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Abstract

Nowadays, natural language processing techniques
enable the development of applications that promote
communication between humans and between humans
and machines. Although the technology related to au-
tomated oral communication is mature and affordable,
there are currently no appropriate solutions for visual-
spatial languages. In the scarce efforts to automati-
cally process sign languages, studies on non-manual
gestures are rare, making it difficult to properly interpret
the speeches uttered in those languages. In this paper,
we present a solution for the automatic segmentation of
grammatical facial expressions in sign language. This is
a low-cost computational solution designed to integrate
a sign language processing framework that supports the
development of simple but high value-added applica-
tions for the context of universal communication. More-
over, we present a discussion of the difficulties faced by
this solution to guide future research in this area.

1. Introduction

Sign languages are recognized as natural languages
and have received attention from several areas of knowl-
edge, including Linguistics – which studies languages
and their phenomena from a theoretical and applied
standpoint – and Computer Science, especially Artifi-
cial Intelligence, Computer Vision and Graphic Process-
ing – which use computational processes to manipulate
language and its elements. Studies in these areas have
provided advances for the deaf community in terms of
accessibility, social and educational inclusion, and en-
hancement of language policies. Despite the relevance
of this studies, advances in communication technology
in the visual-spatial modality (including communica-
tion) are insignificant when compared with those for oral
modality. Gadgets that interpret and synthesize oral lan-

guages, using oral communication to implement func-
tionalities, have already reached the state of practice.
These services range from help desk or personal assis-
tants to companion robots and smart toys. This is a prof-
itable segment in which little attention has been paid
to accessibility or inclusion issues to provide universal
design services [1]. As this segment grows based on
resources that do not meet a portion of the population
that has certain needs, the exclusion factor is aggravated.
The exclusion of children, the elderly and people with
disabilities might be the most impactful, and research
and industry related to smart toys and companion robots
do not seem to be progressing to reverse this picture.

Therefore, we should recognize that the technology
available for visual-spatial language processing has not
reached the maturity of existing technology for oral lan-
guages [2]. This makes it difficult to link visual-spatial
modality of communication to electronic devices and
digital applications, although there are some initiatives
working to address it1. The difficulty of effectively pro-
cessing sign languages comes from the poor formaliza-
tion established for them and the need to recognize both
linguistic aspects and complex patterns from elements
used in their respective particular articulations.

The outstanding advances for this technology con-
cern the processing of a finite set of signs, consider-
ing predominantly the elements formed by hand gestures
(hand shapes and hand movements [3, 4, 2]), for inter-
pretation or synthesis of the language. This technolog-
ical apparatus can be incorporated into gadgets. How-
ever, to establish a proper communication experience, it
is required to develop the processing of a linguistic ele-
ment little explored by the computational linguistic area
– the Grammatical Facial Expressions (GFE) [5, 6, 7, 8].

The research presented herein complements previ-
ous research efforts [9, 10] in which we propose to pro-

1Examples: UNI (https://bit.ly/2M9Ywo6), Mimix Sign Lan-
guage Translator (https://bit.ly/2JGWslq), Hand Talk Translator
(https://bit.ly/2Fg4kpI), SignAloud Gloves (https://bit.ly/2QoHQrp).

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 1499
URI: https://hdl.handle.net/10125/63923
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326835346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


cess sign language based on a modular and extensible
framework (Figure 1). The framework comprises a se-
ries of pattern recognition modules, each one special-
ized in recognizing one element of a sign language, and
a grammar module responsible for combining the out-
puts of the former modules and providing the mean-
ing of a composition of elements [11]. This modular
approach should not be seen as a definite solution for
the automatic processing of sign languages since rel-
evant questions concerning a natural language are left
out. However, modularity and finite vocabularies allow
the development of low-complexity computational ap-
plications that contribute to the mitigation of the social
and digital exclusion of the “sign language common-
wealth” [12, 13, 14, 15].

Figure 1. Basic ideas of a framework to provide sign

language processing for building low-complexity

applications. Dashed line: next step in the grammar

module. Gray color: open issue.

In this paper, we explore the automatic segmentation
of GFEs in phrases uttered in the Brazilian sign language
(Libras). The task of segmentation concerns the labeling
of video frames, which contain the production of sign
language given by a person, according to the GFEs used
in this language. In this work, this task was modeled as
a multiclass classification problem solved with the Mul-
tilayer Perceptron (MLP) neural network2. Six GFEs,
of the eight expressions used in Libras’ syntactic con-
structs, compose the set of classes used in the classifi-
cation problem. The remaining of this text is organized
as follows: theoretical background (Section 2), which
comprises basic concepts of GFEs, classification tasks
and MLP neural networks; related work (Section 3);
GFE segmentation problem definition (Section 4); ex-
periments and results (Section 5); conclusions and next
steps (Section 6).

2MLP-based hardware has been extensively explored in the spe-
cialized literature [16, 17]. The ease of embedding an MLP classifier
in hardware, coupled with the efficiency of this neural network in clas-
sification recognition problems, motivates its application in this study.
Hardware implementations contribute to improving security and pri-
vacy in gadgets, mainly in the toy computing contexts [18].

2. Theoretical background

2.1. Facial expressions in sign languages

Facial expressions are part of human communica-
tion because they allow expressing emotions and trans-
mitting affective information. However, in sign lan-
guages, facial expressions play an additional and es-
sential role. They allow us to give meaning to what
we say [11]; as a result, they are part of the con-
struction of the discourse’s syntax and semantics. In
this process, they are called “grammatical facial ex-
pressions” (GFE). The GFEs are known as non-manual
markers and are related to language-specific structures at
the phonetic-phonological, morphological and syntactic
levels [11, 19, 20, 21, 22]. At the phonetic-phonological
level, GFEs have the role of differentiating those signs
that have the same parameters in other constituent ele-
ments of the language (hand shapes, hand orientations,
movements and location). At the morphological level,
GFEs are applied as morphemic markers for purposes
that include determining the intensity of an adjective or
expressing superlative and comparative constructs. Fi-
nally, at the syntactic level, they determine interroga-
tive, relative conditionals or topic phrases, mark focus
or define polarities. In this paper, we are interested in
processing the GFEs used at the syntactic level, since it
could be pointed out as the most critical level in com-
munication experiences.

Figure 2 shows the construction of phrases using
signs with and without GFEs. If the phrase is per-
formed using only the three signs “Mary”, “like” and
“fruit”, it would represent a phrase grammatically wrong
or an imprecise affirmative phrase – “Mary likes fruits”.
On the other hand, if GFEs are used, the phrases as-
sume different meanings, e.g., a negative phrase, an y/n-
interrogative phrase with topic or an y/n-interrogative
phrase with topic and (negative) polarization. Other
types of phrases at the syntactical level used in Libras
are: wh-questions, doubt-questions, conditional expres-
sions, relative expressions and focus.

Figure 3 shows two frames extracted from the video
containing the utterance of the phrases “I go!” (left)
and “I don’t go!” (right), using affirmative and nega-
tive GFEs, respectively. Note that the same hand ges-
ture (same sign) was performed in both frames, and the
GFEs imposed the desired meaning for the discourse.

2.2. The classification task and the MLP
neural networks

In the data mining field, the term “classification” de-
fines the task of finding a mapping between datapoints
from a dataset to classes in a set of known classes [23].
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Figure 2. Phrases in sign language using GFEs

Figure 3. GFEs performed in an affirmative phrase

(left) and in a negative phrase (right) – frames from

the Grammatical Facial Expressions Dataset [10]

Formally, this mapping occurs between a set of input
datapoints (−→x ∈ <D) to a finite set of labels (Cc), in
which D is the dimension of the input vector and c is
the cardinality of the set C. The mapping is modeled
in terms of a function: = : <D ×W → C, where W
is a space of parameters adjustable through a supervised
learning algorithm. In order to model a classification
problem, the dataset is required to be previously labeled
considering each class in C as a possible label. After the
mapping is built, it can be applied to classify unknown
datapoints.

The Multilayer Perceptron (MLP) neural network
comprises a set of sensory neurons that constitutes its
input layer; one or more hidden layers of neurons that
perform signal processing through non-linear activation
functions (differentiable at all points); an output layer
with neurons that perform signal processing through
non-linear or linear activation functions (differentiable
at all points); and two sets of synaptic weights (Wh and
Wk) associated to the hidden and output neurons, re-
spectively, and that are in charge of inhibiting or enhanc-
ing the neurons input signals [24].

The MLP is a feedforward neural network com-
monly trained with an error backpropagation algorithm,
which is based on the error correction rule known as
“generalized Delta rule” [25, 24]. To implement the
training process, this neural network architecture uses
two types of signals [25]. The former is the func-

tional signal, which is propagated from the neurons of
the input layer to the neurons of the output layer, in a
forward propagation model. The latter is the error sig-
nal, which is generated in the output layer and is prop-
agated back through the network. Both signals are pro-
duced by weighting the output activation functions with
the synaptic weights. The MLP training algorithm opti-
mizes the sets of synaptic weights to find values that fit
the mapping that solves the classification problem. The
optimization process runs until the classification error
produced at the network output reaches a target mini-
mum limit.

3. Related work

Studies that focus on understanding the role of GFEs
in the context of sign languages have been presented in
the specialized literature [5, 6, 7, 8]. These studies rein-
force that GFEs need to be considered in automatic sign
language processing, otherwise sign language-oriented
applications may cause expectations breaches or mis-
conceptions about the discourse at hand. The relevance
of GFEs has been confirmed, for instance, by studies in
language disorders which affect deaf people. In order
to diagnose language disorders, Marshall et al. [5] used
phrases in which the lack of facial expression would al-
ter the respective meaning. In the experiment, facial ex-
pression omissions and meaning changes through lack
of facial grammar were used as part of the indicators
of language impairment. The studies carried out by
Benitez-Quiroz et al. [6, 7] focused on analyzing the
consistency of the GFEs characterization in terms of fa-
cial joints (or fiducial points) applied to perform them.
Sequences of videos with discourse in sign language
were annotated to create a linguistic model. The result-
ing model proved to exist discriminant characteristics
for at least nine phrases classes, which also highlights
the relevance of the GFEs in sign languages. The im-
pact of GFEs was measured in an experiment carried out
by Kacorri and Huenerfauth [8]. In this experiment, the
sign language discourse was analyzed by inserting GFEs
in digital animations. The discourse synthesized in the
animations was interpreted by a group of deaf people.
The authors observed that the absence of facial expres-
sions and the low frequency of their use compromise the
discourse comprehension significantly.

Because of the relevance of GFEs for sign languages,
researchers have recently turned their attention to au-
tomatically interpret them through pattern recognition
techniques. However, the need to intensify research ef-
forts in this task is still clear, since most research in auto-
matic sign language processing focuses on the recogni-
tion of manual gestures. For an overview of this research
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context, the reports organized in specialized literature
reviews [3, 4, 2] may be useful.

With respect to works similar to the one discussed
herein, we highlight initiatives related to other sign lan-
guages [26, 27, 28, 29] and those in which the efforts
were applied in the Libras’ context [10, 30, 31, 32, 33].
Liu et al. [26, 27] have explored pattern recognition in
the context of (six) GFEs from the American sign lan-
guage (ASL) through statistical models. These authors
pay attention to eyebrow shapes and periodic head nods
and shakes, since such characteristics are relevant com-
ponents of many non-manual grammatical markers in
ASL. This approach achieved accuracy rates of about
85% in the pattern recognition task. The GFEs in the
British sign language were studied by Caridakis, Aster-
iadis and Karpouzis [28]. In this work, Elman networks
were applied to analyze patterns in five GFEs and the ac-
curacy rates varied between 66% and 100%, depending
on the complexity of the test. Some gestures of Indian
sign language, which involve the execution of GFEs,
were studied by Kumar, Roy and Dogra [29], using mul-
tiple classifiers (Hidden Markov Models and Gaussian
Mixture) combined through an Independent Bayesian
Classifier Combination model. This strategy achieved
accuracy rates between 87% and 93%.

In the context of Libras, all works that were found
have used the same corpus of videos – the Grammati-
cal Facial Expressions Dataset [10, 30, 34]. This corpus
was designed to support studies related to binary seg-
mentation – separating frames of video with a particular
GFE from frames of video with other GFE or neutral
expression. Therefore, in most of the works, the re-
sults were reported in terms of F-score. The works of
the proponents of the corpus [10, 30] show results of
GFE segmentation implemented by using MLP. In par-
ticular, Freitas et al. [30] describe an extensive setup
of feature extraction and experiments in both contexts,
speechmaker-dependent and speechmaker-independent.
The F-score obtained in the experiments varied between
0.68 and 0.97, in speechmaker-dependent contexts, and
between 0.67 and 0.95 in speechmaker-independent
contexts. These authors have also been concerned with
providing a detailed analysis of the complexity of GFEs
and their impact on segmentation results. A strategy
to estimate parameters in differential equation models,
which describe non-linear trajectories of longitudinal
data, is presented by Hu and Treinen [33]. The authors
analyzed their strategy using the mouth movement of the
Libras GFEs. Although this work did not aim to classify
GFEs, it is interesting to show existing patterns in us-
ing GFEs. For instance, they concluded that, to analyze
the mouthing behavior in a Libras phrase, it would be
more informative to investigate the trajectory decay time

than the trajectory cycle length. The last two related
works are studies whose focus was to analyze the ca-
pacity of strategies while solving the classification task.
Unlike Freitas et al. [10, 30] and our work, these au-
thors are not concerned with the study of sign language
per se. In the work presented by Uddin [31], Random
Forests were applied, achieving F-scores between 0.97
and 1 for experiments including speechmakers in the
training and test dataset. Bhuvan et al. [32] applied four
techniques: MLP and Radial Base Function neural net-
works, Bayesian classifiers and Random Forests. Their
best results achieved F-scores of 0.9 with MLP neural
networks and Random Forests. However, the authors
provided few details about the setup of the experiments.

4. Problem definition

The GFEs considered in this paper belong to a fi-
nite set of n+1 types of grammatical facial expressions
GFE = {GFE1, GFE2, . . . , GFEn, GFEn+1}, in
which GFEn+1 is the neutral facial expression. An in-
stance of a GFE is described by a set of m (x, y)-points
P = {p1, p2, . . . , pm}, extracted from the human face
and arranged in a bidimensional space (Figure 4). Next,
let a video be a sequence of frames S = {q1, q2, . . . ,
qT }, in which T is the length of the sequence and q is a
video frame containing the face image of a person per-
forming a GFE while uttering a discourse in sign lan-
guage. The aim of the classification model is to point
out which GFE occurs in each video frame. Assuming
that the classification model will perform its task suc-
cessfully, sequences of video frames will be classified
as containing a GFEi, with i = {1, . . . , n + 1}, repre-
senting the solution to the GFE segmentation problem.

Figure 4. The 100 (x, y)-points extracted from the

human face. The points marked with red crosses are

the fiducial facial points used in this work.

A vector representation for the faces in the video
frames is used as input for a multiclass classification
model. This representation is based on the set of points
P or on features derived from them. Thus, a face con-
tained in a video frame is represented as a (c∗m)-vector,
i.e., the dimension of the input space depends on the
number of characteristics (c) describing a point and the
number of points (m) in P . For instance, as illustrated
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by the red crosses in Figure 4, if one considers nine
(x, y)-points extracted from the face (c = 2 and m = 9),
then the vector representing the face in the video frame
q is −→xq = {x1, y1, x2, y2, . . . , x9, y9}. In this case, the
classification model works in a 18-dimension space.

The classifier models proposed herein consider the
GFE segmentation problem under the temporal aspect.
However, since traditional MLP does not have mecha-
nisms for processing temporal information, it is neces-
sary to embed it in the vector representation. For this,
consider the sequence S as a time-varying signal whose
variation relates to the movement of the facial fiducial
points (e.g., eyebrows or lips movement) or to the move-
ment of the head. The information contained in this
signal can be incorporated into a vector representation
through a windowing procedure. When applying this
procedure, the vector representation for the frame qt be-
comes the concatenation of some frames before and af-
ter it in the sequence S. Thus,

−→
xl
qt = {xqt−bl/2c . . . , xqt−1

, xqt , xqt+1
, . . . , xqt+bl/2c},

in which
−→
xl
qt is a vector representation for a win-

dowed datapoint, each xq is as defined before, xqt is
the frame of interest3 for which a class (GFEi) will
be associated, l is the size of the window and t =
{bl/2c . . . , T − bl/2c} shows the position of xq in S.
The windowing procedure creates a (l ∗ c ∗ m)-input
space.

5. Experiments and results

In this paper, the automatic segmentation of GFEs
was modeled as a multiclass classification problem and
an MLP was adopted to treat this problem. This
strategy was tested through experiments established in
speechmaker-dependent and speechmaker-independent
contexts, following the strategy presented by Freitas et
al. [30]. We created two problems with different levels
of complexity: a multiclass problem that comprises two
GFEs and the neutral expression, totaling three classes
(Experiment #1); and a multiclass problem that com-
prises six GFEs and the neutral expressions, totaling
seven classes (Experiment #2). The idea was to evalu-
ate the suitability of using these classification models in
the construction of applications that involve the recogni-
tion of several GFEs at once. In this section, we present
the dataset used in the experiments, the preprocessing
procedures applied to the data, the setup of the experi-
ments and the results.

3Representations with frame of interest at the beginning of the win-
dow or at the end of the window are also possible.

5.1. Grammatical facial expressions dataset

The Grammatical Facial Expressions dataset4 [10,
30, 34] was used in the experiments reported herein.
This dataset contains 18 videos referring to two speech-
makers uttering phrases in Libras, using nine GFEs.
Such videos were recorded with the Microsoft Kinect
sensor, using a capture rate of approximately 30 frames
per second. In each video, a speechmaker performs five
repetitions of five phrases in Libras, which require the
performing of at least one GFE among those used in
that language. The information regarding facial expres-
sions is stored through 100 spatial coordinates (x, y, z)
of the face contour and face fiducial points located in the
eyes, nose, eyebrows and mouth. In this dataset, each
frame of video was manually labeled by a sign language
expert. Labeling refers to the occurrence of GFEs and
it can be used as ground truth for classification models
evaluation. The occurrence of a GFE is labeled as a pos-
itive class, and the absence of it is labeled as a negative
class. In this way, a sequence of frames with the la-
bel “1” shows a video segment in which a GFE is being
used. Therefore, this is a dataset prepared for supporting
experiments in binary segmenting problems (separation
of the occurrence of a GFE from the occurrence of other
GFE or the neutral expression)5.

We adapted the original dataset to support exper-
iments related to multiclass classification problems.
Originally, the phrases related to each GFE formed a
subset of data used to train a model whose aim was to
find a specific GFE in a phrase. In Figure 5, the upper
two squares illustrate two disjoint subsets of data used
to train two classification models with specific purposes:
a model to segment the affirmative GFE (square to the
left in the figure); a model to segment the negative GFE
(square to the right in the figure). In this figure, each
subset of data comprises one type of phrase. Phrases A
and B are explicitly illustrated. The phrases are com-
posed of frames regarding neutral expressions (class −)
and by frames regarding a specific GFE (class +). The
square at the bottom of the figure refers to the adapted
dataset. Both subsets of data used to support two binary
classification problems were placed together to form a
bigger subset of data suitable to train a multiclass clas-
sification model. In this case, the problem comprises
three classes: neutral expression (class 0), GFE affirma-
tive (class 1) and GFE negative (class 2).

The Grammatical Facial Expression dataset com-
prises nine GFEs. However, some of the phrases cho-
sen to represent conditional expressions, relative expres-

4https://archive.ics.uci.edu/ml/datasets/Grammatical+Facial+Ex
pressions

5The translation of all phrases from Libras to English is presented
by Freitas et al. [30].
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Figure 5. Subset of data used to build: two binary

classification models (top) and a multiclass

classification model (bottom)

sions, and topics also involved a second GFE in another
segment of the utterance. A similar example to what
occurs in the dataset is shown in the third phrase of Fig-
ure 2. The occurrence of the second GFE was labeled
as a negative class. To also consider such phrases in the
study presented herein, it would be necessary to re-label
the entire dataset, since the labeling procedure is a sub-
jective task and should be done following the same pat-
tern for all frames (and phrases) [35, 36]. Because of this
fact, such types of phrases have been excluded from the
scope of this paper. Following what has been mentioned
above, we have constructed 16 new subsets of data that
involve the GFEs: wh-questions, y/n-questions, doubt
questions, affirmative, negative and focus. Of these, 15
subsets comprise two-to-two combinations of six GFEs,
and one subset comprises the combination of all GFEs.

5.2. Data preprocessing

Data from the Grammatical Facial Expressions
dataset were made available in their raw state. Thus, we
applied the following preprocessing procedures to ad-
equate the data to the requirements of our study: nor-
malization and displacement; attribute selection; feature
extraction; vector representation and data windowing.

The normalization procedure adjusted the (x, y)-
coordinates of each video frame within a unit hypercube.

The displacement procedure centralized the coordinates
in relation to the speechmaker’s nose coordinates. We
applied these procedures to scale down the effects of the
variations (zoom in, zoom out and body displacements)
of the speechmakers positions in relation to the sensor.
The attribute selection concerns the choice of fiducial
points to be used in the face’s representation. We have
used the same points used by Freitas et al. [30]. In this
work, the authors analyzed the correlation between the
100 face fiducial points captured while the GFEs were
performed. The results revealed the eight fiducial points
needed to represent the variation in the facial move-
ments that would be relevant in the GFEs discrimina-
tion: two points in each eyebrow and four points in the
mouth (see the red points in Figure 4). We used the eight
facial fiducial points and the Euclidean distances calcu-
lated between these points as descriptive features. Fi-
nally, we built two types of vector representation. The
first type is composed of the (x, y)-coordinates of the
eight facial fiducial points. The second type is com-
posed of the distances calculated between such points.
The temporal information was incorporated into the vec-
tor representation following the formalization presented
in the Section 4.

5.3. Experiments setup

We carried out the experiments with two main pur-
poses: (a) analyzing the suitability of the MLP for GFE
automatic segmentation; and (b) studying the complex-
ity of segmenting multiple GFEs.

We adopted the holdout method. In this method,
the dataset must be split into two subsets, one for the
model’s training phase and one for the model’s test
phase. To build these subsets, the video frames refer-
ring to the five repetitions of three phrases related to
the GFEs under analysis were assigned to the training
set, and the video frames referring to the five repetitions
of the two remaining phrases were used to compose the
subset for testing. This division resulted in a relatively
balanced training set compared to the test set. This is
a good scenario for the experiments since the classifica-
tion model has good learning conditions and more real-
istic test conditions. The ratio of the number of video
frames in both subsets, to each GFE and each speech-
maker, is shown in the Figure 6. The training and test
subsets’ information are presented separately. In this fig-
ure, the dark colors refer to the relative number of video
frames pertaining to the GFE segments, and the light
colors refer to the same idea for video frames with neu-
tral expressions. In general terms, the speechmaker B
utterances are longer than those produced by the speech-
maker A. However, the former produced fewer video
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frames with neutral expressions (45% of frames from
the speechmaker A are in GFEs segments; only 37% of
frames from the speechmaker B compose the segments
of GFEs). Except for the GFE wh-question case, the
speechmaker B produced longer segments with GFEs,
mainly when performing the GFEs for doubt-questions,
negative phrases and to express focus.

Figure 6. The ratio of the number of video frames in

training and test subsets

The MLP architectures were built with one hidden
layer, whose number of neurons was set to the mean be-
tween the number of neurons in the input layer and the
number of neurons in the output layer [37]. The number
of neurons in the input layer depends on the vector repre-
sentation, the adoption of the windowing procedure and
the size of the window when it is adopted. We adopted
windows with three, five and nine frames. The number
of neurons in the output layer was set equal to the num-
ber of classes: three in the Experiment #1 and seven in
the Experiment #2. We trained and tested a set of MLPs
using: 0.01, 0.1 and 0.5 for the learning rate, and 500
and 3, 000 for the number of epochs.

5.4. Results and discussion

Experiment #1 addressed a multiclass classifica-
tion problem related to two GFEs and neutral expres-
sions. The classification models created under the con-
ditions presented in the Section 5.3 produced similar re-
sults, except for those models trained with no-windowed
data whose results were unsatisfactory. The results re-
ported here were obtained considering: windows of size

3, rate of learning in 0.1, 3, 000 epochs of training, ran-
dom initialization for the MLP synaptic weights and 10
runs for each combination of GFEs. Table 1 shows
the results obtained with the two data representations,
in the speechmaker-dependent context (training and test
phases were carried out with data produced by the same
speechmaker).

Table 1. Accuracy for multiclass classification,

considering two GFEs and neutral expression and the

speechmaker-dependent context (µ: mean; σ:

standard deviation)

GFEs coordinates distances
µ σ µ σ

Speechmaker A

affirmative doubt-quest. 0.87 0.01 0.88 0.01
affirmative focus 0.88 0.01 0,90 0.01
affirmative negative 0.84 0.01 0.85 0.00
affirmative wh-quest. 0.89 0.01 0.88 0.01
affirmative y/n-quest. 0.89 0.01 0.88 0.01

doubt-quest. focus 0.96 0.00 0.96 0.00
doubt-quest. negative 0.93 0.00 0.92 0.01
doubt-quest. wh-quest. 0.94 0.00 0.93 0.00
doubt-quest. y/n-quest 0.94 0.00 0.94 0.00

focus negative 0.95 0.00 0.95 0.01
focus wh-quest. 0.95 0.00 0.96 0.00
focus y/n-quest. 0.97 0.00 0.96 0.00

negative wh-quest. 0.93 0.00 0.91 0.01
negative y/n-quest. 0.93 0.00 0.91 0.01

wh-quest. y/n-quest 0.95 0.01 0.95 0.01

Global mean 0.92 0.04 0.92 0.04

Speechmaker B

affirmative doubt-quest. 0.77 0.02 0.73 0.01
affirmative focus 0.70 0.01 0.71 0.02
affirmative negative 0.60 0.02 0.58 0.02
affirmative wh-quest. 0.73 0.01 0.71 0.02
affirmative y/n-quest. 0.81 0.01 0.78 0.01

doubt-quest. focus 0.91 0.01 0.85 0.01
doubt-quest. negative 0.80 0.01 0.74 0.02
doubt-quest. wh-quest. 0.89 0.01 0.87 0.01
doubt-quest. y/n-quest 0.81 0.01 0.88 0.01

focus negative 0.72 0.03 0.63 0.01
focus wh-quest. 0.87 0,00 0.87 0.00
focus y/n-quest. 0.92 0.01 0.89 0.01

negative wh-quest. 0.75 0.02 0.76 0.01
negative y/n-quest. 0.82 0.03 0.82 0.02

wh-quest. y/n-quest 0.88 0.02 0.90 0.01

Global mean 0.80 0.09 0.78 0.01

The results listed in Table 1 show the difficulty faced
by the multiclass classification models when analyzing
the expressions performed by speechmaker B, as already
observed in the tests with the binary classification prob-
lem presented by Freitas et al. [30]. According to these
authors, the facial expressions performed by speech-
maker A are more demarcated, i.e., their strengthened
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facial movements create a simpler decision surface for
the classification models. Based on the experiments, it
can be observed that the analysis of head movements
presents greater complexity since the classifiers pre-
sented the lowest accuracy values when affirmative and
negative GFEs were involved in the decision problem.
This decrease in the classification model accuracy can be
attributed to the smoothing of the movements produced
by the offset preprocessing procedures. A method for
nullifying shifts in body movements while preserving
the intensity of head movements should be adopted to
address this weakness in the proposed approach. Finally,
the best results were obtained for problems involving
the GFEs focus and y/n-question, in which there are up-
ward eyebrow movements and head tilt down, and eye-
opening in the case of focus. Furthermore, we observed
that the GFE doubt-question, characterized by eyes and
mouth contraction, also represents an easy problem for
the classification model.

In tests concerning the speechmaker-independent
context, the classification models are trained with
phrases from one speechmaker and tested with phrases
from the other. In these tests, the classification mod-
els lost performance. The best results are shown in Ta-
ble 2. We reported only results with a mean accuracy
greater than 0.6. The cases in which this lower limit
was not reached were considered unsatisfactory. No
test case reached this threshold for classification mod-
els trained with phrases from speechmaker A and tested
with phrases from speechmaker B. As in the results pre-
viously discussed, in this case, the GFEs used in doubt-
question, y/n-question and for expressing focus appear
as representatives of an easier problem to solve.

Table 2. Accuracy for multiclass classification,

considering two GFEs and neutral expression and the

speechmaker-independent context (µ: mean; σ:

standard deviation)

GFEs coordinates distances
µ σ µ σ

speechmaker B (training) / speechmaker A (test)

affirmative doubt-quest. 0.66 0.11 0.65 0.04
affirmative focus 0.65 0.00 0.65 0.01

doubt-quest. focus 0.85 0.04 0.79 0.03
doubt-quest. negative 0.66 0.06 0.70 0.02
doubt-quest. wh-quest. – – 0.64 0.03
doubt-quest. y/n-quest. 0.63 0.15 0.64 0.07

focus wh-quest. 0.67 0.05 0.68 0.08
focus y/n-quest. 0.70 0.05 0.72 0.07

wh-quest. y/n-quest. 0.61 0.15 – –

In summary, combinations of GFEs characterized by
particular eye and mouth shapes and upward eyebrow
movements represent easier pattern recognition prob-

lems. On the other hand, more difficult problems are
those in which the fiducial points belonging to the eyes
and mouth are neutral or those involving the recurrent
movement of the head. The characterization of GFEs in
terms of facial element shapes and head movements is
presented in Table 36. In this table, the first three lines
are related to the most easily identified GFEs.

Table 3. GFEs characterization in terms of facial

elements shapes and head movements

GFEs eyebrows head eyes mouth

doubt-question ↓ 	 ∗ ∗
focus ↑ ↓ �
y/n-question ↑ ↓
wh-question ↓ ↑
negative ↓ ↔ ∩
affirmative l

The experiment #2 addressed the six GFEs and the
neutral expression. The classification models reached
the mean accuracy of 0.91 and 0.75 for speechmakers A
and B, respectively, in the speechmaker-dependent con-
text. For both cases, the standard deviation was 0.01.
These results show that the increase in the number of
GFEs did not represent a significant increase in the prob-
lem’s complexity seeing that, for the speechmaker A
case, the obtained accuracy is close to the global mean
accuracy obtained in experiment #1; although the accu-
racy for the speechmaker B has dropped compared to the
respective global accuracy in experiment #1, the perfor-
mance drop is small compared to the number of expres-
sions that became part of the problem.

We can conduct a more detailed analysis of the com-
plexity of segmenting the six GFEs by analyzing the
classification errors. Confusion matrices support this
type of analysis, and two examples obtained from ex-
periment #2 are shown in Figures 7 and 87. In such
matrices, the errors are presented in relative values, i.e.,
for each GFE, the cells on the main diagonal refer to
the percentage of correct classifications. In the first case
(Figure 7), data from speechmaker A is under analysis.
All error occurrences involve neutral expressions, and
most of them are related to the indication of the neutral
expression in a video frame in which a GFE occurs. For
the second case (Figure 8), in which data from speech-
maker B are considered, the phenomenon repeats for
most errors. This phenomenon is partly related to the

6↑ - upward movement; ↓ - downward movement; ↔ - rightward
and leftward movement; l - upward and downward movement; ∗ -
compression; � - opening; 	 - withdrawal; ∩ - downward mouth cor-
ners.

7The variation observed in the accuracy of the different runs per-
formed for each set of classification models was small enough to sup-
port the generalization of the conclusions obtained from an example
of a confusion matrix.
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occurrence of errors in the transitions between the seg-
ments of GFEs and segments of neutral expressions. On
average, 85% of the classification errors in the speech-
maker A case occur in three frames that either precede
or succeed a segment transition. For speechmaker B, on
average, 50% of the errors occur under the same condi-
tions. The exceptions occur in video frames containing
the negative GFE, since part of them were classified as
belonging to the class of GFE that express focus. The
characterizations of such GFEs are different from each
other (see Table 3), which raises the hypothesis that the
problem is the representation of head movements. In ad-
dition, notice that the complexity associated with GFEs
negative and affirmative is confirmed in this experiment.
However, for GFEs that do not involve head recurrent
movements, the results of the classification models var-
ied similarly to the results observed in experiment #1.

Figure 7. Confusion matrix (with relative values):

multiclass classification errors on data from the

speechmaker A

Figure 8. Confusion matrix (with relative values):

multiclass classification errors on data from the

speechmaker B

Although the results can still be improved, especially
for the case of speechmaker B, they show the feasibil-
ity of solving the GFEs automatic segmentation prob-
lem in the speechmaker-dependent context. On the other
hand, the generalization capability of speechmaker-
independent models is unsatisfactory. The problem of
generalization involving the particular articulation pro-
file of different individuals has been studied in the area
of gesture analysis also in other contexts [35, 38] and
similar conclusions have been obtained.

6. Conclusion

In this paper, we presented an automatic solution for
segmenting GFEs, modeled as a multiclass classification
problem and treated by an MLP neural network. The
experiments were performed for six types of GFEs con-
sidering the speechmaker-dependent and speechmaker-
independent contexts. In the speechmaker-dependent
context, our strategy presented promising results. Al-
though, for speechmaker B, there may be sufficient mis-
classifications to suggest the impracticability of our ap-
proach, two aspects contradict this impression: (a) the
numerous errors in transitions show that part of them
refers to solutions that slightly shifted the GFEs seg-
mentation and, up to a displacement limit, they do not
represent errors for the segmentation task; and (b) by in-
corporating the segmentation responses to the grammar
mentioned in the framework of Figure 1, part of them
will be corrected since the grammar rules will prevent
certain misclassifications from being accepted8. Due to
this and the low computational cost involved in obtain-
ing the solution, the proposed approach is feasible to be
embedded in gadgets such as companion robots or smart
toys. The weakness of our approach concerns the re-
sults in speechmaker-independent contexts. While it is
possible to create custom solutions, this would not be
the best option for large-scale applications. Ensembles
of classifiers or mixtures of experts can be applied to
overcome this difficulty without imposing high compu-
tational costs on the solution.
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