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Abstract

Software companies that offer web-based services
instead of local installations can record the user’s
interactions with the system from a distance. This data
can be analyzed and subsequently improved or extended.
A recommender system that guides users through a
business process by suggesting next clicks can help to
improve user satisfaction, and hence service quality and
can reduce support costs. We present a technique for
a next click recommender system. Our approach is
adapted from the predictive process monitoring domain
that is based on long short-term memory (LSTM) neural
networks. We compare three different configurations
of the LSTM technique: LSTM without context, LSTM
with context, and LSTM with embedded context. The
technique was evaluated with a real-life data set from a
financial software provider. We used a hidden Markov
model (HMM) as the baseline. The configuration LSTM
with embedded context achieved a significantly higher
accuracy and the lowest standard deviation.

1. Introduction

A key focus of services is the perceived quality
by the users, which ultimately determines the service
quality [1]. For software services, end-users are mostly
looking for functionality and non-functional aspects like
stability, performance, but most importantly, usability
[2]. While the latter is mostly given for modern software
services primarily in the consumer business, enterprise
software services are often still driven by functionality
and are facing challenges in adapting user interfaces
due to the large existing user base. Therefore, solutions
for improving usability are required that extend existing
user interfaces.

Fromm et al. consider service usage analytics as
the most mature type of service analytics as it requires
advanced analytical capabilities as well as customer data
which used to be hard to obtain [3]. In recent years, an
increasing number of software providers offered their

products as a cloud-based service instead of a locally
installed software, which enables them to track data
about the usage of their services [4].

With the ongoing popularity of machine learning
and artificial intelligence, a multitude of techniques
and approaches were created that can also be applied
to service usage analytics. In order to support users
with handling complex and less intuitive software, next
likely click items (e.g., buttons or text fields) could be
suggested by a recommender system. Recommender
systems are software tools and techniques providing
suggestions for items (e.g., next click items1) to be of
use to a user [5].

An exemplary use case would be the processing
of a sales order depicted in Figure 1. After order
entry, the user has to decide how to process it further.
The interface contains an overwhelming amount of
information and offers several options for the next
clicks, like checking the credibility of the customer or
confirming the order to the customer. In a separate box,
a recommendation is shown. It suggests the click, which
is most likely performed by users at this stage.

 

Figure 1. Exemplary use case of a recommender

system for a sales order process.

1Note we use the term ”clicks” for ”click items”.

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 1542
URI: https://hdl.handle.net/10125/63929
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326835321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


However, for such a recommender system to be
useful, the quality of the predictions has to be high.
Given the great variety in user interactions, including
session duration for web applications, this can be a
challenging task that cannot be solved by applying basic
statistical or time series methods.

We suggest the use of techniques from the domain
of predictive process monitoring which are built with
the design goal of considering the sequential flow of the
incoming process data (process awareness [6]). To learn
predictive models for the next click prediction, we use
long short-term memory (LSTM) neural networks [7]
and fed the context attributes as well as the process flow
attributes in the form of a vector-oriented representation
to the LSTMs. Further, the context of a business
process consists of context attributes that characterize
the environment in which the process is running [8].
For example, the domain of a web service. Regarding
the context, we make use of paragraph2vec embedding
to capture dependencies between the context attributes.
According to De Koninck et al., this has never been
done for a LSTM-based technique from predictive
process monitoring [9]. Against this background, our
research goal is to design a technique for a next click
recommender system with context-aware LSTMs. We
contribute to both academia and practice in two ways
by providing a context-aware technique for the next
click prediction that is evaluated with a real-life web
usage log. First, the technique is designed to work
with three different configurations, of which one is
embedding-based. Second, we present a new use
case for analytics-based services with the characteristics
displayed in Table 1.

2. Related work

In this paper, we mainly deal with two streams
of research that are currently converging: web usage
and process mining. Process mining is a technology
for analyzing business processes from process data
[11]. This data, which is usually referred to as event
logs, is commonly obtained from enterprise information
systems like SAP ERP. Web usage mining is a research
field that emerged at the end of the 90s driven by
the increased number of websites and in particular,
webshops [12].

We focus on how to apply techniques from the
domain of process mining to clickstream data. As
said, the strong point of process mining techniques
is their process-awareness. That means recognizing
the sequential dependencies between events in the data
that belong to the same instance (i.e., a customer visit
on a website). In web usage mining, techniques for

predicting usage paths for users are surprisingly sparse.
This becomes evident when looking at the predictive
analytic capabilities of the most prominent commercial
systems. For example, the path analysis tool from
Google analytics2 or from Adobe analytics3 allow only
a purely descriptive analysis of the paths and therefore
these tools have a deficit in predicting a user’s future
software behavior [13, 14].

There have been several works applying process
discovery - that is, discovering process models from data
- to clickstream data [15, 16]. In this work, however,
we will adopt a technique from predictive process
monitoring which is a subbranch from process mining
[6]. It deals with making predictions about the next
process steps or other process outcomes like duration
from process data. Again, a key differentiator from other
techniques is the process-awareness meaning that the
predictive model “exploits an explicit representation of
the process model to make the prediction” [6].

Recommender systems in the domain of web usage
mining are usually focused on improving customer
conversion by suggesting items such as products or
content (e.g., videos or songs) [17]. In general,
these items are not sequential. For realizing such
a recommender system, there are different kinds
of approaches like collaborative or content-based
filtering [18]. However, because of the sequential nature
of recommending the next clicks, these approaches are
not applicable.

The first work to use recurrent neural networks
(RNNs) for predicting next clicked items mainly evolves
around the issue of missing user-profiles [19] which is
not a common issue within the context of enterprise
clickstream data, and they do not apply LSTMs. Pardos
et al. also make use of LSTMs, but they only predict the
next URL and not individual clicks or interactions [20].

3. Research method

This research follows the design science paradigm,
and the structure of this paper is based on the design
science publication schema that Gregor and Hevner
propose [21]. Our primary purpose is to design a
technique for a next click recommender system with
context-aware LSTMs which is our artifact. The artifact
consists of two components: an offline and an online
component.

We first presented related work on web usage mining
and process mining for problem identification. Then
we describe the design of the artifact, dealing with

2https://support.google.com/analytics/answer/1713056?hl=en
(retrieved on: 31.08.2019).

3https://docs.adobe.com/content/help/en/analytics/analyze
/ad-hoc-analysis/c-reports-paths.html (retrieved on: 31.08.2019).
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Table 1. Classification of our case following the taxonomy (based on Hunke et al. [10]).

Dimension Characteristics E/N
Data Generator Customer Non-customer Processes Objects N
Data Target Internal External N
Data Origin Customer Non-customer Processes Objects Environment N
Analytics Type Descriptive Diagnostic Predictive Prescriptive E
Portfolio Integration Stand-alone solution Wrapped around product Wrapped around service E
Service User Role Recipient Provider Interactor E

an LSTM-based approach for a recommender system.
Based on that, we consider three different configurations
consisting of the two components. Next, we evaluate the
artifact in regards to its predictive quality with a real-life
web usage log from a financial service provider. We
benchmark the obtained results with a hidden Markov
model (HMM). Finally, we sum up our contributions,
outline limitations, and describe future research needs.

4. Towards an LSTM-based next click
predictor

In this section, we describe an approach for the
next click prediction in the context of the web usage
mining domain. The approach is composed of an offline
and an online component. In the offline component,
an LSTM-based predictor is learned from a web usage
log. In the online component, the learned LSTM-based
predictor is applied to predict the next click of a running
web session. Before we specify these two components,
we define the underlying problem.

4.1. Problem statement

The next click recommendation system receives as
input a web usage log L4, which is a multi-set of
web sessions L = {ws1, ws2, . . . , wsl}, where l =
|L|. A web session represents the execution of a web
service and can be depicted as a sequence of clicks with
additional attributes. Each click of a web session and its
attributes represent a feature vector:

wsi = 〈〈c(i)1 , a
(i)
1,1, . . . , a

(i)
1,m1
〉,

〈c(i)2 , a
(i)
2,1, . . . , a

(i)
2,m2
〉, . . . ,

〈c(i)n , a
(i)
n,1, . . . , a

(i)
n,mn
〉〉,

(1)

where c(i)j for 1 ≤ j ≤ n represents the n clicks

of web session wsi and a(i)j,mj
the attributes associated

to click j. The number of attributes associated with a
4We use our own representation for describing the problem

statement.

click and the number of clicks per web session can vary.
Context elements are attributes in this formalization.
Every web session has a prefix (length k of a web
session) and a suffix (remaining part of a web session).
For example, the prefix of length 3 of the web session
w1 (disregarding context attributes) 〈c1, c2, c3, c4〉 is
〈c1, c2, c3〉 and the suffix is 〈c4〉. With regard to the
next click prediction, the length of the suffix is always 1.
For describing the artifact in the next chapter, consider
the web session ws1 with prefix length 3 as an initial
example, where the clicks within a web session are
ordered by their associated time step attribute.

ws1 = 〈(”Click 1”), (”Click 3”), (”Click 7”)〉. (2)

To complete this example, the suffix 〈c4〉 of ws1 has
the attribute value ”Click 10”.

4.2. Offline component: three configurations
to learn an LSTM

Figure 2 depicts a schema of the three different
configurations to learn an LSTM-based predictor for the
next click prediction. In the first configuration (LSTM
without context), only the click sequence of the web
usage log (control-flow information) is considered for
learning, whereas in the second (LSTM with context)
and in the third approach (LSTM with embedded context)
additional context information is used for learning an
LSTM. Each configuration consists of two steps - a
pre-processing step of the web usage log depending on
the received input data and an ensuing learning step.

4.2.1. Pre-processing The three configurations
considered in this paper are built upon each other.
Therefore, we start by explaining the pre-processing
step for the simplest one, the LSTM without context.

LSTM without context. In this configuration, the
offline component receives as input a web usage log L,
where each ws is only described by its click attributes.
Values of the click attribute are transformed into
numeric ones because an LSTM performs numerical
calculations (in most cases with stochastic gradient
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Figure 2. Three configurations of the offline

component.

descent) during the learning phase. To achieve that, we
apply a one-hot encoding for the click attribute values.
Based on our exemplary web session ws1, we have four
different click values and the one-hot encoding for the
first click attribute value ”Click 1” is (0,0,0,1). After
the numeric transformation, ws1 from (2) assumes the
representation in (3).

ws1 = 〈(0,0,0,1), (0,0,1,0), (0,1,0,0)〉. (3)

Each prefix of the pre-processed web sessionws1, as
represented in (3), is then transferred to the LSTM.

LSTM with context. In the second configuration,
the offline component receives as input a web usage
log L with context attributes. As the click values in
the previous section, the values of the context attributes
must also be transformed into numeric ones. We apply
an integer-mapping for context attributes with discrete
values. The first value of such an attribute is mapped to
0, the second one is mapped to 2, and so on. Missing
values are replaced by a dummy value. Further, not
to implicitly give one attribute more relevance than
another, we applied for each numerical context attribute
with a value range not equal to [0, 1] a min-max
normalization to grant equality among the attributes.
Missing values of a numerical attribute are previously
replaced by the mean of the existing values.

In order to continue with our exemplary web session
ws1, we add the context attributes User with the values
”User A”, ”User B” and ”User C” for the three clicks
and Browser of User with the three values ”IE, ”IE”
and ”Chrome” to it. After the numerical transformation
of the context attributes, w1 from (3) is represented as
in (4), where the values of the context attributes are

highlighted in bold.

ws1 = 〈(0, 0, 0, 1, 0, 0),
(0, 0, 1, 0, 1, 0),

(0, 1, 0, 0, 2, 1)〉.
(4)

Finally, each prefix of the pre-processed web session
ws1, as represented in (4), is then transferred to the
LSTM.

LSTM with embedded context. In the last
configuration, the offline component receives as input a
web usage log L with embedded context attributes. An
embedding of the context attributes enables to learn and
finally represent in the form of a low-level dimensional
vector semantic similarities between these attributes. To
embed the values of more than one context attributes per
click, we use the paragrah2vec embedding technique
distributed bag of words [22]. Note each context
attribute from the previous configuration can be used
for this embedding technique. Further, this technique
uses a shallow neural network that performs a stochastic
gradient descent to learn a vector representation. In
detail, at each iteration of the stochastic gradient
descent, a window is sampled, then a random context
attribute value is sampled from the window, and a
classification task is formed given the paragraph vector
(all context attribute values for a click). If the learning
converges, attribute values with similar meaning are
mapped to a similar position in the vector space. After
the embedding of the context attributes to a vector with
size 4, w1 from (4) is represented as in (5), where the
values of the context attributes are highlighted in bold.

ws1 = 〈(0, 0, 0, 1, 0.09, 0.12, -0.13, -0.15),
(0, 0, 1, 0, 0.17, 0.18, -0.01, -0.03),
(0, 1, 0, 0, 0.30, 0.31, 0.27, 0.35)〉.

(5)

Based on the representation of ws1 in (5), values of
context attributes for ”Click 1” are more similar to the
values of the context attributes for ”Click 3”. Therefore,
we suppose a higher dependence between ”Click 1” and
”Click 3” and a lower dependence between ”Click 1”
and ”Click 7” from a context perspective. Eventually,
each prefix of the pre-processed web session ws1, as
represented in (5), is then fed to the LSTM.

4.2.2. Learning an LSTM In the context of web
usage mining, we use the basic architecture variant of
LSTMs [7] (called vanilla LSTMs) for learning the
next click predictor for four reasons. First, LSTMs are
recurrent neural networks (RNNs) that are designed to
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handle temporal dependencies in sequential prediction
problems [23]. Second, LSTMs are resistant to
the vanishing or exploding gradient problem in the
case of long sequences [24]. Third, vanilla LSTMs
learn predictive models with good predictive quality
on different data sets [25]. Fourth, first works in
the field of predictive process monitoring have shown
(e.g., [26, 27]) that vanilla LSTMs can successfully learn
predictive models from context data. At this point,
it should be mentioned that other LSTM architecture
variants exist that are geared towards (at least to a certain
degree) other criteria (e.g., the gated recurrent unit [28]
with a simpler RNN architecture for reaching a shorter
training time). In addition, since the focus of our work is
on predictive business process monitoring as a sub-field
of process mining [29] techniques from other fields (e.g.,
sequential pattern mining [30]) are not considered.

Further, a vanilla LSTM is an extension of the
vanilla RNN. The vanilla RNN is the most fundamental
architecture type of RNNs. In such an RNN, each
hidden layer consists of recurrent artificial neurons
(RNN units), i.e., neurons with a feedback connection.
This connection enables RNNs to store representations
of past clicks. RNNs can be unfolded, i.e., there are
equivalent copies of the network, one copy for each time
slice and each copy passing a message to the next one.
Figure 3 depicts an RNN with one unit and its unfolded
version.
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Figure 3. Vanilla RNN with one RNN unit (based on

LeCun et al. [23]).

More formally, at each time slice t, an RNN unit
takes the vector of its previous hidden state ht−1 as
well as its current input vector xt as input and then
outputs the vector of a new hidden state ht. The hidden
state vector ht can be calculated as ht = σh(Uhht−1 +
Whxt + bh), where σh is the activation function (often
a sigmoid function or other nonlinear function like
hyperbolic tangent or rectified linear function) applied
element-wise, Wh and Uh are the weight vectors and
bh is the bias. Based on ht, a third weight vector Wy

and a possible activation function σy calculate the output
vector yt as σy(Wyht+ by). The weight vectors Wh,Uh

and Wy as well as the biases bh and by are parameters to
be learned.

However, vanilla RNNs can not learn from long

sequences, because of the vanishing or exploding
gradient problem [24]. To remedy this problem, vanilla
LSTM cells introduce next to the state vector ht an
internal memory in the form of a vector (ct) and different
gates to control this memory vector. In general, ct and
ht can be calculated as:

ct = ft ∗ ct−1 + it ∗ gt,
ht = ot ∗ tanh(ct),

(6)

where, ft, it, ot and gt ∈ (0, 1) are the gates and ∗
describes the point-wise multiplication. ft (forget gate)
determines how much of the previous memory is kept,
it (input gate) controls how much new information is
stored into memory, gt (gate gate or candidate memory)
defines how much information is stored into memory
and ot (output gate) determines how much information
is read out of the memory. Typically, the gates are
parameterized as:

ft = sigmoid(Uf ∗ ht−1 +Wf ∗ xt + bf ),

it = sigmoid(Ui ∗ ht−1 +Wi ∗ xt + bi),

ot = sigmoid(Uo ∗ ht−1 +Wo ∗ xt + bo),

gt = sigmoid(Ug ∗ ht−1 +Wg ∗ xt + bg),

(7)

where the weights Uf,i,o,g and Wf,i,o,g as well as the
biases bf,i,o,g are parameters to be learned.

4.3. Online component: apply an LSTM for
the next click prediction

The online component receives a running web
session, takes as input the learned model from the offline
component, and outputs a prediction of the next click.
Figure 4 depicts the schema of the online component for
the three configurations proposed in chapter 4.2.

For a running web session with a length > 1,
the two steps - pre-processing and prediction - are
performed according to the respective configuration. In
line with Tax et al., we only consider running web
sessions with a length of > 1 for the next click
prediction, since for a running web session with a
length of 1 there is insufficient data available to base
the prediction upon [31]. The pre-processing for each
configuration takes place as already described in the
offline component. Subsequently, in the prediction step,
a pre-processed web session is fed to the LSTM model,
and the LSTM model outputs a probability distribution
over all possible next clicks in the form of an output
vector ot, where t is the current time step. Finally, the
click with the highest probability in ot is determined as
the next click.
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5. Evaluation

In this section, we provide an evaluation of the three
proposed configurations in terms of predictive quality
for the next click prediction. We used a real-life web
usage log from a software service provider in the finance
sector.

5.1. Baseline

To evaluate the usefulness of our technique, we
compare the results with an HMM. HMMs are popular
for sequence prediction, e.g., in the field of grammatical
inference. For the calculation of our baseline, we
make use of an implementation developed for next event
prediction with dynamic Bayesian networks [32] which
can be found on GitHub5.

5.2. Web usage log

For the evaluation, we used a real-life web usage log
from a financial service provider. In the case study, the
usage behavior of the customers was tracked. Therefore,
the log consists of a case ID, click ID, time stamp,
and six context attributes. The characteristics of these
variables are shown in Table 2. The data set includes
2,142 sequences with a maximum length of 247 clicks.
Figure 5 shows the distribution of the sequence lengths.
It can be seen that the web usage log includes a lot
of shorter sequences than longer ones, with a mean of
eleven clicks and a 90% quantile of 93 clicks.

5The source code of our baseline is available on GitHub at
https://github.com/fau-is/coppa-matlab.

Table 2. Characteristics of the web usage log.
# sequences 2,142
sequence lengths 1-247
median sequence length 11
# click types 161
# context attributes 6
context attribute sizes [16, 44, 120, 222, 154, 46]

The web usage log covers 161 different possible
click types. Whereas, 23 different click types perform
90% of all executed clicks. This imbalance is due to the
fact that the evaluation is based on a real-life web usage
log. Here certain types of clicks, e.g., ”Open Browser”
or ”Close Browser” are made in almost every sequence
of the process.
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Figure 5. Distribution of sequence lengths.

The data contains cycles, i.e., recurrent clicks,
created if the user clicks on one button multiple times
in a row. This can be on purpose or when required
by the process, e.g., pressing the save-button after
entering date in each field of a form. On the other
hand, recurrent clicks can be unintentionally when
double-clicking a button. These recurrent clicks have a
different timestamp, different context attributes, or both.

5.3. Evaluation procedure

To evaluate how well the three configurations of our
approach work, we compared them on the real-life web
usage log described in the previous section.

First, we used a ten-fold cross-validation with
a web-session-based random sampling for each
configuration as well as for the baseline to avoid an
overfitted learning by the learning algorithms. Note in
predictive process monitoring, there are two essential
sampling techniques case-based and event-based
sampling [33]. In this paper, we applied the case-based
sampling technique for web sessions since we want
to preserve the sequential structure concerning the
LSTM. Also, this technique is more realistic in terms
of the next click prediction task. Furthermore, in each
of the ten iterations non-overlapping 10% of the web
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usage log data are used for testing (application of
the online component to predict the next click). The
remaining 90% of each iteration are used for training
(application of the offline component to learn the next
click predictor).

In the training phase of the LSTMs batch
normalization with a batch size of 256 was applied,
where gradients are updated after each 256th web
session prefix of the training set. For the learning
phase of the LSTM, we set the hyperparameters number
of epochs to 100 and number of hidden layers to
1. With regard to the single LSTM layer, the
activation function tanh is set to ensure convergence
at long web sessions, and a drop-out rate of 0.2 is
configured to avoid overfitting. Finally, the Nadam [34]
optimization algorithm was used in each LSTM model
with categorial cross-entropy loss. For other parameters
of this optimization algorithm (e.g., learning rate), the
default values were used. Further, the shallow neural
network used for training the embeddings of the context
attributes has also configurable hyperparameters. For
this neural network we set the number of epochs to 10,
the learning rate to 0.025 with a decrease of 0.0025 per
epoch, the size of output feature vector to 16, the window
size to 5, and the minimum count to 1.

After learning the predictors, we used the online
component on the test set for predicting the next click.
We used the accuracy as an evaluation measure since we
are interested in the proportion of correct predictions.
For that, we calculated the mean as well as the standard
deviation over the ten obtained accuracy values.

Experiments were run on a workstation with 12
CPUs and 64 GB RAM. In detail, the approaches
were fully implemented in Python 3.7. Tensorflow
(GPU) 1.13.1 [35] was used for constructing all LSTM
models and embeddings were implemented based on
Gensim [36]. Finally, the source code of the LSTMs
is available on GitHub6.

5.4. Results

We calculated both the average accuracy of the ten
folds and the standard deviation for all approaches. The
results of our evaluation can be found in Table 3.

Compared to the HMM, we could achieve much
higher values for the average accuracy and much
lower values for the standard deviation for each LSTM
configuration. The configuration with context could
achieve higher average accuracy and a lower standard
deviation than the configuration without context.
However, for the LSTM with an embedded context,

6The source code of the LSTMs is available on GitHub at
https://github.com/fau-is/hicss2020-service-analytics.

Table 3. Average accuracy and standard deviation of

the ten folds for each approach.
Avg. acc. Std. dev.

HMM (25 hidden states) 0.351207 0.020517
LSTM 0.603680 0.004378
LSTM + context 0.607522 0.004975
LSTM + embedded context 0.615279 0.003913

we could achieve the highest average accuracy with
an especially low standard deviation. Figure 6 shows
the accuracy value for each fold per configuration.
The LSTM with context information reaches a higher
accuracy for nine out of ten folds. However, with the
LSTM and embedded context information, we got the
highest values for nine out of ten folds.
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Figure 6. Accuracy value for each fold per

configuration.

In line with Tama and Comuzzi [33], we conducted a
significance test to analyze whether the accuracy values
for the three configurations are significantly different
from each other. Note the baseline was not included
in this significance test since it is obvious that each
LSTM-based configuration outperforms the baseline.
First, we show with a Friedman test [37] that there
is a significant difference between the ten accuracy
values for each of the three configurations on a 1%
significance level. This means that the accuracy values
of at least two configurations are significantly different
from each other. To find out what these ones are,
we conducted a Nemenyi test [38]. This pair-by-pair
comparison showed that the LSTM and the LSTM with
embedded context is the only pair of configurations that
results in significantly different accuracy levels on a 1%
significance level.

5.5. Discussion

First, we showed with our results that an
LSTM-based technique for predicting next clicks
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achieves a much higher accuracy than an HMM
(baseline). A possible reason could be the length of the
web sessions and the long-term dependencies between
clicks. HMMs are not suitable in this case due to
the Markov property (i.e., a future state only depends
on the current state), but RNNs provide the necessary
long-term memory capabilities [39]. Especially, as
stated in section 3.2.2, LSTMs can learn from long web
sessions because of their internal memory as well as
their different gates that control this memory.

Further, context information plays an important role
in predicting the next clicks in web usage mining.
In the field of predictive process monitoring, van der
Aalst et al. found that it could be insufficient to
base predictive process monitoring on pure process
data [40]. Márquez-Chamorro et al. argue that context
information can improve the predictive quality as it
adds valuable information to the predictive model [6].
In the field of web usage mining, it is certainly more
complex to predict the next clicks than predicting events
in predictive process monitoring. This is due to the
fact that a web session usually represents a longer
sequence of clicks (a stream of clicks) and has a larger
solution space in terms of different click types. The
used web usage log in this paper has a maximum
sequence length of 247 and 161 unique click types. For
instance, the popular bpi2012 (subprocess work item)
event log [41] in predictive process monitoring (e.g.,
used in [31]) has a maximum sequence length of 74 and
6 unique event types. Therefore, context information has
high relevance for web usage mining.

However, given our results, the proposed technique
with a context-aware configuration for predicting next
clicks does not bring a significantly higher accuracy
at first glance compared to the configuration without
context information. This may be because the
available context attributes are not meaningful enough
in describing the web sessions of the web usage log. We
suppose that only a small part of the existing web session
context is described by these attributes, and most of the
web session context information is hidden. Furthermore,
only a specific subset of the given context attributes
could be most significant for describing the web sessions
of the web usage log.

Comparing the obtained results of the two
context-aware configurations, we can observe that the
kind of context representation influences the predictive
quality of an LSTM. In the first context-aware
configuration of our technique, we numerically
transformed the context information with the use
of the data mining techniques integer-mapping and
normalization. To encode categorical attributes, we
preferred an integer-mapping over a low-level encoding

with a high expressiveness. For example, a one-hot
encoding would lead to many columns and therefore,
an inefficient computation if the context attributes
have a lot of values. However, with this configuration,
the average accuracy is higher than the configuration
without context information, but rather limited in
comparison to the configuration with embedded context
information.

In the second context-aware configuration of our
technique, we embed the context information on
click level with a paragraph2vec technique to capture
information about the dependencies between the context
attributes. With this configuration, we could achieve
the highest accuracy. Beyond our chosen embedding
technique, there are further and maybe more expanding
approaches for an embedding on click level. One
example is an embedding of the context attributes
together with control-flow information (means the
click information itself and its timestamp). Another
possibility could be a hierarchical approach where
first the representation of two separate vectors (one
for context information and another for control-flow
information) is learned, and then based on these a third
one is learned representing both types of information.
We do not consider these broadening approaches in this
paper because our focus is initially on the representation
of the context itself.

6. Conclusion and future work

As outlined in the related work section, the two
research streams process mining and web usage mining
are currently converging. Thus, we presented a
new use case for an analytics-based service with
a technique touching both domains. For this use
case, we adopted an LSTM-based technique from
predictive process monitoring (a sub-field of process
mining) to predict the next click of running web
sessions in the context of web usage mining. For
this technique, the three configurations LSTM without
context, LSTM with context, and LSTM with embedded
context were considered. According to De Koninck et
al., paragraph embeddings have not yet been evaluated
for a LSTM-based technique in the field of predictive
process monitoring [9]. Therefore, this paper provides
the first contribution in this direction. We evaluated
our proposed technique with a real-life web usage log
provided by a financial service provider. Based on
that, we could show that all of the three configurations
performed better than our baseline (HMM) in regard
to accuracy and standard deviation. A higher
prediction accuracy translates to improved perceived
service quality for the users of the recommender
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system. Among the three configurations, the LSTM
with embedded context achieves a significantly higher
accuracy and the lowest standard deviation since
it exploits the dependencies between the considered
context attributes. Our work includes four main
limitations. First, we were only provided with one
real-life web usage log from the already mentioned
financial provider to evaluate our approach. Second,
we did not implement the recommender system as such
into the software interface, and therefore, we could not
evaluate the actual usefulness of the recommendations
for end-users. Such an implementation would allow
us to make statements about user satisfaction and the
impact on the perceived service quality. Third, we did
not perform a hyperparameter optimization (e.g., a grid
search) for the LSTM, because this would go beyond the
scope of this work. Last but not least, we neglected the
fact that web interfaces can change quickly compared to
desktop software interfaces. We did not consider how
concept drift might impact the quality of our predictions
and subsequently of the service [42].

For future research, we plan to evaluate our
technique with additional real-life web usage logs
with more context attributes (maybe) provided by
different companies. Another avenue for future
research is to investigate other techniques for encoding
categorical attributes that are both more advanced than
an integer-mapping and less sparse than a one-hot
encoding (e.g., binary encoding) [43]. Finally, we plan
to find a way to split long web sessions into logically
meaningful sub web sessions. For example, a long web
session can include a multitude of different transactions
where each transaction is represented by a cluster of
clicks that belongs to the same transaction.
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[42] L. Baier, N. Kühl, and G. Satzger, “How to Cope with
Change?-Preserving Validity of Predictive Services over
Time,” in Proceedings of the 52nd Hawaii International
Conference on System Sciences (HICSS), pp. 1085–1094,
2019.

[43] K. Potdar, T. S. Pardawala, and C. D. Pai, “A
Comparative Study of Categorical Variable Encoding
Techniques for Neural Network Classifiers,”
International Journal of Computer Applications,
vol. 175, no. 4, pp. 7–9, 2017.

Page 1551


