
Similarity-based and Iterative Label Noise Filters for Monotonic
Classification

José-Ramón Cano
Dept. of Computer Science,

EPS of Linares, University of Jaén,
Linares 23700, Jaén, Spain

jrcano@ujaen.es

Julián Luengo
Dept. of Computer Science and AI.

University of Granada,
18071 Granada, Spain
julianlm@decsai.ugr.es

Salvador Garcı́a
Dept. of Computer Science and AI.

University of Granada,
18071 Granada, Spain
salvagl@decsai.ugr.es

Abstract

Monotonic ordinal classification has received an
increasing interest in the latest years. Building
monotone models from these problems usually requires
datasets that verify monotonic relationships among the
samples. When the monotonic relationships are not
met, changing the labels may be a viable option, but
the risk is high: wrong label changes would completely
change the information contained in the data. In this
work, we tackle the construction of monotone datasets
by removing the wrong or noisy examples that violate
monotonicity restrictions. We propose two monotonic
noise filtering algorithms to preprocess the ordinal
datasets and improve the monotonic relations between
instances. The experiments are carried out over eleven
ordinal datasets, showing that the application of the
proposed filters improve the prediction capabilities over
different levels of noise.

1. Introduction

The classification with monotonicity constraints,
also known as monotonic classification [1] or isotonic
classification [2], is an ordinal classification problem [3]
where a monotonic restriction is present. In monotonic
classification, a higher value of an input feature, without
varying other values, should not decrease its class
assignment. The monotonicity of relations between
the dependent and explanatory variables is very usual
as a prior knowledge form in data classification [4].
Several monotonic classification approaches have been
proposed in the specialized literature. They include
classification trees and rule induction [5, 6, 7, 8, 9,
10], neural networks [11, 12], instance-based learning
[1, 13, 14] and hybrid [15, 16]. Some of them
expect the training set to be purely monotone to work
correctly. Other classifiers are more permissive with
non-monotonic data sets, but they may or may not
guarantee the monotonic predictions.

Monotonic classification has been already tackled

by means of soft-computing based approaches [17, 18,
19]. As such, these approaches are not unrelated
with the problems that arise in the classification
paradigm. Among them, noise is specially problematic
since it obscures the relationship between the features
of an instance and its class [20, 21]. Among
other consequences, noise can adversely impact the
classification performances of induced classifiers. Some
authors have already created noise-robust classifiers
under the soft-computing paradigm [22, 23], but
adapting all classifier types is unfeasible. By
extrapolating to monotonic classification, noise also
alters the monotonicity constraints present in the data.

In order to test the performance of monotonic
classifiers, the usual trend is to generate data sets that
fulfill the monotonicity constraint. The main argument
is that models trained on monotonic data sets often have
better predictive performance than models trained on the
original data [24]. Monotonic data sets can be created
by generating artificial data [25] or by relabeling of real
data [14, 26, 27].

This paper proposes a different generic approach
to deal with the construction of monotonic models by
any classifier. In previous works, facing examples
that violate the monotonic constraints was tackled
by repairing such violations, generating a conformal
dataset. This process of “switching” instances [28] has
been deeper explored in highly imbalanced datasets,
where the overlapping makes the relabeling process
even more challenging [29]. Although appealing, the
switching may induce a bias in the data when not
correctly performed. As alternative, we will consider the
examples that do not fulfill the monotonic constraints as
noisy examples. This is a novel approach in which we
propose the application of noise filtering algorithms in a
preprocessing stage for monotonic ordinal classification.
The use of preprocessing to generate quality data is
a common procedure, even involving soft-computing
based approaches to this task [30].

In this work, two classical noise filtering algorithms
have been readjusted to this domain. The algorithms

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 1698
URI: https://hdl.handle.net/10125/63949
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326835337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

considered are the Edited Nearest Neighbor (ENN
[31]) and the Iterative Partition Filtering (IPF [32]).
The monotonic version of them are noted as MENN
and MIPF, respectively. Both filters are reworked to
detect non-monotonic examples by signaling them as
noisy examples to be detected and removed. The
remaining samples are used as input in well-known
monotonic classifiers. Our objective is to analyze their
performances in comparison with leaving the conflictive
instances, showing the safety and suitability of these
proposed methods. In order to do so, several datasets
are used and different level of noise is introduced in
the data. These controlled amount of induced noise will
help us to better evaluate the evolution in the classifiers’
performance when applying our methods.

The rest of this manuscript is organized as follows.
In Section 2 we present the monotonic classification
problem and briefly describe the monotonic classifiers
used in the study. Section 3 is devoted to describe
the label noise problem and the filtering algorithms
proposed. Section 4 describes the experimental
framework. Section 5 studies the use of monotonic
filters to remove non-monotonic instances. Finally,
Section 6 concludes the paper.

2. Monotonic classification

The property of monotonicity commonly appears
in domains of our lives such as natural sciences,
natural language, game theory or economics [4, 33].
For instance, the case of bankruptcy prediction in
companies, where appropriate actions can be taken in
time considering the information based on financial
indicators taken from their annual reports. The
monotonicity is clearly present in the comparison of
two companies where one dominates the other on all
financial indicators, which supposes that the overall
evaluation of the second cannot be higher than the
evaluation of the first. This rule could be applied to the
credit rating strategy used by banks [34] as well as for
the bankruptcy prediction strategy.

The monotonic ordinal data can be defined as
following. Let D be a data set with f ordinal attributes
A1, ..., Af and one output class attribute Y having c
possible ordinal values. The data set consists of n
examples xi. A partial ordering � on D is defined as

x � x′ ⇔ Aj(x) ≤ Aj(x
′),∀j = 1, ..., f (1)

Two examples x and x’ in space D are comparable
if either x � x′ or x′ � x, otherwise x and x’ are
incomparable. Two examples x and x’ are identical if
x = x’ and non-identical if x 6= x′;

Considering this notation, we denote a pair of
comparable examples (x,x’) monotone if

x � x′ ∧ x 6= x′ ∧ Y (x) ≤ Y (x′) (2)

or

x = x′ ∧ Y (x) = Y (x′) (3)

A data set D with n examples is monotone if
all possible pairs of examples are either monotone or
incomparable.

3. Label noise filtering in monotonic
classification

As in standard classification, the correct labeling of
the training set is crucial to obtain accurate models that
will correctly predict new examples. Most classification
algorithms assume that the labeling in the data is correct
and follows the underlying distribution without any
disturbances. However, in the real world this assumption
is naive. In classification, the noise may affect the data
registration of the input attributes or the labeling process
made automatically or by an expert [20]. If the noise has
affected the input attributes, it is usually named attribute
noise. On the other hand, class noise or label noise
means that the noise has corrupted the correct label of
some instances. Some studies have analyzed the impact
of these types of noise, indicating that class noise is
more harmful than attribute noise, as the bias introduced
is greater. For this reason, in this work we will focus
on label noise and the different ways to tackle its greater
impact.

In this work, we focus our attention on the
approaches to deal with class noise in the specialized
literature for classification, which are often grouped into
three families.

1. We can adapt the classifiers to take into account
noise and become robust learners, less influenced
by noise. Some classifiers were designed as
robust against noise from their very conception,
as Kernel Logistic Regression [35], a robust
SVM [36] or robust Fisher discriminant analysis
learners [37, 38] just to mention a few. We
can find adaptations of noise sensitive learners as
AdaBoost [39] to become robust learners in recent
proposals [40].

2. While robust learners can deal with noisy data
directly, not all classifiers have been modified to
be robust. The solutions designed to make a
classifier robust cannot be easily extrapolated to
other learners. Thus, a popular option is to apply

Page 1699

noise filtering methods [41, 42, 43], which work
at data level before the classifier is applied. Noise
filters aim to detect and eliminate the corrupted
instances that would hinder the model built by the
classifier, enabling any classifier model to work
with noisy datasets.

3. Noise filters are a popular option due to their
easy application and independence with the
classifier. However, the cost of eliminating
instances cannot be disregarded, especially in
highly noisy problems. In these cases, the amount
of instances eliminated would be high enough to
produce a data shift in the class borders. An
optimal preprocessing technique would recover
the noisy instances, relabeling them with their true
label. This family of techniques are known as data
correcting methods [44, 45].

Frénay and Verleysen [20] point out that filtering
noisy instances is more efficient than correcting
them [46, 47]. Thus, we will focus on filtering
approaches for noise.

We propose the application of data preprocessing
techniques to the original data, which have been
successfully applied in the past in similar domains
[48, 49, 50, 51, 52]. In particular, we consider readjusted
noise filtering algorithms to tackle the monotonic
domain [20]. These methods identify and remove some
of the examples belonging to the data set presenting a
negative effect to the fulfillment of the monotonicity
constraints, keeping unaltered the rest of the information
held in the original data set. Our selection of popular
noise filters are justified based on those that obtained
the best performances in other learning domains, such
as standard classification [53], imbalanced classification
[54] or semi-supervised classification [55].

The family of filters adapted can be considered
as “meta-algorithms” that exploit partial knowledge
extracted from base filters to decide whether to filter
an example or not. Thus, as long as there exists
an equivalent monotonic classifier for the original
base method used, the adaptation of a noise filter for
standard classification could be possible. However, this
procedure involves taking into account new aspects that
were not present in standard classification. We have
considered the violation of monotonicity constraints as
additional information that the filter can use to control
the noise removal process. Next, we describe the
proposed filters.

3.1. Monotonic Edited Nearest Neighbor

The Monotonic Edited Nearest Neighbor (MENN)
evolves from the classical Edited Nearest Neighbor
algorithm [31]. Each instance in the training set is
removed if it does not agree with the majority of
its k monotonic nearest neighbors. As decrescent
algorithm, it is not affected by the order of presentation
of instances. The use of the monotonic k-nearest
neighbors instead of the classical k-nearest neighbors
rule constitutes the adaptation of this algorithm to
the monotonic scope. The pseudo-code of MENN is
presented in Algorithm 1.

Algorithm 1 MENN algorithm.

function MENN(T - training data, k - number of
nearest neighbor)

initialize: S = T
for all x ∈ S do

X ′ = ∅
ymin = max{class(x′)|x′ ∈ T ∧ x′ ≤ x}
ymax = min{class(x′)|x′ ∈ T ∧ x ≤ x′}
for i = 1 to k do

Find x′
i ∈ T s.t. x 6= x′

i and ||x −
x′
i|| = minxj∈(T\X′) ||x− xj || and class(x′

i) ∈
[ymin, ymax]

X ′ = X ′ ∪ {x′
i}

end for
if class(x) 6= majorityClass(X ′) then

S = S \ {x}
end if

end for
return S

end function

3.2. Monotonic Iterative Partition Filtering

The Monotonic Iterative Partition Filtering (MIPF)
is a global noise filter which applies a classifier to
several subsets of the training data set to detect possible
noisy examples. It removes noisy instances in multiple
iterations until the number of identified noisy examples,
for a number of consecutive iterations, is less than a
percentage of the size of the original training data set
[32]. The classifier embedded in the classic Iterative
Partition Filtering algorithm is the C4.5 [56]. For our
purposes, we replace it with the ordinal interpretation of
C4.5 [57]. It is worth mentioning that the ordinal C4.5
does not produce monotonic models but ensures ordinal
classification. MIPF is described in Algorithm 2.

Page 1700

Algorithm 2 MIPF algorithm.

function MIPF(T - dataset with Monotonic
Violations, Γ - number of subsets, y - amount of
good data to be eliminated in each step, p - minimum
percentage of noisy instances to continue)

initialize: TG = {}, F = Ordinal C4.5
repeat

Split the training data set T into Ti, i = 1 . . .Γ
equal sized subsets

for each subset Ti do
Use {Tj , j 6= i} to train F resulting in F i

different classifiers
end for
DN = {}, DG = {}
for each instance t in T do

Classify t with every F i

if t is voted as noisy then
DN = DN ∪ t

end if
end for
DG = {tl ∈ T |tl /∈ DN ; l = 1, ..., y}
TG = TG ∪DG

T = T − {DN ∪DG}
until |DN | < p · |T |
return T ∪ TG

end function

4. Experimental framework

In this section, we present the experimental
framework developed to analyze the proposal
of application of three well-known noise filtering
algorithms readjusted to work in this domain.

The study includes eleven data sets whose class
attribute can be expressed as ordinal and presents
monotonic relationship with the features. Four data
sets are actual classical ordinal classification data sets
commonly used in this field (Era, Esl, Lev and Swd [1]).
The other 7 are regression data sets whose class attribute
was discretized into 4 categorical values, maintaining
the class distribution balanced. All of the eleven data
sets are classical problems used in the classification
scope and extracted from the UCI [58] and KEEL1

repositories [59, 60].
In order to evaluate the performance of the different

approaches with different amounts of monotonic
violations, we have generated three corrupted versions
of each dataset. These altered versions are created by
changing a noise% of instances by relabeling them
with a new class label. The new label can only be the
precedent or the following one, thus generating realistic

1http://www.keel.es/datasets.php

Table 1: Description of the 11 data sets used in the study.

Data set Ins. At. Cl.
Balance 625 4 3
BostonHousing 506 12 4
Car 1728 6 4
Era 1000 4 9
Esl 488 4 9
Lev 1000 4 5
CPU 209 6 4
QualitativeBankruptcy 250 6 2
Swd 1000 10 4
WindsorHousing 545 11 2
Wisconsin 683 9 2

disorders in terms of monotonic violations. Such a noise
introduction scheme follows the NAR mechanism as
described in [20], in which the true label has influence
in the observed (and possibly corrupted) label. We
have applied noise% = 10%, 20% and 30% levels
only in the training partitions to simulate from low
to highly noisy scenarios. Since the true labels are
known, we can later examine the performance of the
preprocessing approaches in term of well and wrongly
filtered instances.

All the algorithms are run using run a 10-fold
cross validation scheme (10-fcv). For all the training
partitions, three different noisy versions are generated
(with different seeds) for each noise level. Therefore,
we obtain 30 executions per dataset and noise level.

Table 1 shows the names of the data sets, their
number of instances, attributes, and classes. In this
paper, instances having missing values have been
ignored.

In order to compare the four monotonic filters,
we will use four metrics commonly employed in the
monotonic classification field. They are listed as
follows:

• Accuracy (ACC) is computed as the percentage
of correctly classified instances. Is a traditional
measure in the classification topic that we include
as a reference metric.

• Non-Monotonicity Index 1 (NMI1) [61], is
defined as the number of clash-pairs divided by
the total number of pairs of examples in the data
set:

NMI1 =
1

n(n− 1)

∑
x∈D

NClash(x) (4)

where x is an example from the data set D.

Page 1701

NClash(x) is the number of examples from D
that do not meet the monotonicity restrictions (or
clash) with x and n is the number of instances in
D.

• Non-Monotonicity Index 2 (NMI2) [27], is
defined as the number of non-monotone examples
divided by the total number of examples:

NMI2 =
1

n

∑
x∈D

Clash(x) (5)

where Clash(x) = 1 if x clashes with some
examples in D, and 0 otherwise. If Clash(x) =
1, x is called a non-monotone example.

• Non-Comparable. This is a metric related to
the number of pairs of non comparable instances
in the data set. Two instances x and x′ are
non-comparable if they do no satisfy x � x′∧x 6=
x′. This measure is also considered due to the fact
that for some monotonic classifiers, it is harder to
construct accurate models agreeing the number of
non-comparable pairs raises.

• Size of the subset selected using the noise filtering
algorithms. We include it to analyze the noise
removing capabilities of each method.

Table 2 shows the parameter configuration for all the
methods used. Since we want to focus on the effect
of the filtering step, the classifiers’ parameters have
been fixed to those recommended by their respective
authors in the original publications. We have also
found that such parameter values have been used in
several monotonic classification publications in the
state-of-the-art.

We have experimentally adjusted the values for
the parameters of the proposed filters, starting with
the typical values used in standard classification found
in other publications about noise filtering. From
that starting point, we have applied a grid search,
ranging from k = 1 to k = 10 for MENN and
numberPartitions= 2 to numberPartitions= 10 for
MIPF. The criteria for such an optimization has been the
average accuracy obtained by all the classifiers across all
datasets. The base classifier’s parameters are similar to
those used in the classification step.

5. Experimental results

This section is devoted to analyze the results
obtained, providing a summary of results including
graphics and statistical outcome. We present the results
considering two perspectives:

Table 2: Parameters considered for the algorithms
compared.

Algorithm Parameters
MENN k = 3
MIPF numberPartitions = 5, consensus filter

confidence = 0.25, 1 items per leaf
MkNN k = 3, distance = euclidean
OLM modeResolution = conservative

modeClassification = conservative
OSDL classificationType = media, balanced = No

weighted = No, tuneInterpolationParameter = No,
lowerBound = 0, upperBound = 1

interpolationParameter = 0.5, interpolationStepSize = 10
MID confidence = 0.25, 2 items per leaf, R = 1

1. We compare the behavior of the algorithms using
Accuracy. In addition to the noise removal
algorithms, we include the results obtained using
the original data sets as input and data sets after
relabeling the training partitions (keeping the tests
partitions as they are). This analysis is carried out
in Section 5.1.

2. We study the algorithms using different metrics
to study how the filtering and relabeling
process affects the monotonic properties of the
datasets: NMI1, NMI2, Non-Comparable and
Size. Section 5.2 is devoted to study such
measures.

5.1. Performance measures

In this section, we provide the accuracy and MAE
results for all the classifiers and preprocessing strategies
described above. These measures are computed over
the test partitions after applying MENN and MIPF. We
also include the absence of preprocessing, named as
No preprocessing, to show the consequences of leaving
an increasing amount of monotonic violations in the
training set.

Table 3 shows the averaged accuracy values for all
the datasets. The algorithm with the best value is
stressed in bold. As we can appreciate, MIPF is the best
performing technique on average, except for OSDL at
30% noise.

On the right side of Table 3 the rankings of
Friedman’s test are shown. Friedman’s test reject the
null-hypothesis in all cases. MIPF is again the best
ranked algorithm, except for OSDL when we consider
the original datasets. When Holm’s post-hoc indicates
a p-value < 0.05 the cell of the compared algorithm
is grayed, whereas a p-value < 0.1 is indicated by
underling the rank of the compared algorithm. The large
amounts of shaded cells supports the choice of MIPF as
the best performing algorithm, while no preprocessing

Page 1702

Table 3: Average accuracy results for the filters and relabel with all the classifiers and each noise level. Best values
are stressed in bold. Friedman rankings and Holm’s post-hoc test p− values are also provided.

Accuracy averages Friedman’s rankings

Preprocessing 0% (Original) 10% 20% 30% 0% (Original) 10% 20% 30%

MKNN
No preprocessing 0.69 0.65 0.60 0.55 2.14 2.36 2.55 2.45
MENN 0.61 0.58 0.54 0.51 2.45 2.55 2.36 2.45
MIPF 0.71 0.70 0.69 0.65 1.41 1.41 1.01 1.09

MID
No preprocessing 0.72 0.69 0.65 0.61 1.86 2.05 2.09 1.91
MENN 0.60 0.58 0.55 0.51 2.73 2.73 2.55 2.82
MIPF 0.73 0.71 0.69 0.65 1.41 1.23 1.36 1.27

OLM
No preprocessing 0.56 0.50 0.49 0.47 2.5 2.73 2.36 2.36
MENN 0.54 0.50 0.47 0.46 1.91 2.14 2.45 2.45
MIPF 0.60 0.59 0.57 0.55 1.59 1.68 1.18 1.18

OSDL
No preprocessing 0.59 0.46 0.44 0.40 1.82 2.32 2.27 2.36
MENN 0.58 0.52 0.49 0.47 2.18 2.41 2.27 2.36
MIPF 0.59 0.58 0.56 0.54 2.00 1.27 1.45 1.27

is the only alternative that it is not statistically different
for 0% or MID in some cases.

In summary, the application of a noise filtering
stage based on MIPF is beneficial for all the classifiers
considered. In particular, the combination of MID
and MIPF seems to be the most robust combination,
showing the best accuracy values across all noise levels.
While some classifiers, as OSDL, are less affected by
a previous preprocessing stage based on noise filtering,
sensitive classifiers as MKNN take more advantage from
noise filtering comparing No preprocessing against any
other filtering technique. Nevertheless, MENN is not the
best choice in noisy monotonic classification, indicating
that instance selection algorithms may not perform well
acting as noisy filters. In the next section we will try
to get some insights on why MIPF is able to attain
better performance than the compared algorithms and
why MENN performs poorly.

5.2. Monotonicity metrics

Table 4 is dedicated to the monotonic metrics
considered. The table is structured into five columns,
first for the name of the algorithm and others for the
noise levels studied. The results, grouped by metric, are
the average metric values of the eleven data sets for the
noise filtering algorithms and No preprocessing. The
best result is stressed in bold.

All the metrics results in Table 4 are intrinsically
related, but NMI1, NMI2 and Non-Comparable are
specific for the monotonic classification problem.
Observing Size, the highest reduction rates corresponds

to MENN. Please recall that MENN was not performing
as well as it should. Thus, we may deduce that
MENN is eliminating too many instances, due to its
instance selection nature. MIPF is more balanced,
removing mostly the noisy instances and keeping more
information in the dataset to be exploited.

Average NMI1 and NMI2 indicate the grade of
monotonicity in a data set: we must take as reference
value NMI1 and NMI2 values for No preprocessing at
0% noise level. It is clear that in original data set the
values are higher, while the monotonic noise removal
techniques introduced in this paper reduce them. While
MENN obtains the best results in NMI1, NMI2 shows
MPIF as the best performing algorithm. NMI1 is
an absolute measure and MENN is the technique that
removes more instances, thus decreasing the number of
monotonic violations in absolute numbers. Since NMI2
is a relative measure, where the number of examples is
taken into account, MIPF is showing less violation per
instance. As a result, we should consider NMI2 as a
better indicator of a successful noise filter in monotonic
classification problems.

Finally, we also want to pay attention to
Non-comparable values, as they indicate the amount of
monotonic violations that remains in the dataset after
applying the different preprocessing techniques. The
case of MENN is interesting, as it aims to reduce the
number of violations as much as possible, and thus
achieving the best results for Non-comparable. Since
MIPF are the best performing algorithm in terms of
accuracy, we may conclude that extreme behaviors as

Page 1703

Table 4: Average of the monotonicity metrics with respect to monotonic noise filtering algorithms.

Preprocessing 0% (Original) 10% 20% 30%

NMI1
No preprocessing 0.021 0.024 0.026 0.028
MENN 0.005 0.007 0.008 0.009
MIPF 0.017 0.018 0.019 0.021

NMI2
No preprocessing 0.649 0.822 0.858 0.876
MENN 0.385 0.467 0.495 0.524
MIPF 0.368 0.405 0.455 0.487

Non-Comparable
No preprocessing 63265.24 67441.60 70829.14 74165.93
MENN 25806.34 10088.76 8691.59 8729.69
MIPF 38383.60 33834.46 30491.37 28302.81

Size
No preprocessing 657.41 657.41 657.41 657.41
MENN 372.39 277.89 257.80 249.65
MIPF 537.28 503.53 477.15 453.03

those shown by MENN are not desirable: while the
former does not solve most of the violations, the latter
tends to remove too many instances to eliminate the
violations and altering the information contained in the
dataset.

At this point, MENN is the preprocessing technique
that is able to obtain the lowest amounts of
non-comparable instances. However, we observed in
Section 5.1 that MENN is not the best performing
algorithm. Since MENN also creates the most reduced
datasets in terms of size, we may conclude that MENN is
removing too many instances, which would lead to less
violations of monotonic restrictions as shown by NMI1,
NMI2 and Non-comparable values. This excessive
removal will create an information loss in the dataset
that penalizes the model obtained and thus showing poor
performance in Accuracy and MAE values.

Finally, we must point out that the usage
of monotonicity metrics alone cannot describe the
ability of noise preprocessing algorithms in monotonic
classification, as they can be largely minimized
by removing too many instances as MENN does.
Maintaining a good proportion of clean instances is
crucial to enable the classifiers to obtain generalizable
models. MIPF is the best approach analyzed to this
respect.

6. Conclusions

In this paper we have proposed the use of noise
filtering algorithms as a preprocessing stage to decrease
the monotonicity violations present in the original
data. We have analyzed two noise removal algorithms,
adapted to the monotonic domain, using different

prediction rates and metrics over a number of ordinal
data sets, coming from standard classification and
regression problems.

Our results show that monotonic noise removal
algorithms are able to remove instances which
negatively affect to the monotonicity of real data,
altering the lowest possible the concepts represented
in the original data and improving the efficiency and
efficacy of the monotone classifiers. Among the
two filtering methods, MIPF can preserve and even
to improve the prediction performances offered by
classical monotonic classifiers such as MkNN, OLM,
OSDL and MID.

We have also shown that monotonicity metrics
cannot describe what constitutes a good filtering, as
they can be biased by removing too many instances.
While we have shown that filtering can greatly help to
diminish the impact of noisy instances in monotonic
classification, there is still promising options to explore:
correct reparation of instance can greatly help to
improve even further the results of this work. Since the
monotonicity metrics can deceive the noise filters, other
measures can be designed to avoid the greedy removal
of preprocessing techniques.

Acknowledgment

This work was supported by TIN2017-89517-P, by
the Spanish ”Ministerio de Economı́a y Competitividad”
and by ”Fondo Europeo de Desarrollo Regional”
(FEDER) under Project TEC2015-69496-R and the
Project BigDaP-TOOLS - Ayudas Fundación BBVA a
Equipos de Investigación Cientı́fica 2016.

Page 1704

References

[1] A. Ben-David, L. Serling, and Y. Pao, “Learning
and classification of monotonic ordinal concepts,”
Computational Intelligence, vol. 5, pp. 45–49, 1989.

[2] B. Malar and R. Nadarajan, “Evolutionary isotonic
separation for classification: theory and experiments,”
Knowledge and Information Systems, vol. 37, no. 3,
pp. 531–553, 2013.

[3] K. Antoniuk, V. Franc, and V. Hlaváč, “V-shaped interval
insensitive loss for ordinal classification,” Machine
Learning, vol. 103, no. 2, pp. 261–283, 2016.

[4] W. Kotlowski and R. Slowiński, “On nonparametric
ordinal classification with monotonicity constraints,”
IEEE Transactions on Knowledge and Data
Engineering, vol. 25, no. 11, pp. 2576–2589, 2013.

[5] A. Ben-David, “Monotonicity maintenance in
information theoretic machine learning algorithms,”
Machine Learning, vol. 19, pp. 29–43, 1995.

[6] R. Potharst and J. Bioch, “Decision trees for ordinal
classification,” Intelligent Data Analysis, vol. 4,
pp. 97–111, 2000.

[7] K. Cao-Van and B. De Baets, “Growing decision trees in
an ordinal setting,” International Journal of Intelligent
Systems, vol. 18, pp. 733–750, 2003.

[8] W. Kotłowski and R. Słowiński, “Rule learning with
monotonicity constraints,” in Proceedings of the 26th
Annual International Conference on Machine Learning,
pp. 537–544, ACM, 2009.

[9] C. Marsala and D. Petturiti, “Rank discrimination
measures for enforcing monotonicity in decision tree
induction,” Information Sciences, vol. 291, pp. 143–171,
2015.

[10] J. Alcalá-Fdez, R. Alcalá, S. González, Y. Nojima, and
S. Garcı́a, “Evolutionary fuzzy rule-based methods for
monotonic classification,” IEEE Transactions on Fuzzy
Systems, in press. DOI: 10.1109/TFUZZ.2017.2718491,
2017.

[11] H. Daniels and M. Velikova, “Monotone and partially
monotone neural networks.,” IEEE Transactions on
Neural Networks, vol. 21, no. 6, pp. 906–917, 2010.

[12] H. Zhu, E. C. Tsang, X.-Z. Wang, and R. A. R. Ashfaq,
“Monotonic classification extreme learning machine,”
Neurocomputing, vol. 225, pp. 205–213, 2017.

[13] S. Lievens, B. De Baets, and K. Cao-Van, “A
probabilistic framework for the design of instance-based
supervised ranking algorithms in an ordinal setting,”
Annals of Operations Research, vol. 163, pp. 115–142,
2008.

[14] W. Duivesteijn and A. Feelders, “Nearest neighbour
classification with monotonicity constraints.,” in
ECML/PKDD (1), vol. 5211 of Lecture Notes in
Computer Science, pp. 301–316, Springer, 2008.

[15] J. Garcı́a, A. M. AlBar, N. R. Aljohani, J.-R.
Cano, and S. Garcı́a, “Hyperrectangles selection
for monotonic classification by using evolutionary
algorithms,” International Journal of Computational
Intelligence Systems, vol. 9, no. 1, pp. 184–201, 2016.

[16] J. Garcı́a, H. M. Fardoun, D. M. Alghazzawi, J.-R. Cano,
and S. Garcı́a, “Mongel: monotonic nested generalized
exemplar learning,” Pattern Analysis and Applications,
vol. 20, no. 2, pp. 441–452, 2017.

[17] P. Pattaraintakorn, N. Cercone, and K. Naruedomkul,
“Rule learning: Ordinal prediction based on rough
sets and soft-computing,” Applied Mathematics Letters,
vol. 19, no. 12, pp. 1300–1307, 2006.

[18] C. Moewes and R. Kruse, “Evolutionary fuzzy rules
for ordinal binary classification with monotonicity
constraints,” in Soft Computing: State of the Art Theory
and Novel Applications, pp. 105–112, Springer, 2013.

[19] J. Alcalá-Fdez, R. Alcalá, S. González, Y. Nojima, and
S. Garcı́a, “Evolutionary fuzzy rule-based methods for
monotonic classification,” IEEE Transactions on Fuzzy
Systems, vol. 25, no. 6, pp. 1376–1390, 2017.

[20] B. Frénay and M. Verleysen, “Classification in the
presence of label noise: A survey,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 25, no. 5,
pp. 845–869, 2014.

[21] J. A. Sáez, M. Galar, J. Luengo, and F. Herrera,
“Analyzing the presence of noise in multi-class
problems: alleviating its influence with the one-vs-one
decomposition,” Knowledge and information systems,
vol. 38, no. 1, pp. 179–206, 2014.

[22] R. Jensen and C. Cornelis, “Fuzzy-rough nearest
neighbour classification and prediction,” Theoretical
Computer Science, vol. 412, no. 42, pp. 5871–5884,
2011.

[23] W. An and M. Liang, “Fuzzy support vector machine
based on within-class scatter for classification problems
with outliers or noises,” Neurocomputing, vol. 110,
pp. 101–110, 2013.

[24] A. Feelders, “Monotone relabeling in ordinal
classification.,” in IEEE International Conference
on Data Mining (ICDM), pp. 803–808, 2010.

[25] R. Potharst, A. Ben-David, and M. C. van Wezel, “Two
algorithms for generating structured and unstructured
monotone ordinal data sets,” Engineering Applications
of Artificial Intelligence, vol. 22, no. 4-5, pp. 491–496,
2009.

[26] M. Rademaker, B. De Baets, and H. De Meyer, “Optimal
monotone relabelling of partially non-monotone ordinal
data,” Optimization Methods and Software, vol. 27, no. 1,
pp. 17–31, 2012.

[27] I. Milstein, A. Ben-David, and R. Potharst, “Generating
noisy monotone ordinal datasets,” Artificial Intelligence
Research, vol. 3, no. 1, pp. 30–37, 2014.

[28] G. Martı́nez-Muñoz and A. Suárez, “Switching class
labels to generate classification ensembles,” Pattern
Recognition, vol. 38, no. 10, pp. 1483–1494, 2005.

[29] S. Gónzalez, S. Garcı́a, M. Lázaro, A. R.
Figueiras-Vidal, and F. Herrera, “Class switching
according to nearest enemy distance for learning from
highly imbalanced data-sets,” Pattern Recognition,
vol. 70, pp. 12–24, 2017.

[30] N. Verbiest, E. Ramentol, C. Cornelis, and F. Herrera,
“Preprocessing noisy imbalanced datasets using smote
enhanced with fuzzy rough prototype selection,” Applied
Soft Computing, vol. 22, pp. 511 – 517, 2014.

[31] D. Wilson, “Asymptotic properties of nearest neighbor
rules using edited data,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 2, no. 3, pp. 408–421, 1972.

[32] T. Khoshgoftaar and P. Rebours, “Improving software
quality prediction by noise filtering techniques,”
Journal of Computer Science and Technology, vol. 22,
pp. 387–396, 2007.

Page 1705

[33] T. Tran, D. Phung, W. Luo, and S. Venkatesh, “Stabilized
sparse ordinal regression for medical risk stratification,”
Knowledge and Information Systems, vol. 43, no. 3,
pp. 555–582, 2015.

[34] C.-C. Chen and S.-T. Li, “Credit rating with a
monotonicity-constrained support vector machine
model,” Expert Systems with Applications, vol. 41,
no. 16, pp. 7235–7247, 2014.

[35] J. Bootkrajang and A. Kabán, “Learning kernel logistic
regression in the presence of class label noise,” Pattern
Recognition, vol. 47, no. 11, pp. 3641–3655, 2014.

[36] A. Ghosh, N. Manwani, and P. Sastry, “Making risk
minimization tolerant to label noise,” Neurocomputing,
vol. 160, pp. 93–107, 2015.

[37] N. D. Lawrence and B. Schölkopf, “Estimating a kernel
fisher discriminant in the presence of label noise,” in
ICML, vol. 1, pp. 306–313, 2001.

[38] C. Bouveyron and S. Girard, “Robust supervised
classification with mixture models: Learning from data
with uncertain labels,” Pattern Recognition, vol. 42,
no. 11, pp. 2649–2658, 2009.

[39] T. G. Dietterich, “An experimental comparison of
three methods for constructing ensembles of decision
trees: Bagging, boosting, and randomization,” Machine
Learning, vol. 40, no. 2, pp. 139–157, 2000.

[40] Q. Miao, Y. Cao, G. Xia, M. Gong, J. Liu, and J. Song,
“Rboost: label noise-robust boosting algorithm based on
a nonconvex loss function and the numerically stable
base learners,” IEEE transactions on neural networks
and learning systems, vol. 27, no. 11, pp. 2216–2228,
2016.

[41] C. E. Brodley and M. A. Friedl, “Identifying Mislabeled
Training Data,” Journal of Artificial Intelligence
Research, vol. 11, pp. 131–167, 1999.

[42] T. M. Khoshgoftaar and P. Rebours, “Improving
software quality prediction by noise filtering techniques,”
Journal of Computer Science and Technology, vol. 22,
pp. 387–396, 2007.

[43] S. Verbaeten and A. V. Assche, “Ensemble methods for
noise elimination in classification problems,” in Fourth
International Workshop on Multiple Classifier Systems,
pp. 317–325, Springer, 2003.

[44] C.-M. Teng, “Correcting Noisy Data,” in Proceedings
of the Sixteenth International Conference on Machine
Learning, (San Francisco, CA, USA), pp. 239–248,
Morgan Kaufmann Publishers, 1999.

[45] B. Nicholson, V. S. Sheng, and J. Zhang, “Label noise
correction and application in crowdsourcing,” Expert
Systems with Applications, vol. 66, pp. 149–162, 2016.

[46] S. Cuendet, D. Z. Hakkani-TÃŒr, and E. Shriberg,
“Automatic labeling inconsistencies detection
and correction for sentence unit segmentation in
conversational speech.,” in MLMI (A. Popescu-Belis,
S. Renals, and H. Bourlard, eds.), vol. 4892 of Lecture
Notes in Computer Science, pp. 144–155, Springer,
2007.

[47] A. L. B. Miranda, L. P. F. Garcia, A. C. P. L. F. Carvalho,
and A. C. Lorena, “Use of classification algorithms in
noise detection and elimination,” in HAIS (E. Corchado,

X. Wu, E. Oja, Ã. Herrero, and B. Baruque, eds.),
vol. 5572 of Lecture Notes in Computer Science,
pp. 417–424, Springer, 2009.

[48] S. Garcı́a, J. Luengo, and F. Herrera, “Tutorial on
practical tips of the most influential data preprocessing
algorithms in data mining,” Knowledge-Based Systems,
vol. 98, pp. 1–29, 2016.

[49] S. Garcı́a, J. Derrac, J.-R. Cano, and F. Herrera,
“Prototype selection for nearest neighbor classification:
Taxonomy and empirical study,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 34, no. 2,
pp. 417–435, 2012.

[50] J.-R. Cano, S. Garcı́a, and F. Herrera, “Subgroup
discover in large size data sets preprocessed using
stratified instance selection for increasing the presence
of minority classes,” Pattern Recognition Letters, vol. 29,
pp. 2156–2164, 2008.

[51] J.-R. Cano, F. Herrera, M. Lozano, and S. Garcı́a,
“Making CN2-SD subgroup discovery algorithm
scalable to large size data sets using instance selection,”
Expert Systems with Applications, vol. 35, no. 4,
pp. 1949–1965, 2008.

[52] D. Han, Y. Hu, and G. Wang, “Uncertain graph
classification based on extreme learning machine,”
Cognitive Computation, vol. 7, no. 3, pp. 346–358, 2015.

[53] J. A. Sáez, M. Galar, J. Luengo, and F. Herrera, “INFFC:
an iterative class noise filter based on the fusion of
classifiers with noise sensitivity control,” Information
Fusion, vol. 27, pp. 19–32, 2016.

[54] J. A. Sáez, J. Luengo, J. Stefanowski, and F. Herrera,
“SMOTE-IPF: Addressing the noisy and borderline
examples problem in imbalanced classification by
a re-sampling method with filtering.,” Information
Sciences, pp. 184–203, 2015.

[55] I. Triguero, J. A. Sáez, J. Luengo, S. Garcı́a, and
F. Herrera, “On the characterization of noise filters
for self-training semi-supervised in nearest neighbor
classification,” Neurocomputing, vol. 132, pp. 30–41,
2014.

[56] J. Quinlan, C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, 1993.

[57] E. Frank and M. Hall, “A simple approach to ordinal
classification,” Lecture Notes in Computer Science,
vol. 2167, pp. 145–156, 2001.

[58] K. Bache and M. Lichman, “UCI machine learning
repository,” 2013.

[59] J. Alcalá, A. Fernández, J. Luengo, J. Derrac, S. Garcı́a,
L. Sánchez, and F. Herrera, “Keel data-mining software
tool: Data set repository, integration of algorithms
and experimental analysis framework,” Journal of
Multiple-Valued Logic and Soft Computing, vol. 17,
no. 255-287, p. 11, 2010.

[60] I. Triguero, S. González, J. M. Moyano, S. Garcı́a,
J. Alcalá-Fdez, J. Luengo, A. Fernández, M. J. del
Jesus, L. Sánchez, and F. Herrera., “KEEL 3.0: an open
source software for multi-stage analysis in data mining,”
International Journal of Computational Intelligence
Systems, vol. 10, pp. 1238–1249, 2017.

[61] H. Daniels and M. Velikova, “Derivation of monotone
decision models from noisy data,” IEEE Transactions
on Systems, Man and Cybernetics - Part C, vol. 36,
pp. 705–710, 2006.

Page 1706

	Introduction
	Monotonic classification
	Label noise filtering in monotonic classification
	Monotonic Edited Nearest Neighbor
	Monotonic Iterative Partition Filtering

	Experimental framework
	Experimental results
	Performance measures
	Monotonicity metrics

	Conclusions

