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Abstract

Making data centers highly available remains a
challenge that must be considered since the design
phase. The problem is selecting the right strategies
and components for achieving this goal given a
limited investment. Furthermore, data center designers
currently lack reliable specialized tools to accomplish
this task. In this paper, we disclose a formal method
that chooses the components and strategies that optimize
the availability of a data center while considering a
given budget as a constraint. For that, we make use
of stochastic models to represent a cloud data center
infrastructure based on the TIA-942 standard. In order
to improve the computational cost incurred to solve this
optimization problem, we employ surrogate models to
handle the complexity of the stochastic models. In this
work, we use a Gaussian process to produce a surrogate
model for a cloud data center infrastructure and we use
three derivative-free optimization algorithms to explore
the search space and to find optimal solutions. From the
results, we observe that the Differential Evolution (DE)
algorithm outperforms the other tested algorithms, since
it achieves higher availability with a fair usage of the
budget.

1. Introduction

Cloud data center availability remains a very
important provider challenge; mainly because
data centers host applications with strong design
requirements that often rely on always-on infrastructure,
and at the same time, they manage a complex (physical
and virtual) infrastructures. Failures are known to
interrupt customer services, and cause financial losses
for both customers and providers [1].

A typical cloud data center can be divided into three
main subsystems: information technologies (IT), power,
and cooling. The power subsystem is responsible for
providing power to the two other subsystems. The
cooling subsystem removes the heat from the premises
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and the IT subsystem is composed of servers, network,
and storage equipment that hosts the applications and
data. A failure of a component in any subsystem can
affect the operation of others and, consequently, the
application execution [2]. To maintain the infrastructure
running is challenging due to the diversity of faults (at
different levels) that may occur [3].

Fault tolerance strategies can be used to mitigate
the number of failures in cloud data centers. For
example, the use of redundant components is a well
suited approach to mitigate faults, because when an
equipment fails, another can replace it by taking over
its tasks [4]. Another strategy is to invest in equipment
that takes longer time to fail, i.e., equipment with a
greater mean time to failure (MTTF) value. However,
such hardware tends to be more expensive. Overall, the
acquisition of more equipment can greatly increase the
cost of running and maintaining a data center.

Thus, the planning of a high available cloud data
center should take into account the acquisition cost
of equipment as the constraint. This scenario can be
characterized as an optimization problem [5], where the
objective is to maximize the availability, considering a
maximum budget that can be used to acquire equipment
into the data center infrastructure. There are several
algorithms used to find the optimal solution for this type
of problem. In this work, we use three well-known
algorithms to solve our maximization problem, namely,
Particle Swarm Optimization (PSO) [6], Differential
Evolution (DE) [7], and a Genetic Algorithm (GA) [8].
The goal is to compare these different strategies in terms
of the availability they each achieve under given cost
restrictions (equipment acquisition cost).

First, this work uses a set of Stochastic Petri Net
(SPN) models (proposed by [9], [10], [11], [12]) to
represent the data center infrastructure and to calculate
the data center availability metric. Thus, derivative-free
optimization algorithms can use such models to explore
the search space and to find optimal solutions. However,
the general structure of such algorithms involves solving
the SPN models several times for computing availability
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for each candidate solution. This leads to a high
computational impact as a single SPN model can take
on average about 9 hours to be solved. To overcome this
computational issue, we make use of surrogate models,
that “are computationally cheaper models designed to
approximate the dominant features of a complex model”
[13]. In this way, we obtain a set of equivalent
mathematical functions that represent our SPN models
in a reliable and faster to compute way.

This paper presents a two fold contribution: (a) it
proposes and validates surrogate models that represent
a complex SPN-based data center model; and (b)
uses meta-heuristic algorithms to maximize data center
availability (computed by surrogate models) considering
the cost components’ acquisition as a constraint.

The remainder of this paper is organized as follows:
Sections 2 and 3 present background concepts in topics
as data center modeling and optimization algorithms;
Section 4 describes the need for using surrogate models
to turn our problem computationally solvable, and also
presents the results of experiments obtained in order to
validate the surrogates models; Section 5 defines the
optimization problem we want to solve and shows the
results regarding the availability of data center and its
cost; Section 6 depicts related work; finally, Section 7
concludes our work and delineates future works.

2. Modeling a data center

Cloud data centers are basically composed of three
major subsystems: power, cooling, and IT. These
subsystems are intrinsically connected, and failure in
anyone can have a great impact on the other(s) [2].

Several international organizations created standards
in order to define best practices and recommendations
regarding data centers design and infrastructure.
TIA-942 defines four tiers with different availability
levels, where tier I refers to the lowest availability
configuration and tier IV has the highest one. At the
same time that higher tiers provide greater availability,
they can be seen as being more complex due to the
adopted considerable number of additional equipment
associated to the different subsystems [1].

Power subsystem is responsible for providing energy
to feed all data center equipment which can be
divided into two parts: critical and mechanical loads.
Mechanical loads refer to the energy path for cooling
equipment. When this path fails, the cooling subsystem
will stop working, whereas the IT equipment should
continue operating until it overheats. Critical loads refer
to the path that feeds the IT equipment itself. This
path often comprises equipment configured to be more
reliable to mitigate failures [2].

Cooling subsystem is responsible for removing the
excess of heat generated by IT equipment, with the
purpose of reducing damages. There are several ways
to implement a cooling system in a data center [14].
However, in this paper, we consider the technique based
on chilled-water only. The availability of the cooling
subsystem directly impacts the availability of the IT
subsystem. A failure in the cooling subsystem of a data
center can result in the overheating of IT components,
causing damage leading to service downtime [9].

Finally, IT subsystem is composed of servers,
storage units, and a network component that connects
them. The network component consists of hierarchical
layers of switches, linking groups of servers where
the applications are running. Technologies as
network attached storage (NAS) and redundant array
of inexpensive drives (RAID) connect the servers to
storage units [10].

These subsystems were modeled in some previous
works ([9], [10], [11], [12]) using SPN, a formalism
used to model dynamic systems considering several
aspects such as concurrency, synchronization,
communication mechanisms, and conflicts [15].
Figure 1 shows the SPN model of a Tier I data center
with its three subsystems whereas Figure 2 illustrates
the SPN model of a Tier IV data center.

POWER SUBSYSTEM ITSussvsTem

Figure 1. Tier | data center SPN model (from [16])

In a nutshell, each component of a data center is
represented by a simple building block. This building
block is composed of two places, which represent the
status of the component (running or failed), and two
transitions (that represent failure and repair events).
The failure and repair transitions follow an exponential
distributions, whose the averages is defined as MTTF
and mean time to repair (MTTR), respectively.

Through these models, the authors have
demonstrated that it is possible to calculate the
availability of the data center, as well as to evaluate the
cost of a given architecture, based on equipment that
composes the data center. Thus, these models will be
used in this work, to feed our optimization algorithms
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Figure 2. Tier IV data center SPN model (from [16])

in order to maximize the availability taking into account
the cost as the constraint.

3. Optimization algorithms

Optimization is the process of finding best cost
solution(s) to a problem, taking into account possible
constraints [17]. It can be applied in several real-world
scenarios: ranging from physical, time, geometric,
design, etc [S]. However, finding an optimal solution is
often a computationally hard task. As a result modern
approaches combine meta-heuristic algorithms with
some problem-specific knowledge. These algorithms
are based on examining a population, where many
possible solutions (population) are evaluated using a
function (commonly called fitness function) in order to
choose the optimal solution [17] [18].

Meta-heuristic algorithms can be grouped into
evolutionary algorithms and swarm intelligence based
algorithms. Among the evolutionary algorithms,
one can find Genetic Algorithms (GA), Differential
Evolution (DE), Bacteria Foraging Optimization (BFO),
etc. Particle Swarm Optimization (PSO) and Ant
Colony Optimization (ACO) are examples of swarm
intelligence based algorithms. In this paper, to solve
the optimization problem regarding a cloud data center
availability, three algorithms are applied: a GA, DE, and
PSO.

3.1. Genetic Algorithms (GA)

GA is a population-based non-deterministic
optimization method that emulates the selective
evolution of populations for finding the optimal solution
[19]. In GA, a solution is treated as a chromosome, and
a set of chromosomes makes up a population. Each

chromosome (a possible solution) is associated with a
fitness function, to know if it represents a good result.
Some chromosomes are selected by a biased random
selection approach. Chromosomes with the highest
values in the fitness function are selected for future
iterations. The population of solutions is submitted
to many biology-like operators, such as crossovers
of chromosomes, the mutations of genes and the
inversions of genes. The process repeats until it reaches
a predetermined stopping criterion (e.g., maximum
number of iterations) [19].

3.2. Differential Evolution (DE)

DE is one of the more recent evolutionary algorithms
and presents a simple and efficient technique. Its
simplicity is due to the fact that it requires few
parameters, has a good convergence, and has functions
with simple and inexpensive arithmetic operators [20].
DE is very similar to GA and is composed of four basic
steps: initialization of population, mutation, crossover,
and selection. The three last steps are repeated in the
subsequent DE iterations [21].

An essential difference between DE and GA
concerns the selection operations that they employ. In
GA, the chance of a solution being selected as a parent
depends on the fitness value of this solution. On the
other hand, in DE, all solutions have the same chance
of being selected as parents, i.e., the chance does not
depend on fitness values. After the creation of a new
solution using self-adjusting mutation and crossover
operation, it competes with its parents, and the best one
goes to the next generation [22].

3.3. Particle Swarm Optimization (PSO)

PSO is an optimization algorithm that takes
advantage of the swarm intelligence mechanisms
and has been widely adopted for dealing with
population-based optimization problems. This
algorithm is biologically inspired from flock of
birds behavior, where a set of solutions to a problem
(swarm) is called population [23]. A population is a set
of parameters and represents a point in solution space
of problem.

A PSO algorithm starts with random particles in
a solution space, and each particle begins with its
associated position and velocity. Then, the particles
move through a solution space with the purpose of
finding the optimal solution. The position and the
velocity are updated based on a particles own experience
and that of its neighbors. Also, the positions are
distinguished as global best and personal best, based
on the fitness function. Each movement performed by
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particles is entirely influenced by its current position, its
parameters, and group knowledge of the swarm [23].

4. Using surrogate models to reduce
complexity

The data center model proposed previously, as
described in Section 2, has three subsystems with many
places, transitions, and tokens, which turns it a complex
model to compute.

We have noted that when we increase the tier level,
i.e., improving the subsystems component redundancy,
the Markov chain used to solve analytically the SPN
sub-model [24] also increases. For instance, when
we performed stationary analysis of the models, the
Markov chain related to the power subsystem path to
the IT subsystem presented 32 states when considering
the tier I, 84 states for tier II, 1344 states for the tier
III, and the Markov chain for tier IV had as many
as 7056 states. In addition to state explosion, when
we performed stationary simulation in an Intel Core i7
3.47GHz and 24 GB RAM, the time to solve the model
also increased: whereas tier I spent around 1 minute and
36s to solve, tier IV spent 9 hours and a half.

This situation worsened when we integrated the
submodels. For instance, in [11], when the authors
integrated the tier I SPN models of power and IT
subsystems, the correspondent Markov chain presented
2048 states; while the integration of tier IV models
suffered from the state-space explosion issue, which
prevented us from exploring stationary analysis. Solving
the SPN models through simulations, tier I (Figure 1)
took about one hour to finish, whereas tier IV (Figure 2)
took almost four days to finish.

Therefore, in order to apply optimization algorithms
for such data center availability models, it is first
necessary to reduce their complexity because these
algorithms commonly require thousands of function
evaluations to reach a solution. Using original
SPN models with optimization algorithms is therefore
impracticable. In this context, surrogate models can
be applied to represent expensive computational models
[25], once they require fewer observations than the
original model and produce estimations with high
accuracy. For example, it is possible to generate
a surrogate model with only 30 availability values
(solutions) from the original complex SPN model.

4.1. Surrogate models

Surrogate models (metamodels or approximation
models) are powerful statistical methods to emulate
the output of complex models [26]. There are several
techniques to build surrogate models. Some of the best

known are: polynomial regression, neural networks,
Radial Basis Function (RBF), and Gaussian process.

Since we have complex and computationally
expensive SPN models, the best technique for this work
consists of building a surrogate model with a small
training set. Neural Networks and RBF need a large
training set. Gaussian processes do not need a huge
data set and produce better results than polynomial
regression [27].

This work uses a Gaussian process called design and
analysis of computer experiments (DACE), also referred
as kriging [28]. DACE proposes performing physical
experiments, and is widely used in the computer
experiment domain, it finds a spatial function that is
able to replicate the output of the original model and to
predict unknown points based on known values.

2 DACE prediction example

----- fix) = xsin(x)
® Observations
15 { —— DACE Prediction
95% confidence interval

-10

Figure 3. Example of a DACE model (based on [29])

Figure 3 shows an example of DACE. DACE
uses some observations from the original model and
estimates the unknown points through variance [30]
between consecutive points and, hence, the error is
minimal when the points are very close to observations.
DACE needs few observations to generate a surrogate
model with higher accuracy than other methods, such as
RBF or polynomial regression.

However, as shown in Figure 3, the sampling is
essential to ensure DACE accuracy. For example, when
8 < x < 10, there are no observations, which increases
the variance and, consequently, decreases the accuracy.
Also, to obtain a good DACE model, the observations
must be at a reasonable distance among them, which
increases the chance of covering the whole original
model area. A possible strategy is using Monte Carlo
Simulations (MCS), but it needs a high number of
samples to reach a reasonable accuracy. In this work, we
adopt the Latin Hypercube Sampling (LHS), a widely
adopted sampling strategy that divides the range of
each variable into disjoint intervals of equal probability,
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Table 1. RMSE of three different configurations of DACE model for tiers |, Il, Il and IV

Tier Orig. Av. (%) C1 C2 C3

Tier I 99.1756 3.12E-02 (+- 1.16E-04)  7.26E-03 (+- 2.70E-05) 7.40E-03 (+- 2.76E-05)
Tier II 99.8672 8.90E-03 (+- 3.32E-05) 2.16E-03 (+- 8.04E-06) 2.22E-03 (+- 8.18E-06)
Tier ITI 99.9477 8.36E-03 (+- 3.12E-05)  9.06E-04 (+- 3.36E-06) 9.72E-04 (+- 3.57E-06)
Tier IV 99.9489 8.36E-03 (+- 3.12E-05)  9.16E-04 (+- 3.39E-06) 9.80E-04 (+- 3.60E-06)

choosing one value of each interval [31]. Therefore,
LHS allows a considerable area coverage and does not
select closer observations among them.

4.2. Validation and discussion

DACE must ensure a low error in comparison with
the original model. In other words, the surrogate model
must obtain accurate results with the short training set to
accelerate optimization process.

In order to choose the configuration with lower
error, tests were carried out with different parameters
to generate DACE models from the training set. The
changes affect the covariance, used by DACE to
estimate unknown points, and the optimization method.

We defined three configurations to evaluate

the surrogate model: Cl1, with exponential
covariance, optimization via genetic algorithms
with a maximum of 1000 generations; C2, with

similar configuration, only changing the covariance
to Gaussian; and C3, with Gaussian covariance
and Broyden-Fletcher-Goldfarb-Shanno (BFGS)
optimization method [32], with 1000 start points.
Comparing C1 to C2 one can observe the impact of the
covariance function on the error, whereas comparing
C2 to C3 one can see the impact of changing the
optimization algorithm.

After generating DACE models from the training set,
the models may be assessed predicting the availability
for samples from the testing set and calculating the
RMSE. Table 1 shows the RMSE of three configurations
with 95% confidence interval and the availability of the
original model. We can see that the C2 configuration
had the best results, affecting the availability in lower
decimal places. However, there is no statistical
difference between it and the C3 configuration.

Despite the original SPN model complexity, the
short training set generates DACE models with
reasonable accuracy. The worst results belong to models
with exponential covariance. Due to high exponential
variance (coefficient of variation is 1) the DACE model
estimates less confident results in unknown points,
which reduces its accuracy. The result of Cl in
comparison with C2 is four times less accurate in tiers I
and II, and nine times less accurate in tiers III and IV.

Table 2 shows the RMSE of C2 configuration
concerning downtime generated by the original model.
The impact of C2 RMSE is very low on downtime,
once this RMSE increases or decreases the downtime
in 42 min, 13 min, 9 min, and 6 min in tiers I, II,
IIT and IV, respectively. In tier I, for example, the
downtime reaches three days, i.e., an error of 42 min
is almost negligible (about 0.9% of total). Tiers II, III,
and IV have similar results, the impact on downtime is,
respectively, 1.8%, 3%, and 3.1%.

Table 2. Relation between downtime and RMSE of
DACE model

Tier Original Availability Downtime (h) RMSE C2 Downtime (h)
Tier I 99.1756947123 72.2091432 0.69

Tier II 99.8672202954 11.63150212 0.21

Tier 11T 99.9477237852 4.579396416 0.14

Tier IV 99.9489709783 4.470142301 0.14

5. Maximizing cloud availability

Considering the development of accurate surrogate
models, it is now possible to apply the optimization
algorithms in order to find solutions that maximize the
data center availability considering the financial cost of
the components as a constraint. In this next phase of
the research, we describe the problem definition and the
results we obtain from optimization algorithms that were
applied on surrogates models.

5.1. Problem definition

We assume that the cost function of each
data center component (C(MTTF,)) follows a
positive exponential relationship that varies with the
correspondent mean time to failure (MTTF,) of the
component c. This is a reasonable assumption and the
associated relationship can be modeled as

C(MTTF,) = MTTF,.e(JexMTTF:) 1)

The parameter f. is defined using the cost of the
component C., that may be estimated after market
research, and the respective MTTF value MTTF,, that
is acquired from data sheets and papers. The value of f.
is given by

Page 1574



In(C,) — In(MTTF,)

Je= MTTFE,

2

which is a direct result from Eq. 1.

When f. is negative, the exponential model drops
for high MTTF, values. In this case, one can use other
increasing functions. In this work, in such cases, we
adopt a simple linear model

C(MTTF,) = MTTF, x f. 3)

where f. is given by

fc = CC/MTTFC (4)

These functions will be used to calculate the cost of
each component when the optimization algorithms vary
the respective M T'T'F,, values.

Thus, the optimization problem to be solved can be
stated as

max Availability MTTF,, MTTF;,.... MTTF,)
subject to

®)

> C(MTTF,) <B (6)

b < MTTF, <ube, c=1,....,m @)

where B is the budget available for optimization
of the the financial constraint, and [b. and ub. are,
respectively, the lower and upper bounds on the
correspondent component c.

The function Availability (MTTF_1, MTTF_2, ...,
MTTF n) is given by the surrogate model of the data
center, which is computed following the strategies
discussed in Section 4. In this way, the algorithms
can solve the optimization problem evaluating an
accurate and fast to compute approximation of the SPN
availability model.

5.2. Optimization algorithms

In this paper, we apply three optimization algorithms
to solve our maximization problem: GA, DE, and PSO.
These algorithms are well suited to our problem, as
they converge to a stable solution, ideally the optimal
solution after a certain number of iterations [33].

In order to compare the optimization algorithms,
a set of the specific parameters of each algorithm is
required. The PSO and DE algorithms’ parameters are

based on [34] and [35], while GA parameters have been
selected experimentally.

With GA, the population size is 170, the crossover
probability is defined as 90%, the mutation probability
is 20%, the number of iterations are selected as 5,000.
For DE, the crossover probability is 95.55%, the step
size is 0.6497, the population size is 37, and number
of generations is 40,000. In PSO, the inertia weight is
-0.4438, the standard deviation of the initial velocities
is 2, the population size is 170, weight towards the
individuals best solution is -0.2699, the weight towards
the populationss best solution is 3.3950, and number of
generations is 40,000.

Next, the LHS is selected for generating the search
space used in the algorithms. Search space consists of
the MTTF values of the components of the data center,
and the relation between MTTF and component cost
described previously. All MTTR values are fixed, as
shown in Table 3, assuming that the MTTR does not
affect the acquisition cost of component because MTTR
depends on maintenance strategies used in a company
(time for fault finding and the time spent repairing) [36].
For simplicity, we focus only on tier I models for the
data center.

Table 3. MTTR values of data center components
(from [37], [38], [39]. [40]. [41].[38], and [42])

Data center MTTR  Data center MTTR  Data center MTTR
component (in hours) component (in hours) component (in hours)
Utility 0.03 CRAC 8 NAS 12
Generator 39 Chiller 48 Aggregation switch 0.63
ATS 5.74 Cooling Tower 48 Access switch 0.35
UPS 8 Pipes 2.71 Core switch 0.78
PDU 156.01 Server 0.59 Edge switch 1

The evaluation of the algorithms considered some
values for the available budget set to acquire new
components to the data center to maximize the
availability. From the data obtained from LHS.i.e.
the MTTF values of the data center components, it
is estimated that the minimum and the maximum
budgets are $189,972.60 and $441,227.90, respectively.
Thus, the budget value varies from $200,000.00 to
$400,000.00 in the experiments, ranging in steps of
$50,000.00.

5.3. Results

Figure 4 shows the total cost (based on a maximum
budget) that each algorithm estimated for maximizing
the data center availability. In most cases, the budget
constraint was respected by the optimization algorithm.
Only when the budget was $200,000.00, PSO found
a higher value, $226,518.60. When the budget was
$350,000.00, both DE and GA achieved lower costs,
$339,223.80 and $336,898.8.80, respectively; and for
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this same budget, PSO reached the highest cost:
$345,168.30.

400000 moeA
W PSO
DE
B Budget Constraint
300000

200000

Budget (in $)

100000

0
200,000 250,000 300,000 350,000 400,000

Budget Constraint (in §)

Figure 4. Budget estimated by optimization
algorithms

For the higher budget value ($400,000.00), the
optimization algorithms estimated a much lower value
for the cost. DE, GA, and PSO estimated the costs
values to $339,223.00, $338,461.80, and $359,916.30,
respectively.

Figure 5 shows the availability found by the three
optimization algorithms. In general, DE obtained the
best availability results, followed by GA, and PSO.
Only with a lower budget ($200,000.00), PSO obtained
a result better than the one for GA - 99.0569% and
99.0312%, respectively. For this budget, DE found
99.10102% to be the optimal solution. With the increase
of the budget, it is possible to notice that GA obtains
better availability results than the PSO and is very close
to the DE, which achieves the best results. With the
highest budget ($400,000.00), GA, DE, and PSO found
very close budget values, 99.3467%, 99.3482%, and
99.3460, respectively.

99.4 == GA

Availability (in %)
©
3
S
~

99.0
200,000.00 250,000.00 300,000.00 350,000.00 400,000.00

Budget (in $)

Figure 5. Auvailability found by optimization
algorithms

5.4. Discussions

With regard to the budget estimated by the above
three optimization algorithms, in general, and as
expected, when we increase the value of budget
constraint, there is an increase in the budget estimated
by the algorithms. We had an exception when the
budget value was $200,000.00; the PSO extrapolated
and estimated a larger investment of $226,518.60, in
other words it overshot the constraint by more than
$26,518.60. Hence, in this specific case, the PSO did
not find an optimal (acceptable) solution. On the other
hand, when the budget was set to $200,000.00 and
$300,000.00, the algorithms estimated budget values
closer to the maximum. However, when we considered
a top budget of $350,000.00, GA and DE estimated
costs a little below this limit with, $336,898.80 and
$339,223.00, respectively; while PSO found the biggest
value $345,168.30. When the budget constraint is
set equal to $400,000.00, all optimization algorithms
estimated budgets that were lower than the budget
constraint.  These values are due to the fact the
algorithms found an optimal local solution to the
availability metric with respective budget values.

Regarding availability results, in DE, an increase of
budget from $200,000.00 to $300,000.00, resulted in an
increase in availability from 99.1010% to 99.3468%,
showing a difference of 0.2458%. While the increase
in budget from $300,000.00 to $400,000.00, increased
availability from 99.3468% to 99.3482%, giving a small
gap of 0.0014%. Hence, availability tends to stabilize,
and budget increases lead to a very low increase in
the availability of budgets above $300,000.00. Even
if we increase the budget to buy additional data center
equipment, increasing availability will be minimal, and
perhaps not worth investing more money.

Overall, the PSO achieved the worst availability
results compared with GA and DE. Only with a budget
of $200,000.00, PSO found greater availability than
GA and DE, 99.0569% and - 99.0312%, respectively.
However, PSO extrapolated the constraint and estimated
a $226,518.60 budget. As a result, in this case, PSO
did not find the optimal solution. Nevertheless, DE
found the highest availability for this budget, 99.1010%.
With budget values from $250,000.00 to $350,000.00,
all three algorithms found high availability values while
fulfilling the cost constraint.

With the highest budget value, $400,000.00, DE
reached the same availability results as those with a
budget of $350,000.00, 99.3482%. Probably DE found
an optimal local, because it obtained the same previous
results, even though it is possible to increase the MTTF
values and achieve greater availability since a larger
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Table 4. MTTF (in hours) values found by each algorithm with the value of the budget equal to $400,000.00

Utility Generator ATS UPS

PDU CRAC Chiller Cooling tower

GA 285.6947 9,041.9984  122,164.8677
DE 285.7010 9,031.8223
PSO 111,445.3339

24,625.8113
24,634.0189

349,194.0399  45,519.5737 = 22,227.9684 30,877.1837

346,989.2875  45,447.7926 30,992.8577

Pipe Server NAS

Aggregation switch Access Switch Core Switch Edge Switch

GA  548,869.5849 1,451.6996 1,433,657.8275
DE 550,511.9486 1,434,069.4316
PSO 1,458.2606

8,614.4269
8,242.4303

13,989.3466 984.9421
18,386.3,288

15,872.3488

13,925.2877

budget value is available. GA had a little improvement
in availability when compared with the $350,000.00
budget, from 99.3460% to 99.3470%, with the budget
estimates of $336,898.80 and $338,461.80 repsectively.

Table 4 shows the MTTF values of the data center
components achieved by each optimization algorithm
for the highest availability value found (budget equals
to $400,000.00). Cells with light gray color show the
lowest MTTF value compared with other algorithms,
while cells with dark grey color show the highest value.

Considering the MTTF obtained by each data center
component, GA found the lowest value eight times, and
the highest value twice. Thus, GA tried to considerably
increase MTTF of few components, while it increased
MTTF of other components slightly, with the intention
of not extrapolating the budget.

Considering the MTTF of data center components,
DE found the lowest MTTF value once, and the highest
value seven times. The strategy used by DE is to
improve several components to increase the availability,
but probably the chosen components did not have a high
cost to extrapolate the budget constraint.

Finally, PSO found the lowest MTTF value six
times, and the highest value five times. PSO estimated
the highest budget with the lowest availability. Thus,
the components that PSO increased their MTTF values
did not have much impact on availability, even though
they had raised the cost. PSO greatly increased the
MTTF values of generator and UPS when compared to
GA and DE. These components are the most expensive
of the power subsystem, which justifies the high budget
estimated by the PSO.

Considering the number of components per
subsystem, with the highest MTTF values found, the
DE focused on cooling and IT subsystems (i.e., it
searched for optimum results by changing MTTF values
of those subsystems’ components), while PSO focused
on power subsystem, and GA invested equally. DE
increased the MTTF of the cooling and IT components
and obtained the best results of availability. However,
PSO tried heavily to find optimum results by changing
the power components’ MTTF values (mainly generator

and UPS), while neglected the other subsystems, and
thus obtained the worst availability result. The GA
sought to optimize equally, looking into all subsystems’
parameters, and thus obtained near availability results
compared to the DE.

6. Related work

In [43], authors deal with the optimization problem
of a Web service workload assignment in a cloud
infrastructure scenario. They proposed a framework that
aims to minimize cost and maximize resource utilization
by determining the optimal mapping of virtual machines
to physical machines in a cloud data center. The
Integer Linear Programming (ILP) approach was used
to optimize the server workload assignment. Their
results presented an annual reduction in the per hour
on-demand cost of the instances by 52%. Moreover,
the resource utilization results showed improvements in
CPU and memory utilization by 20.66% and 13.42%,
respectively.

A set of models to accurately predict the energy
consumption in Cloud data centers was proposed in [44].
Their models were built based on Principal Component
Analysis (PCA) and regression methods such as linear
regression, power regression, exponential regression,
and polynomial regression. The regression models were
compared to real energy consumption values measured
using Power Bay-SSM tool and compared to existing
approaches such as Ramon Model, Linear Model, and
Cubic Model. Results show that, after a comparison
between the seven approaches, the power regression
models offer the highest accuracy.

In [45], authors propose a methodology for online
optimization of cloud data center configuration. The
configuration includes the number of active VMs, CPU
utilization, resource requests, and CPU demand per
request. Surrogate models based on statistical regression
techniques were applied to predict the quality of cloud
configurations. The CloudSim simulation tool was
used in evaluation, and their results showed that the
surrogate models produced high-quality configurations
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with a prediction error within 6%.

The problem of service allocation in cloud
computing is handled in [46]. The proposed solution
aims to maximize revenue for users and providers
and find the optimal solution. Multi-Objective
Particle Swarm Optimization based on Crowding
Distance (MOPSO-CD) was used to solve the
service allocation optimization problem.  Authors
compared the performance of their approach
against Non-dominated Sorting Genetic Algorithm
II (NSGA-II) and Multi-Objective Particle Swarm
Optimization (MOPSO) using MATLAB. Results show
that MOPSO-CD improves the execution time of the
resources allocation algorithm while generating high
revenue for both users and providers.

Differently from these previous works, we propose
and validate surrogate models based on the DACE
method to assess the availability of different cloud
data center architecture configurations (using models
proposed by [9], [10], [11], [12]). Furthermore, we
apply and compare the accuracy of three optimization
algorithms (PSO, DE, and GA) to maximize the data
center availability given different budget constraints.

7. Conclusions and future works

Planning a cloud data center with high availability
level and the cheapest acquisition cost of equipment is a
challenge for data center operators. Without a proper
equipment selection to achieve the best cloud service
availability may affect provider’s business or even
worse compromise its reputation. We addressed this
problem by using SPN models of different data center
architectures based on the TIA-942 standard proposed
by [9], [10], [11], [12]. Then, we proposed, compared
and validated surrogate models to handle the complexity
of the SPN models, to make it feasible to be applied in
optimization algorithms. Lastly, we applied the PSO,
DE, and GA algorithms to find the optimal solution and
compared the availability level found by them according
to different budget constraints. Results regarding the
comparison of PSO, DE, and GA algorithms show that
DE obtained the best results (highest availability for
different budget constraints) followed by GA, and PSO.

As future works, we plan to apply other optimization
algorithms and compare them; and we also intend to
evaluate other strategies for making the surrogate model,
as machine learning algorithms.
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