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Abstract

The growth in attended home deliveries motivates
research in prescriptive analytics for e-fulfillment.
Introducing new analytics solutions, for instance,
for vehicle routing or revenue management, requires
simulation-based benchmarking and analyses on
relevant problem scenarios. Unfortunately, creating
the required systems induces high overhead for
analytics researchers. This paper introduces the
simulation-based benchmarking framework SiLFul,
which aims to support scientific rigor and practical
relevance of research by reducing this overhead.
It provides a toolbox of approaches, a modular
and extendable architecture, and a comprehensive,
application-related data model. Thereby, it facilitates
controllable analyses and transparent and replicable
research. Moreover, we propose a research process that
leverages the framework for evaluating analytics and
allows continuous development of the framework as a
community effort.

1. Introduction

Attended home deliveries are both a driver and
a symptom of the ongoing world-wide growth in e-
commerce sales. For instance, when ordering groceries
or fresh flowers online, customers have to attend the
delivery. High customer expectations regarding narrow
delivery time windows and punctual deliveries evoke
high fulfillment cost for retailers [1]. This calls for
dedicated planning through service analytics.

Prescriptive analytics aims to improve performance
in terms of profit or service quality indicators by
modelling complex planning problems and introducing
optimal or heuristic solution approaches (see [2]).
Fulfilling online orders (e-fulfillment) requires
tactical and operational vehicle routing and revenue
management in the face of multiple performance
indicators as well as stochastic demand and logistic
settings. The complex problem settings impose
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high standards on analytics, and recent research
has responded by proposing diverse processes and
algorithms (compare [3] for a typology).

In this contribution, we introduce the Simulation
Laboratory for e-Fulfillment (SiLFul), which allows
researchers and business professionals to benchmark
related approaches and analyze their behavior in
alternative problem settings. Researchers need
quantitative measures to evaluate new approaches.
Businesses need to understand the impact on their
performance in order to weigh effort with profit.

Field studies are not ideal for such analyses:
Dynamic market environments make it difficult to
isolate effects and real-world failures can induce high
financial costs. Therefore, e-fulfillment research
commonly relies on simulation studies (see, for
instance, [4, 5]). Simulation modelling entails
simplifying a problem description and deliberately
deciding what aspects to keep and which to neglect
[6]. This approach enables experiments with fully
controllable parameters. As processes like online
ordering of products allow automated logging of
data, calibrating simulation models towards empirical
validation is possible.

Designing rigorous simulation studies is challenging
[7]. Implementing and testing simulation systems,
validation, parameter setting, and ensuring replicability
cause efforts beyond the primary objective of
benchmarking and analyzing analytics solutions.
These tasks require skills in conceptual modelling,
systems engineering, and data management. Moreover,
integrated and application-oriented research fields,
such as e-fulfillment, call for embedding individual
algorithms in the larger problem context for
benchmarking. As a consequence, simulation studies
become time-consuming or ineffective. SiLFul goes
beyond implementing specific simulation models for
specific solutions and experiments. Instead, it models
problem context and alternative solution approaches
and constitutes an extendable platform for researchers
and practitioners.
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By offering SiLFul as an open source platform, we
complement the research knowledge base with a new
benchmarking tool. SiLFul strives for scientific rigor
and practical relevance of e-fulfillment analytics (as
called upon in [8]). As required in design science
research [9], this paper serves to communicate SiLFul
and its benefits to relevant research and business
communities. Moreover, a useful, up-to-date framework
requires continuous development, preferably in a
community effort. Therefore, we propose a prescriptive
analytics research process, facilitating communication
and collaboration between researchers and practitioners
and resulting in both better analytics solutions and
an improved benchmarking system. In the following,
we first introduce challenges of e-fulfillment research
before sketching the research process that motivated
SiLFul’s design. Afterwards, we provide an overview
of SiLFul’s features and architecture and shed light on
different details of the system via three case studies.

2. Challenges of e-fulfillment research

E-fulfillment in general includes three major steps:
order acceptance, order packing, and order delivery. As
the research project that motivated the design of SiLFul
focuses on integrating order acceptance and delivery,
particularly in the context of attended home deliveries,
we focus on these steps in the following.

When retailers offer attended deliveries, they accept
orders during a dedicated order period, for instance,
within seven days before the day of delivery. Usually,
they offer a set of delivery options for customers to
choose from, in terms of delivery time windows and
delivery fees. Before the order period begins, the retailer
can update demand forecasts and prepare controls on
which delivery options to offer per order request. After
the order period has ended, the retailer aims to efficiently
deliver all accepted orders.

E-fulfillment can span tactical planning such as
designing time slots [10] as well as operational planning.
For instance, as accepted orders determine the delivery
requirements, firms can shape the expected requirements
by selectively offering delivery options depending on
order request characteristics. On the one hand, firms
can dynamically set delivery fees to influence choices of
their customers and increase profit [3]. For example, [4]
maximize the number of acceptable orders given a fixed
vehicle fleet by nudging customers towards specific time
slots via fees. [5] present an integrated dynamic pricing
approach that considers both the effect of accepting an
order on delivery routing and future acceptable value.

On the other hand, firms can control the set of
time slots offered per request, as described in [11, 12].

By offering the most popular time slots only to those
customers with the most valuable orders, retailers can
increase the expected overall order value and avoid
delivering orders of lesser value.

In the following, we elaborate on the two main
reasons that motivate the introduction of a simulation
laboratory for e-fulfillment research. On the one
hand, current research considers individual challenges
of e-fulfillment, but the effort to combine solutions to
multiple requirements in an efficient, integrated fashion
is still ongoing. On the other hand, current, isolated
research practice calls for alternative, more effective
means to evaluate approaches.

2.1. Complexity of e-fulfillment research

Several characteristics of e-fulfillment research call
for complex prescriptive analytics and make simulation
studies especially cumbersome. We point out exemplary
advances in research but refer to reviews as in [12] for a
comprehensive overview of the current state-of-the art.

Multifaceted, interdependent planning problems.
E-fulfillment analytics tackles multiple, interfacing
problems, which can concern tactical and operational
planning levels, methods in different disciplines as
vehicle routing or revenue management, and overall
process sequences or individual process steps. For
instance, an e-fulfillment process can be implemented
either by iteratively processing multiple planning steps
or by solving them in an integrated manner. An
approach could first estimate the delivery capacity per
time slot and delivery area via vehicle routing and
subsequently control the assignment of capacity to
orders [11]. Alternatively, it could predict the effect of
promising a particular time slot to the next request on the
set of future acceptable orders and on delivery schedules
simultaneously, as proposed by [5]. Comparing iterative
and integrated solution approaches requires modeling
alternative processes.

Alternatively, research may focus on a particular
step of the process, for instance, improving the vehicle
routing algorithm used to estimate capacity before order
acceptance. Nevertheless, evaluating effects of changes
in individual steps requires embedding these steps in
the overall planning process. A modular framework
that allows a straightforward exchange of the routing
component could be helpful for a vehicle routing expert
without knowledge in demand management.

Online versus Offline Decision Making. By
deciding which delivery options to offer per arriving
order request, planners reserve judgement until the
last minute.  Thus, e-fulfillment planning entails
potential for online decision-making. However, online
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decisions require quick solutions, as customers expect
instantaneous offers. Planners can prepare decisions
offline before the start of the order period, predicting
demand and delivery requirements (for instance, [5,
13]). This preparation speeds up decisions but reduces
flexibility. When integrating online decisions in the
overall process, a simulation-based analysis should
evaluate the acceptability of online calculation times and
the advantage gained through online decision making.

Optimization under Uncertainty.  Examples of
uncertainty in e-fulfillment include arrival times of
customer requests, customer choice of time windows,
and travel times. Optimization models that rely on
strongly simplifying assumptions require a simulation
system with stochastic modelling and analyses on
multiple samples as well as worst-case analyses.
Moreover, publishing not only model parameters but
also simulated demand in a common data model can
support the replicability of results.

Various Problem Scenarios. E-fulfillment settings
can vary significantly, for instance, in problem size, time
slot design, or the distribution of customer locations
from multiple demand segments. Thus, a thorough
benchmarking over alternative settings is required
because generalizations are difficult. A simulation
system needs to enable multiple settings as well as
document them and the results transparently.

Multiple Performance Indicators. Attended
deliveries involve diverse stakeholders and time
horizons, justifying multiple performance indicators.
For instance, the firm may aim to minimize the cost
of deliveries on the short-term, but cannot neglect
customer satisfaction as affected by the availability of
preferred delivery options to ensure a good customer
relationship on the long-term. Therefore, benchmarking
may feature alternative criteria, both individually and
in context of multi-objective optimization. The criteria
can contribute valuable domain knowledge themselves.

In sum, these characteristics induce high complexity
for evaluating new research contributions.

2.2. Current research practice

In current publications such as [5, 11, 12], e-
fulfillment researchers, as well as analytics researchers
in the majority of application domains, predominantly
conduct computational studies on systems implemented
for a specific set of experiments.  Contributions
describe their novel approaches and aggregated results
of computational studies. When researchers evaluate a
new approach, they mostly implement benchmarks from
scratch. Alternatively, they might get access to program
code and simulation data from other authors, requiring

adjustments to fit in their own study. In particular,
the exchange is hindered by heterogenous programming
languages and a lack of consistent data models.

While sets of problem scenarios exist, such as
the Solomon instances for routing [14], these are not
domain specific and lack empirical validation. Similarly,
existing benchmarking frameworks, for instance, to test
the theoretical performance of meta-heuristics [15], do
not directly translate to the e-fulfillment setting or are
not sufficiently extendable.

E-fulfillment researchers depend on industry
partners to provide empirical demand scenarios for
validation, as for example in [5, 13]. However, limiting
the re-use of such settings to their description in the
paper and to individual interactions between authors
is inefficient and error-prone. Furthermore, we cannot
verify industry firms implementing methods from
research, but instead observe independent research and
development efforts. Papers are often too short to add
comprehensive analysis on alternative settings. This
precludes implications for other problem scenarios
and reduces relevance for businesses, creating a gap
between research and practice.

Future research could benefit from a reusable
framework to avoid the currently isolated research
practice and enhance practical relevance. The overhead
to create such a system and to motivate relevant
communities to use and continuously develop it sets a
high barrier to introduce a framework for e-fulfillment.
Nevertheless, we argue that the advantages are high
enough to pay off our effort to instantiate it.

3. Pursuing a collaborative research
methodology

We aim for an e-fulfillment research process
that is supported by an extendable simulation-based
benchmarking framework. The process outcome
is twofold. First, we want to enable rigorous
research towards new prescriptive analytics solutions
and increase its practical relevance. Second, we want
to establish a collaborative, continued development of
the benchmarking framework to enhance and motivate
future research. Here, we shortly review a nominal
research process and the role SiLFul could play in it.
Afterwards, we consider relevant factors that detail the
expectations of such a framework and that, therefore,
guided SiLFul’s design process.

3.1. Prescriptive analytics research process

From a design science perspective, a prescriptive
analytics contribution is an artifact that traverses several
steps in a research process ([16], refer to Figure 1).
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Figure 1. Prescriptive analytics research process for e-fulfillment (adapted from [16])

The first step is to identify and motivate a research
problem. Afterwards, formulating the objectives is a
requirement before implementing the solution approach
in an artifact. For instance, an optimization approach
in e-fulfillment could strive for high profitability but
low runtimes. Design and development usually entail
the detailed definition of a prescriptive model or
solution approach. Demonstrating the effectiveness of
an analytics solution requires an implementation that
is applied to exemplary problem scenarios, usually
in a simulation experiment. In an evaluation phase,
the outcomes have to be compared to the research
objectives in an extensive computational study. Finally,
only the communication of the new artifact to relevant
communities ensures to actually provide an impact [9].
Moreover, multiple process iterations as well as research
entry points are possible.

Within such a process, SiLFul aims to provide
an open-source environment for benchmarking and
analyzing prescriptive analytics solutions. To that end,
it constitutes an infrastructure for conducting simulation
experiments in the demonstration and evaluation phases.

Publishing a version of SiLFul that is extended
by a newly proposed approach (Extended SiLFul, cp.
Figure 1) as part of the communication phase can
ensure a constant collaborative improvement of the
framework. Thus, the framework advances as benefit of
prescriptive analytics research to in turn better support
future research. Extended SiLFul can comprise new
algorithms and standardized data dumps containing
experimental settings for modeling problem scenarios or
simulation output data for complete replicability.

Moreover, an easily accessible framework can lower
the barrier for the relevant business community to adopt
state-of-the-art approaches. Practitioners can use the
system or extract relevant components to test them
on their specific problem settings or benchmark own
approaches. This can both validate research and raise

new, practical relevant research questions.
3.2. Ensuring added value for researchers

To exploit the full potential of this process, the
acceptance of the framework by the members of the
relevant communities is crucial. SiLFul has to provide
added value for researchers to justify the effort of
learning to use and extend the system as well as the
reduction in flexibility induced by a reusable framework.
Here we assume that SiLFul’s primary target users are
analytics experts, who have expertise in programming
and optimization.

The main idea of the framework is to provide
researchers a head-start when conducting a simulation
study, allowing to focus on designing analytics solutions
rather than the required simulation environment. In
particular, SiLFul reduces the overhead of data
management and effective design of experiments. To
that end, the framework should enable controllable,
transparent, and replicable experiments.

Experiments should allow to quantify the effects of
applying alternative approaches to a constant problem
model, to multiple parameterizations of the same model,
or to different models in order to support the different
categories of value construction as listed by [17]. For
instance, a framework should serve as an analyzer,
predicting the outcome from applying an approach to a
specific problem. For example, SiLFul should enable to
predict the profit outcome from a heuristic that controls
the set of offered time windows per order request for
a specific demand constellation. Moreover, it should
allow to analyze the drivers of that outcome.

Furthermore, a benchmarking framework should
serve as tester, as researchers formulate and test
hypotheses about the comparative performance of
solutions. For example, researchers should be able
to compare the effect of accepting order requests for
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attended home deliveries on a first-come-first-serve
basis or via sophisticated order acceptance controls.

To improve efficiency in benchmarking, a
framework should provide an up-to-date pool of
benchmarks, allowing to embed individual algorithms
within the larger context of an e-fulfillment approach
to predict the effect on relevant performance indicators.
As a basic requirement, it should be easily extendable
by new algorithms.

When SiLFul provides adequate data management,
researchers can benefit from other researcher’s
publication of problem settings in a common data
format, both to replicate research and to analyze
the performance of a new approach. In this, users
can especially benefit from an application-tailored
simulation system with relevant entities.

Researchers can also profit from business
communities having a simpler access to their
approaches. Thereby, they achieve empirical validation
of solutions and raise new, practically relevant research
questions. Retailers should be motivated to conduct
simulation studies with new solution approaches for
their specific problem setting or to predict the impact of
changes in business processes on the outcome of their
applied solutions. Until now, they have to implement
approaches according to short descriptions in papers
or have to contact respective researchers, preventing to
or inducing a high barrier to try the approaches. With
a framework like SiLFul, they can immediately make
use of the existing code base and initiate discussions
with involved researchers about limitations or potential
enhancements discovered in practice. When asking
the right questions based on state-of-the-art research
solutions, they can even nudge research to practically
relevant research gaps.

3.3. Ensuring quality of development

SiLFul should be up-to-date in terms of benchmarks
and support of potential new research fields of
e-fulfillment to stay relevant in the long run. To this
end, it requires community effort to further build and
maintain its code base. This calls for code review
processes and technical means to enable a collaborative
and accountable development of the system. From this
perspective, SiLFul is a design artifact itself, constantly
undergoing development and evaluation phases.

SiLFul needs to rely on distributed programming
and version control. Version control systems allow
authorship tracking for accountability. = Moreover,
accountable development requires peer-review and
testing, as highlighted with regard to open-source
development in [18]. Therefore, systems can enforce

multiple review stages before integrating new content
into the main code base.

The idea of peer reviewing code is frequently
regarded as admirable in theory but sometimes neglected
in practice. Nevertheless, when e-fulfillment researchers
use SiLFul’s pool to benchmark their own approaches,
they have a direct incentive to review the code of
the benchmark. Moreover, similarly to peer-review of
papers, reviewers should be assigned to validate and
approve the code.

Extensions of the system environment like the
data model or additional support functions are not in
focus of a prescriptive analytics contribution. They
require researchers that see the overall potential for
the community and volunteer to contribute to the base
functionality, potentially without immediate reward.

4. SiLFul: Design and technical details

We provide an overview of SiLFul’s currently
implemented features before introducing the system
architecture and selected design details.

4.1. Overview of features

SiLFul offers features in five categories to address
challenges of e-fulfillment research and provide value
to researchers and other target groups in a prescriptive
analytics research process.

First, SiLFul provides an extendable pool of
planning approaches. 1t initially features a small
pool of approaches, from simple rules to sophisticated
algorithms for diverse planning steps. Additionally, it
explicitly supports integrating new prescriptive analytics
approaches into the framework. To this end, it features
a modular design with appropriate interfaces and the
required environment.

Second, SiLFul supports flexible processes. It
allows comparing the outcome of individual prescriptive
analytics solutions in isolation or in the context of
processes including interdependent activities.

Third, SiLFul provides an application-tailored
environment. The laboratory models domain specific
concepts and relationships.  For instance, relevant
concepts are the customers and their orders, delivery
time windows, vehicles, or routing schedules.

Fourth, SiLFul supports stochastic modeling. To
represent the uncertain planning environment, SiL.Ful
allows, for instance, modelling stochastic customer
choice behavior and arrival distributions.

Lastly, SiLFul features a holistic, domain-specific
data model that supports transparent and replicable
experiments. It allows users to add problem scenarios
and analyze diverse settings. This includes scenarios
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derived from published research as well as scenarios
based on empirical data. For instance, the model allows
to integrate alternative models of time slot demand,
such as preference lists or random utility models as
the multinomial logit model in [5]. Moreover, SiLFul
ensures transparent simulation results by saving data
from intermediate steps in the database. This data can be
aggregated in performance indicators via a subsequent
result data analysis. Not only for transparency but
also replicability of results, meta-data, such as input
settings of experiments, are stored in the database and
directly linked to respective outcomes of simulation
runs. When the simulation includes, for instance,
stochastic demand, the generated demand is persisted in
the database. As a data model for prescriptive analytics,
it additionally allows to save optimization models for
reuse in subsequent analyses. Note that parameter
settings and the resulting simulation data are stored in
distinct database tables such that they can be easily
published separately.

4.2. A modular system architecture

SiLFul enables benchmarking and analyzing
prescriptive analytics via experiments. An experiment
simulates a specific process, given specific input
settings, and returning simulation output data. Output
data can result from individual process steps and
include, for instance, a set of orders or a routing
schedule. To model the effect of stochastic models, an
experiment with a constant input setting can include
multiple, independent repetitions (simulation runs) of
the same process with samples drawn from probability
distributions.

To start an experiment, users have to define the
input settings and a process. Input settings can include
the specific set of delivery time slots, the number of
vehicles available, and customer demand samples. The
samples can either come from real operational data
or can be artificially generated order requests. The
process indicates the execution sequence of one or
more activities, potentially including algorithms for
prescriptive analytics. Processes can model the planning
prior to an order period, order acceptance during the
period, and delivery planning afterwards.

SiLFul is platform-independent and exclusively
relies on open source software. In particular, it is
written in the object-oriented programming language
Java and makes use of the Spring framework for loading
and persisting data. The current database management
system (DBMS) is MySQL, which can be accessed by
standard data analysis software, for instance R, for result
analysis. We used automated testing by jUnit and code

reviews to ensure the quality of the current system state.

Figure 2 depicts the two-tiered system architecture
as a Unified Modeling Language (UML) package
diagram. The data layer comprises the data services
that retrieve and persist the entities from the database.
Note that although the mysql-package contains
MySQL-specific implementations to communicate
with the DBMS, the service-package contains the
interfaces used by the logic layer. This strict separation
renders the DBMS exchangeable and allows developers
to add, for instance, a NoSQL database. The logic
layer can access the data layer to retrieve settings
and input data and to persist the algorithms’ outputs
to the database. This renders algorithm performance
transparent and replicable.

logic

— —
‘generator‘ ‘ service H process

data

 —] v

‘ service r )
— entity

‘ mysq|l r

sl

Figure 2. System architecture

The generator-package from the logic layer allows
generating artificial data from demand models. The
service-package contains algorithms and services
to host them. These algorithm provider services
prepare input and output and initiate the execution
of an algorithm. Moreover, support services provide
functionality useful to multiple algorithms.  The
processes in the process-package can combine and
start sequences of services. The architecture does not
include a presentation layer, as experiments progress
in an automated fashion given complete input settings.
Thus, user interaction is limited to defining initial
settings via console commands, entries in the database,
or configuration classes. Nevertheless, the architecture
allows developers to add a presentation layer, without
the need to alter any structure in the other layers.

4.3. Processes as flexible orchestration of
services

To ensure flexible processes, the design considers
processes as a sequence of activities, implemented
through algorithms. The relevant concepts in the logic
layer are processes, algorithm provider services, and
algorithms. Figure 3 presents a UML sequence diagram
that describes the interaction between these concepts, as
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represented by interfaces.
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Figure 3. Process, service, and algorithm interaction

A process defines the sequence of execution.
Services (AlgorithmProviderService-Interface)
offer algorithm functionality to processes:  The
service initiates loading of all relevant inputs via
an InputPreparator, invokes the execution of the
algorithm, and, on completion, initiates persisting of the
output via a ResultHandler. Afterwards, the process
asks the next service to execute an algorithm.

An algorithm does not have to know details about the
system environment but can concentrate on the analytics
operations. When users want to add a new approach,
they need to implement the algorithm interface. That
is, developers have to implement three methods: one
starting the execution - start() -, one retrieving
the results - getResult() -, and one to request
algorithm-specific parameters - getParameters(). In
this frame, developers can flexibly implement any
algorithm that transforms the input into output data,
seamlessly integrating it as a module in the system.

Output from one algorithm can be the input for the
next. Therefore, algorithms have to provide output
in the form of one of the standard system entities.
For instance, algorithms that implement the interface
AcceptanceAlgorithm simulate the order period with
request arrivals and acceptance decisions and return a
set of accepted orders (OrderSet). The system provides
one interface per possible output and can be extended by
adding new output entities.

The framework can evaluate algorithms separately
or within a process context. For instance, a user can
compare the number of accepted orders for two different
order acceptance algorithms A and B by defining two
processes each containing a single algorithm and by
analyzing the two OrderSet outputs. Alternatively,

when interested in profit, the user can define two-step
processes invoking algorithms A and B followed by the
same vehicle routing algorithm, respectively. Thus, A
and B can be compared based on the resulting schedules,
weighing basket profit and delivery cost. Processes
can be flexibly composed by a user while services and
algorithms are designed for reuse. A larger process
means less configuration of individual experiments but
is not always possible, especially when combining
planning and operational tasks.

4.4. Application-oriented standard entities

SiLFul supports reusable, domain-specific data
entities. ~ The data model represents experiments
with input and output as illustrated via an
Entity-Relationship-Model in Figure 4. The entity
Experiment relates to all input settings of an
experiment. Each Run is a repetition of an experiment
with one to many outputs.

Most inputs and outputs are sets (EntitySet)
with elements (Entity). For instance, an
OrderRequestSet refers to all order requests for
a specific order period. Likewise, OrderSet groups
all orders from the same order period. A set models
information that is common to its entities, for instance,
it relates orders to a Run.

The data model distinguishes OrderRequest and
Customer entities, as the same customer can launch an
order request multiple times over multiple order periods
of one experiment. A constant customer attribute is its
location and its demand segment. Each order request has
an arrival time and a basket value. An Order relates to a
specific OrderRequest and specifies whether the order
was accepted and, if it was, for which time window.
Different acceptance algorithms can produce different
orders given the same order requests. With the same
OrderRequestSet as inputs, algorithms can be directly
compared. Similarly, an OrderSet can be input for
benchmarking different routing algorithms.

The organization into sets and entities is not limited
to demand data. For instance, a TimeWindowSet
describes a group of TimeWindows, each defined by a
start time and a length. Different sets reflect different
time window designs. For instance, an experiment
may feature a set of non-overlapping one-hour time
windows, whereas another may include two-hour time
slots with consecutive slots overlapping by 30 minutes.
Multiple AlternativeSets can refer to the same
TimeWindowSet. An Alternative constitutes an
actual offer to a customer. For instance, implementing
the revenue management concept of flexible products
described in [20] would mean to not fix the order
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Figure 4. Data model- standard entities (Entity-Relationship-Model, modified Chen Notation [19])

promise to a single time slot, but to promise to deliver at
one in a set of time slots.

SiLFul does not restrict developers to the given
entities. Nevertheless, when extending the database
model, developers have to add the respective loading and
persisting operations in the data tier.

5. Case study 1: Simple demonstration

In the following sections, we introduce three case
studies to provide first insights into SiL.Ful’s capabilities
to support benchmarking experiments. The studies
use intergrated benchmarks and additionally extend the
system by new concepts. Thus, all case studies feature
functionalities of SiLFul that are available for future
simulation experiments.

The first case study features a hypothetical e-grocer
who wants to understand the effect of e-fulfillment
analytics in their specific business scenario, starting
by analyzing the impact of a simple change in order
acceptance decisions. The practitioner wants to use
SiLFul to avoid effects on daily operations and to
analyze the impact on a potentially growing business
while at the same time not having to implement a
whole simulation system from scratch. The e-grocer
has already estimated a demand model from operational
data, for instance, a multinomial logit model of
customers’ choice of time slots (refer to [13]).

Until now, the e-grocer offers all feasible time slots
to all customers free of charge. They check for feasible
deliveries by “online routing” via a simple and fast
algorithm (for instance, as in [13]). This computes
tentative routes that contain the currently accepted
orders and the new request. The retailer wants to
determine the effect of updating, that is recalculating,
the tentative routing schedules during the order period.
On the one hand, updating can increase the number of

acceptable orders but on the other hand, it effects the
time customers have to wait for an offer.

SiLFul already includes an algorithm that builds new
routing schedules over the order horizon, combining
a cheapest insertion heuristic and greedy randomized
adaptive search similar to [4]. Therefore, the
e-grocer only has to add their own online routing
approach and their specific problem scenario, generate
simulated demand data, and configure the experiments
to run. For instance, the e-grocer implements
the RoutingAlgorithm interface to add their order
acceptance with online routing to SiLFul. As a result,
the RoutingSchedule obtained during a simulated
order horizon is saved to SiLFul’s database.

The data generation module allows to generate
multiple sets of order requests (OrderRequestSet),
each providing the demand for one delivery period. The
retailer has to configure an experiment by defining the
demand setting, the arrival process, the length of the
order horizon, and the number of runs. Respective data
structures are part of SiLFul’s data model. Moreover,
order request arrival rates are required. The business
is currently rather small, with an arrival rate (\) of 0.2
per time step in a discrete time, homogeneous arrival
process of 500 time steps per delivery period (100
expected requests). Nevertheless, they expect significant
growth of business in the next year and want to evaluate
A = 03 and A = 0.4. The retailer generates 100
sets, that is 100 runs, to account for stochastic effects
in the further study. SiLFul draws sample demand
from the respective stochastic models, for instance, the
multinomial logit model.

The e-grocer has to set up two benchmarking
experiments, one featuring the current online
routing approach (OR) and one updating schedules
(OR-update). The retailer sets parameter
no_routing candidates of OR-update to 3 to
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build 3 routing schedules in parallel. Parameters allow
to slightly vary approaches to analyze the effects of
individual design decisions and to find best settings.

The e-grocer uses R to analyze simulation results.
Table 1 provides the two performance indicators number
of accepted orders (#) and the average waiting time (awt)
as a ratio between the outcomes of OR-update and OR.
The results suggest that employing OR-update increases
the acceptable orders by 0.4% to 4.1%, depending on the
experimental parameters A and number of vehicles. The
higher the ratio of expected demand to delivery capacity,
the higher the potential gain.

Nevertheless, the e-grocer has to consider this
advantage in the light of the increase in computational
time, which clearly correlates with the increase
in accepted orders.  This is mainly due to the
increased number of potential insertion positions in
routing schedules enabled by a larger fleet. When
evaluating these results, the e-grocer can consider
compensating increase in runtime via more powerful
hardware. Alternatively, they can check SiLFul’s pool of
benchmarks for more efficient online feasibility checks
or, if not sufficiently available, trigger research in this
direction by informing SiL.Ful’s user community.

Table 1. Number of orders (#) and average waiting

time (awt)
Vehicles A=0.2 A=0.3 A=04
# awt # awt # awt
2 1.020 4.548 | 1.029 8.142 | 1.041 9.119
3 1.011 6.359 | 1.018 13.243 | 1.026 21.085
4 1.004 7.217 | 1.010 18.001 | 1.014 30.234

6. Case study 2: Anticipative dynamic
slotting

In a previous research effort [13], we used SiLFul
to benchmark alternative dynamic slotting approaches.
These approaches control the set of time slots offered to
an order request in order to maximize overall accepted
profit for a delivery period [3]. Thus, compared to
the retailer in the previous study, they do not offer all
feasible time slots but deliberately withhold resources.
In this, they weigh a current request’s basket value
with its fit into delivery schedules and the loss in
future acceptable value. This optimization problem is
stochastic, complex, and decisions have to be made
within milliseconds. Therefore, approaches prepare
anticipative information in advance of the order horizon
to support decisions on customer arrival.

The dynamic slotting approaches consist of
multiple individual algorithms that we added to the
benchmarking tool. For instance, we implemented a

team orienteering approach, which takes as input a
set of order requests and returns a routing schedule
that accommodates the most profitable combination
of requests from this set. Moreover, we introduced an
offline value function approximation approach, which
takes multiple sets of order requests as input and trains
a linear model to predict the future acceptable value in
the order horizon.

The modular design supports future research
on individual components of the approaches. It
allows straightforwardly exchanging algorithms and
benchmarking them as embedded in the overall process.
We strongly encourage, for instance, routing experts
working on new team orienteering approaches to
analyze their effect in a dynamic slotting setting.

The computational study includes analyses on
multiple problem scenarios, both artificial and obtained
from real data from a German e-grocer. The parameter
settings are now persisted in the respective database
tables, ready for distribution as database dump along
with the software and its data base model.

7. Case study 3: Multi-criteria dynamic
slotting

E-fulfillment research usually concentrates on
maximizing the short-term profitability of delivery
services. Nevertheless, targeted offers of popular time
slots to allegedly low value order requests can positively
affect how a customer reflects on their experience
with the service. They may make further, more
profitable orders or recommend the service to members
of their social network. Therefore, we introduced
the concept of multi-criteria optimization to dynamic
slotting [21]. A weighted sum approach allowed to
compare different weighted combinations of the criteria
profit and social impact of accepted orders. To this end,
SiLFul’s evaluation component allows flexible adding of
objectives and weights to obtain an aggregated value.

A preparation phase in advance of the order horizon
includes a vehicle routing on forecasted order requests to
obtain capacities per time slot and delivery area as well
as a dynamic programming procedure. The latter results
in a data structure that accommodates the expected value
of being in any state of the order period. The respective
object is persisted in the database for transparency and
for use in order acceptance over multiple simulated
order horizons. To this end, we added a new result type
and extend the data model. We persisted the serialized
structure as a JSON-string. As mentioned before, we did
not design SiLFul as a complete and static system but as
an extendable platform, which can be adjusted to new
requirements.
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8. Conclusion and next steps

We introduced SiLLFul, an extendable, Java-based
framework for controllable, transparent, and replicable
simulation studies to benchmark prescriptive analytics
in e-fulfillment. SiLFul provides an environment for
researchers to focus on designing solutions, without the
overhead of building a simulation system from scratch.

In the long run, such a tool can only be fully effective
when continuously developed in a joint community
effort. On the one hand, the pool of benchmarks should
be up-to-date to stay relevant. On the other hand, the
system’s modular design should be leveraged to extend
its focus on further e-fulfillment areas, such as order
packing and inventory management. We are aware that
achieving the full potential of a collaborative research
practice requires significant change in habits and
motivation of a whole research community. Moreover,
problems like the validation of such a system in terms
of code review still require appropriate guidelines.
Nevertheless, we are sure that SiLFul can provide
advantages in terms of rigorous and relevant research.
The community will have to find a way to leverage that.

In a next step, we plan to publish SiLFul’s source
code as well as problem scenarios from our case studies.
Future tasks include monitoring its usage and verifying
extensions from the community, aiming to adjust the
system to increase acceptance. Moreover, a user
interface can increase ease of use and attractiveness for
industry users. Furthermore, after gaining experience
in e-fulfillment, future research could design such
a framework for other prescriptive analytics research
areas, such as health care and public transport.
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