Question Expert
Ratings

F1 The error Fehler bei Bewegung AAA at process step 4553 occurs frequently (varies between 15
minutes and two hours). Q1 , Q2 5 / 4

F2 The error Stoerung gesamt Taktachse / Roboter at process step 4543 occurs regularly (often
errors are reported within minutes up to an hour, sometimes there are gaps of several hours). Q1 , Q2 6 / 6

F3 Station 1 in process step 4552 rarely reports any errors, but if it does, then it reports Fehler
Kinematik 1 ( siehe Intramotion ) several times in a short timespan (less than an hour) Q1 , Q2 5 / 5

F4 Process step 4546 and process step 4553 are spatially almost half of the production line’s length
apart. Q3 5 / 4

F5 If the error Fehler Kinematik 1 (siehe Intramotion) is reported, a technician can quickly look
up what process step this error belongs to and where it is located. Q3 7 / 6

F6 At process step 4552, the error Fehler Kinematik X* (siehe Intramotion) often occurs at most
stations (1-5) at the same time. (X* depends on the station that reports the error.) Q3 , Q4 , Q6 5 / 6

F7
Process step 4546, Station 2, and process step 4553, Station 1, have a cause-effect relationship
regarding their reported errors (→ if something breaks at 4546, then there is a chance that
something will break later at process step 4553).

Q7 5 / 6

F8 At process step 4549, Station 8, the errors Fehler Stellglied BBB and Fehler Stellglied CCC
occur often and usually occur together. Q8 4 / 6

F9 The reasons vary, but if there are problems at process step 4543, then there is also a chance that
there are problems at process step 4547. Q9 5 / 6

(a) Timeline View with a highlighted recurring pattern.

(b) Location View in which the stations of the selected pattern are highlighted.

Figure 6: The Location View provides experts with a spatial context to selected events. The annotated pattern in the Timeline View 6a
indicates that various events occur at the same time. Further, this pattern repeats at several points in time. The Location View 6b shows,
that the stations, where the errors occurred, are all part of the same process step and where this process is located in the production line.

or unexpected outlier leads to the need to inspect the rela-
tion between event classes or locations. One possibility is
to start with the event type Projection View (Figure 7 C )
and select two or more event classes that are close to
each other. To verify the event class’ relation, experts
can check the Location View to quickly assess if the re-
lationship is plausible or use the Timeline View to see
the distribution of the highlighted events. Alternatively,
the Correlation View (Figure 7 D ) allows to check if the
correlation persisted during the analyzed period of time
or if the correlation is temporally restricted. In Figure 7,
a group of event classes that is clearly separated from the
other classes (see ocher rectangle) was highlighted. The
selected events were all parts of the process steps 4547,
4768, and 4549, which are highlighted in the Location
View. The process steps are emphasized with blue, green,
and purple borders respectively. One can use the Cor-
relation View to verify, which error classes have a high
correlation and use the Timeline View to see, when the

events occurred. Finding F8 (see Table 1) was derived
analogously to the presented example.

Another possibility to find relationships is to use the
location Projection View to analyze event correlations on
an overview level. In Figure 7, a group of three stations
was selected in the Projection View. The Location View
shows that the stations are part of different process steps
and the Correlation View indicates that the relationship
is not caused by a single pair of event types, but that it is
composed of multiple relations. Findings F7 & F9 (see
Table 1) were both derived similarly to this example.

If the experts are interested in a specific group of error
messages (e.g., errors that mention a specific sensor),
they can use the text search component to highlight only
errors or locations that contain the entered text. This is
especially useful in combination with the Correlation
View, as errors can be part of many correlation pairs
and the filter helps to find these correlation pairs faster.
Further, it enables users to broaden their exploration,
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Figure 7: Through the selection of a clearly separated group of events types , error dependencies between the process steps 4547 , 4768
and 4549 become apparent. An expert can verify this hypothesis through the Correlation View and the Timeline View.

for example, if they start with a very specific error, but
then they want to similar events. The pattern shown in
Figure 6a was discovered by starting with the insight
from the example in the previous scenario (Where are
the stations that reported errors?), in which events were
observed that occurred at the same time. Through the
selection of these events, it becomes apparent that all
descriptions are similar (Fehler in Kinematik...). Possible
further steps are to use the text search to find similar
events or to verify the similarity of the event classes in
the Event Projection View.

4.2. Feedback Session

For each finding (see Table 1), the experts were asked
to state if the finding is plausible. They were further
asked to rate how expected the finding is, how useful it
is to improve the manufacturing process, and how much
effort is required to derive the insight with their current
methods. The second expert opted out of the insight
rating, as she is not involved in the daily routine of the
production line and cannot assess the plausibility of spe-
cific findings. All of the findings were deemed plausible
by the experts. Generally, none of the questions were
rated with less than four points (borderline) and most
questions scored at least five points on average. This
means that all of the findings we derived were deemed
to be useful insights. Before we introduced the system,
we asked the experts to rate the requirement questions (1
not important – 7 very important). All of our research
questions got ratings higher than five, which indicates
that our system meets the analysis requirements of our
domain experts. At last, we asked the domain experts to
evaluate our system. They were asked to rate, how well
they subjectively understand the individual views (1 not

at all – 7 very well), how much the views help to derive
insight from the data, if the overall system helps gain
insights, and if the system could be useful in other areas
of the company.

The Timeline View and the Location View with aver-
age scores of 5.3 and 6.3 respectively were better under-
stood than the Correlation View and the Projection View,
which scored 4 on average each. The score difference
can be expected, as the Timeline View and the Map View
are easy to read, understand, and interpret. Further, they
do not transform or aggregate the data. Generally, we
observed that the scores for the first two views are sim-
ilar, but expert 1 (head of production line) gave much
better scores for the Correlation View and the Projection
View than the other experts (7 and 6 compared to 2/3
and 3/3). Compared to the understandability score, the
experts rated the helpfulness of the views mostly equal
or higher than the respective views’ understandability.
We further asked for oral feedback for their scoring: The
Timeline View and the Location View are simple enough
to be used by anyone who has a general understanding of
the production line, including operators on the shop floor
during their daily routine. This led them to give a high
understandability and helpfulness score. The other two
views are more suitable for experts that are specialized in
the analysis of the overall production line performance.
The head of the production line is a specialized user and
gave the views very high scores (six or seven points).

During the presentation, the experts noticed a relation
between two stations that are both part of processes that
add components to the production line. The expert re-
sponsible for the production line explained that, although
it cannot be shown with the currently available data, this
may be a plausible finding if the supplier of the added
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components switches at this point in time. This finding
led to the general consent of the domain experts that the
incorporation of data from other departments would help
especially during the reasoning step after building hy-
potheses using the presented approach. The experts also
suggested incorporating data about products that were
taken out of the production line due to issues and link
this information to the machine error reports.

5. Discussion
Our approach scales well with respect to the displayed

timespan. With the multi-level data abstraction provided
by the different views, even data from over a year can
be investigated. However, our current implementation re-
quires a pre-processing stage that calculates correlations
and projections for a fixed timespan. For the application
to streaming data, we will need to adapt our models to
update dynamically if new relevant data becomes avail-
able. One example for such an adaption could be the
extension of the correlation matrix to support dynamic
updates or change it to an approximate model for rela-
tional data [26]. We further need to extend the reasoning
process after an expert found a possible relation between
event types. As our domain experts suggested during the
feedback session, one possibility to improve this process
is to incorporate more details about the events, such as
the processed products during the error report. This could
lead to new insights such as varying error type relations
depending on products or other factors.

As a consequence of our feedback from the domain
experts, we have to differentiate between two types of
analysis: (1) Maintenance analysis, where the timeline
and the location view are important and could replace
the existing technique. Both views are easy to interpret
and provide valuable information to react to incidents.
(2) The comprising analysis of events and their interde-
pendencies that serves to understand and prevent future
incidents. This requires a trained domain expert. For
deployment of our approach, we therefore suggest to pro-
vide a maintenance version, displaying only the location
and the timeline view, and an expert mode that provides
all views. With this approach, both analysis types can be
addressed by minor modifications of the interface.

In the case study, we presented the application of our
approach to event data from an assembly line. However,
our approach is not limited to a single scenario. We
argue that numerous application scenarios that fit into our
data model (Section 3.1) can be investigated to support
analytical reasoning.

Treatment data from patients is arguably most similar
to production data, as it is also based on a specific se-
quence of events (e.g., medical treatments) where experts
may be interested in error correlations (e.g., symptoms).

One of the most important differences is that the sequence
of the processes is more time-critical in the production
domain than in the health sector, where they are more
fuzzy. For example, two patients in a hospital get the
same treatments. However, the length of the treatments
themselves and the time between their application may
vary. In a production line, the same process (producing a
component twice) has more strict timings.

Additionally, our approach is also applicable to other
network structures. As an example, modern cars cre-
ate individual logs for their inherent system of sensors.
Understanding cause-effect relations in this domain is
similar to the scenario in our case study. Changing the
spatial context in the layout view by showing a car model
(similar to Sedlmair et al. [19]) would adapt our approach
for this application scenario.

In eye-tracking research, recorded gaze points form
a trajectory that describes when and where a participant
looked at a visual stimulus. Additionally, to answer the
question what was investigated, areas of interest are an-
notated. With our approach, correlations in the viewing
behavior of multiple participants could be investigated.
Identifying high correlations of visits on areas of interest
between participants indicates how similar they attended
to the stimulus. This is an important analysis task in eye
tracking research, e.g., for diagnostics of autism [27].

6. Conclusion and Future Work
We presented a new visual analytics approach with

focus on manufacturing data. Our approach improves on
current analysis methods by providing a comprehensive
framework covering numerous analysis questions. It was
developed in collaboration with domain experts based on
data from a real production line.

For future work, we will apply our approach in other
data domains, as discussed in Section 5. Since the sup-
ported analysis tasks can be transferred in other research
areas, we aim to improve data understanding in these
areas as well. Regarding the manufacturing domain, we
plan to incorporate multiple aspects: To this point, our
approach is applied to logged data, collected over the
past four years. This data provides a solid base to derive
insights and learn from to improve the manufacturing pro-
cess. In the long run, we plan to deploy a live monitoring
system that is capable to inform technical staff about
the overall state of an assembly line. Hence, we will
investigate how live data can be processed and displayed
appropriately in the different views. For the timeline
and location views, animations would be possible. The
other two views show metrics based on similarity matri-
ces, which is a limitation for live processing. We will
investigate alternative methods capable to approximate
our results with streaming data. Given the large number
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of events recorded over time, we will investigate how
to include a labeling and classification approach that is
capable to predict future issues before they happen. In
combination with visual feedback from our approach,
the analysts can supervise the learning phase, interpret
prediction results, and verify or falsify them. Including
such an approach might require additional views with
new visualizations. Furthermore, we plan to conduct
longitudinal studies with domain experts, allowing them
to inspect the data on their own. With the feedback from
the experts, we aim to improve the efficiency of different
manufacturing processes in the future.
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