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Abstract

The evaluations of option prices and implied
volatility are critical for option risk management and
trading. Common strategies in existing studies relied
on the parametric models. However, these models are
based on several idealistic assumptions. In addition,
previous research on option pricing mainly depends
on the historical transaction records without
considering the performance of other concurrent
options. To address these challenges, we proposed a
convolutional neural network (CNN) based system
for predicting the implied volatility and the option
prices. Specifically, the customized non-parametric
learning approach is first used to estimate the
implied volatility. Second, several traditional
parametric models are also implemented to estimate
these prices as well. The convolutional neural
network is utilized to obtain the predictions based on
the estimation of the implied volatility. Our
experiments based on Chinese SSE 50 ETF options
demonstrate that the proposed framework
outperforms the traditional methods with at least
40.11% performance enhancement in terms of RMSE.

1. Introduction.

An option is a financial derivative that gives the
buyer the right, but not the obligation, to buy or sell a
security (or other financial assets) at an agreed-upon
price. This means that options can effectively reduce
the risk since they allow investors to fix a price for
future transactions. The option has already become
one of the mainstream of derivatives. The volatility
estimation and option pricing are critical to
transaction and risk management.

Option pricing initiated by Black-Scholes model
(BS) [1] suffers from unrealistic assumptions,
including geometric Brownian motion (GBM), and
the constant volatility, etc.. Later, a large number of
polished parametric models, including jump-diffusion
(JD) [2] and stochastic volatility (SV) [3] were
proposed. One of the most common problems of
these parametric models is that they were still built
on some strict and idealistic assumptions, for instance,
path continuity and non-arbitrage conditions. Such
simplification is too naive and impractical to capture
the complex and volatile option markets in the real
world [4, 5].

In addition, earlier studies on option pricing
mainly relied on its historical transaction records
without considering the concurrent options, in a way
similar to evaluate stock indexes. But unlike the stock
market, there are always several options with
different strike prices traded at the same moment.
The stock index is shaped like a piece of music, with
one single transaction at one particular moment.
While the option transaction is a resemblance to a
movie. And there is an option matrix when taken a
shot at some point on the option transaction market.
Hence, two other characteristics have been ignored,
namely, the option comovements and time-invariance
problems.

To address these challenges, we proposed an
option pricing system based on convolutional neural
networks (CNN). In particular, the customized non-
parametric learning approach is first utilized to
estimate the implied volatility. Second, several
traditional parametric models are applied to estimate
option prices. And then convolutional neural
networks are used to estimated prices based on
different input sets. This pricing system has several
unique contributions as follows:

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 1431
URI: https://hdl.handle.net/10125/63915
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326835312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 The customized non-parametric learning
approach is free of the unrealistic
simplifications as assumed in the traditional
parametric models.

 It can consider the influence of concurrent
options when estimating the implied volatility
and the option prices.

 The pattern recognition mechanism of CNN is
utilized to tackle the option comovements and
time-invariance problems.

Our experiments based on Chinese SSE 50ETF
options demonstrate that the proposed intelligent
system outperforms the traditional parametric models
(Black-Scholes model, jump-diffusion model, and
stochastic volatility model) with at least 40.11%
performance enhancement in terms of RMSE.

2. Related work.

In this study, we focus on the estimation of the
implied volatility and prices of options. Previous
studies can be roughly divided into two streams, that
is, the parametric models, and non-parametric models
that rely on the modern machine learning approaches
[5, 6].

2.1. Parametric models.

The volatility is an important risk indicator for
financial assets. Implied volatility (IV) is the
estimated volatility of a security's price and is most
commonly used when pricing options. The
determined volatility function (DVF) is the most
common volatility model which calculates the
implied volatility using option strike prices and time
to maturity. It is claimed to have the ability in
capturing the smile and smirk pattern of options [6, 7,
8]. However, the DVF focuses on linear patterns
which are too simple to capture the complex
volatility patterns. Later on, several more
sophisticated parametric models have been developed
to estimate the implied volatility [9]. However, it is
still hard for them to adequately capture the dynamics
of the volatile options [10].

The earliest work for option pricing can be traced
to the Black-Sholes (BS) model [1]. BS has been
widely used by practitioners due to its capability in
providing a closed-form solution for option prices
under an assumed simplified condition. However, it
is also widely acknowledged that the assumptions of
BS deviate severely from reality. Among which the
geometric Brownian motion (GBM) assumption of
the returns raises much controversy because it treats

the volatility as a constant which severely violates the
real market conditions [11, 12].

One alternative to improve this situation is to
substitute the constant volatility by its estimations.
When taking DVF predictions, we obtain the so-
called ad hoc Black-Sholes model (AHBS) [13, 14,
15]. Quite a few studies found that AHBS approaches
outperform much better than classical BS models [16,
17].

Another branch of extensions substitutes the
original BS assumptions into more sophisticated and
general formations. The Jump-diffusion volatility (JD)
model and the stochastic volatility (SV) model are
two good examples of this approach. The JD model
assumes that the movement of underlying assets
follows a stochastic process with jumps to Brownian
motion [2]. The SV model assumes that volatility
follows a random diffusion process [3]. Later, several
models are proposed to release the strict assumptions
of the traditional Black-Sholes (BS) model including
the variance gamma model [12, 18] and the
generalized autoregressive conditional
heteroskedasticity (GARCH) pricing models [37].

Even though many efforts have been devoted to
releasing market constraints of these parametric
models, they are still restricted by the assumptions of
market frictionless and risk-neutrality theories which
are hard to be achieved in practice [11].

2.2. Non-parametric models based on
machine learning methods.

With the rapid development of information
technology (IT), researchers have taken a further step
by introducing machine learning techniques to
estimate the implied volatility and the prices of the
options. These non-parametric models are free of the
constraints compared to the aforementioned
parametric models.

One of the pilot studies utilizing machine learning
techniques to estimate option volatilities is the work
of Malliaris and SalchenbSerger. It applied neural
networks (NN) to forecast the implied volatility (IV)
of S&P100 [19]. Ahn et al. applied neural networks
to measure KOSPI 200 (Korean index) options under
Greek inputs and achieved a promising predictive
performance [20]. Mostafa et al. demonstrated a
neural network’s capabilities in predicting option
volatilities and utilized the estimated volatilities to
further predict option prices with the BS model [21].
Researchers also utilized other machine learning
methods to estimate the implied volatility. For
instance, Audrino and Colangelo implemented
regression trees to forecast the implied volatility by

Page 1432



performing an empirical study on S&P500 index
options [22]. Zeng and Klabjan designed an online
adaptive primal support vector regression (SVR) to
evaluate the volatilities and performed an empirical
study on the E-mini S&P 500 options [23]. Both of
these studies proved the qualification of machine
learning methods in estimating the implied volatility.

The earliest work of non-parametric models based
on machine learning methods for option pricing can
be traced back to Hutchinson et al. Their empirical
test on S&P 500 futures options demonstrated that
neural networks could be useful substitutes when
parametric methods fail [4]. Thereafter, studies
aiming to improve the predicting accuracy have been
tried by academia in mainly three aspects.

First, the enhancements of neural networks have
been introduced. For instance, Gencay et al. utilized
neural networks with Bayesian regulation, early
stopping, and bagging mechanisms to test on the S&P
500 index options, and found out that neural
networks achieved better performances than the
traditional parametric models [24].

Second, other machine learning methods have
been applied to option markets. For instance, support
vector regression (SVR) was utilized in different
option markets by Wang [26] and Park et al. [5].
They claimed that both NN and SVR qualify to
evaluate the option prices. In addition, Park et al.
compared non-parametric models, including support
vector regression and neural networks, to three
classical parametric models (BS, SV, and JD), and
claimed that the non-parametric methods
significantly outperformed the traditional parametric
methods [5]. A recent study of Liu et al. also
demonstrated the efficiency of neural networks in
predicting option prices [27].

Third, different inputs were implemented to
option pricing. For instance, Liang et al. used the
estimations of conventional models as an input.
Specifically, the inputs of their model include prices
calculated from the binomial tree, the finite
difference method and the BS models [25]. Wang YH
[28] and Wang CP et al. [29] discussed the effects of
different volatility estimations as input features, their
empirical tests suggested that other than fundamental
factors, different volatilities have different influences
on option pricing performances.

Traditional parametric methods are typically
based on some overly idealized assumptions
including non-arbitrage conditions, lognormality, or
sample-path continuity. Also, previous studies on
estimating option prices mainly depend on historical
transaction records without considering the
performance of concurrent options [30]. In fact,

several options are traded at the same moment and
affect each other simultaneously.

In this study, we proposed a CNN based
intelligent system for estimating the implied volatility
and option prices. Our experiments based on Chinese
SSE 50 ETF options demonstrate the superiority of
the proposed system compared to traditional
parametric methods.

The remainder of this article is organized as
follows: Section 3 describes the structure of the
proposed pricing framework, including the feature
settings and the CNN structure. Section 4
demonstrates the empirical data statistics, the training
scheme, and the evaluation metrics. Section 5
presents the results based on SSE 50 ETF options.
Section 6 concludes with the main findings.

3. System design.

In this study, the pattern recognition mechanism
of CNN is used to tackle the option comovements
and time-invariance problems of options markets. In
particular, we first utilized CNN to estimate the
implied volatility. Second, we applied several
traditional parametric models, including jump
diffusion (JD) model, stochastic volatility (SV)
model, and ad hoc Black-Scholes (AHBS), to
estimate option prices. And we also used
convolutional neural networks to estimate option
prices based on different input sets.

3.1. Features.

Figure 1. The option matrices.

In practice, several options were traded at the
same time which may interact with the pricing of
relevant options [30]. It is of great necessity to
consider such real-time interference among different
options. In this study, we model options with
matrices as illustrated in Figure 1. In these matrices,
the row iO represents the option with thi strike, and
the column jF stands for the thj input feature of an
option.

Table 1 lists all the related input features.
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Table 1. Related indicators of options.
Features Description Output/In

put
C Prices for call options, unobservable. Output

IV
The volatility implied by the market
price of the option based on an option
pricing model.

Output
/input

K
The price at which an option contract
can be exercised. Input

S The spot price of the underlying
asset. Input

r The rate earned on a riskless asset. Input
T The final payment date of options. Input
t The transaction moment. Input


The time remaining until an option
contract expires, T t . Input

M
A description relating strike price to
the underlying price, S K . Input

In this study, we estimate the implied volatility
and the option prices based on different feature
combinations. The following two subsections explain
the features applied to estimate the implied volatility
and option prices, respectively.

Features of volatility estimation. Typically,
implied volatility can be derived from the BS model
once we know the option prices [13, 27, 29]. Since
the option price is unknown, the value of implied
volatility is highly related to the other four features
involved in the BS model, including the strike
price K , the underlying price S , the risk-free rate r ,
and the time to maturity  [31].

The most popular way to predict implied
volatility is using a deterministic volatility function
(DVF) [6, 8]. The DVF assumes that implied
volatility is highly dependent on time to maturity 

and moneyness M (denoted as S K ). In particularly,

 ,IV DVFf M  (1)

where DVFf is a linear function with binomial or
trinomial forms. IV is the dependent variable.

Later, variants of the DVF with different
combinations of these four key features were
proposed to further improve the predictive accuracy
including Rubinstein [6]; Dupire [8]; Kim and Kim
[13]; Wang et al. [29]; Andreou et al. [15]; Liu et al.
[27]. In this paper, we test three different feature
combinations when predicting the implied volatility.
Specifically,

 The fundamental set: it includes the classic four
features  , , ,K S r which can be directly
observed from options markets.

 The constructed set: it includes two features
 ,M  that are typically utilized in DVF.

 The combined set: it combines both the
fundamental variables  , , ,K S r that can be
directly observed from the market and the
constructed indicator M represents the
moneyness of options.

Features for option pricing. The Black-Scholes
(BS) model is the foundation of the option pricing [1].
It provides the option prices based on several
idealistic assumptions, including the constant
volatility of the underlying prices, which contradict
reality. In particular,

 , , , ,BS BSC f K S r   (2)

where BSC is the call option prices under the BS

model, BSf is the pricing formula of BS, and  is the
constant representing the volatility of underlying
assets.

Some researchers have taken a further step by
extending BS to AHBS (ad hoc Black-Scholes) and
replaces the constant volatility σ with estimated
implied volatility IV obtained by some predictive
models including DVF [13, 14, 15]. In particular,

 , , , , IVAHBS BSC f K S r   (3)
where AHBSC is the call option prices under the
AHBS model, and IV is the estimated implied
volatility. The AHBS model releases the unrealistic
assumption of constant volatility and is able to obtain
better performances [16, 17].

Based on the BS and the AHBS structure, we
applied two feature sets to estimate option prices. In
particular,

 BS-based set: it adopts the variables  , , ,K S r
in the classic BS model.

 AHBS-based set: it adopts the variables
 , , , , IVK S r  in the AHBS model. Here, IV can
be estimated by DVF or CNNs.

3.2. CNN-based Predictive model.

The fluctuation of an option is affected by the
relevant options. A good example is SSE 50 ETF
options. It has several options with different strike
prices reflecting the different investors' expectations
on the future trend of the SSE 50 Exchange Traded
Funds. Hence, the other two characteristics were
ignored by previous studies.

 Option comovements. The expectation of one
option can interfere with the relevant options
with close strikes. This is essentially an option
comovement problem for option estimation.
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For instance, for the vertical range (also the
strike price dimension), the hidden relations
between the options with strike prices of 2.5
and 2.55 can exist between the options with
strike prices of 2.55 and 2.6 [33].

 Translation invariance. Security comovement
is translation invariance within different
horizontal and vertical ranges [32]. Such
comovements relationships among neighboring
options are also time-series patterns. In other
words, it can coexist during a certain period and
disconnect with external factors. For example,
the patterns among deep out-of-money options
may exist until the options are expired.

In this study, we use the pattern recognition
mechanisms of the CNN model to address the option
comovement and translation invariance issues. Figure
2 presents the CNN structure comprised of
convolutional layers, pooling layers, and dense layers.

Figure 2. The convolutional neural network.

The convolutional layer. The convolutional layer
is the core building block of a CNN which allows the
network to concentrate on low-level features in the
first hidden layer, then assemble them into higher-
level features in the next hidden layer, and so on.
This hierarchical structure allows us to integrate the
movements of neighboring options of one option to
estimate its future strikes. In our study, the option
feature matrix is the input feature map. The
convolutional layer utilizes kernels (or filters), a
matrix with wK width and hK height, to assemble
features into the receptive field with the size of

h wK K to form the extracted feature maps. This is also
known as the convolutional operation. As shown in
Figure 2, it applied 3 3 kernel to assemble three
adjacent options with three neighboring features to
form a feature map. Specifically, the neuron ,

l

i jx in
the row i , the column j of a given thl layer is
connected to the outputs of the neurons in the
previous layer located in rows i to + 1hi K  ,
columns j to 1wj K  .

1
, , ,

1 1

h wk k
l l
i j i j u v

u v

x b x w
 

 

    (4)

where 1
,
l
i jx
 is the output of the neuron located in the

previous  1 th
l layer, b is the bias, and ,u vw is the

connection weight in row u and column v on the
receptive field.

The max-pooling layer. Generally, a pooling
layer follows a convolutional layer to reduce the
feature dimension by downsampling the features
extracted by convolutional layers. The pooling
operation not only reduces the complexity of the
convolutional layers but also restrains the
phenomenon of over-fitting. Meanwhile, it enhances
the tolerance of features to minor distortions and
rotations [34]. Options traded at the same moment
may share some common features, for instance, the
underlying prices and the risk-free rate are the same
for those options traded at the same moment.
Therefore, we use the max-pooling to select superior
invariant features and improve generalization [35].

The dense layer. The previous operation obtains
multiple feature matrices, we need to flatten these
features into a vector to mapping the final output.
The dense layer, also known as the fully connected
layer, helps to achieve this goal and makes the
neurons between two adjacent layers pair-wisely
connected [36]. Two dense layers are used in our
designed CNN structure. The first one acts as a
simple neural network. The second one is simply a
linear mapping to the first one, and correspondingly
generates the multiple outputs referred to options
with different strike prices.

4. Preliminaries.

4.1. Experimental data.

To gauge the performance, we examine the
proposed system with the Shanghai Stock Exchange
(SSE) 50 ETF options, which is the first Chinese
stock option product that was established on February
9th, 2015. Call options with the maturity of Sept.
2016 were extracted from the Bloomberg database.
These samples include 1,770 observations with a
maximum of 163 trading days. Table 2 summarizes
the statistics of the sample data.

Table 2: Statistics of the sample data.
Index Mean Std. Num

Implied volatility 0.147 0.145
1770

Option prices 0.168 0.116
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4.2. Sliding window.

In the finance market, especially for those newly
established instruments, the same pattern may not last
for too long. For example, options with a long time to
maturities may have more stable characteristics,
compared to options with short time to maturities. As
a result, for options markets, a rule is usually valid
for only a short period. If the training window is set
too wide, the learning may not catch the correct trend
of the market, leading to imprecise forecasts [25].
Therefore, we perform an empirical test based on a
10-day-ahead training scheme. Figure 3 demonstrates
the dynamic training mechanism.

Figure 3. The 10-day-ahead training scheme.

4.3. Metrics.

This dynamic training scheme provides the next
day’s forecasting results. In this study, we obtain the
parameters and hyper-parameters based on the least
mean square error (MSE) criteria. The MSE is
defined as follows:

 2
1

1 Q
mkt mdl
q q

q
MSE p p

Q 

  (5)

where Q is the number of the options, mktp and mdlp
are market values and estimations respectively. Here,
the price p can also be the implied volatility.

In addition, we use the root mean square error
MSE (RMSE) to present the empirical results in the
following sections. Specifically,

 2
1

1 Q
mkt mdl
q q

q
RMSE MSE p p

Q 

   (6)

Particularly, if Q is the number of options on a
certain day, the RMSE measures daily predictions’
RMSE, hence referred to as daily RMSE in later
sections. And if Q is the number of the entire
predicting set, the RMSE referred to as the total
RMSE in later sections. These two kinds of
estimators will be used to evaluate the models’
performances in the following subsections.

5. Results.

This section presents the estimation analysis of
implied volatility and prices.

5.1. Implied volatility estimation.

Implied volatility is an important indicator of risk
management and option pricing. We estimate the
implied volatility based on three different feature sets
(Section 3.1). Table 3 shows the performance in
terms of RMSE, where Cstd. represents the
constructed feature input  ,M  , Fdmt. Represents
the fundamental feature set  , , ,K S r , and Comb. is
the combined set, which combines both the
fundamental and the constructed variables, that is,
 , , , ,K S r M .

Table 3. Implied volatility estimation.

Index
CNN for IV Baseline

Cstd. Fdmt. Comb. DVF

Daily
RMSE

Mean 0.078 0.076 0.075 0.081
Min. 0.015 0.006 0.008 0.015
Max. 0.914 0.996 0.955 0.988
Std. 0.104 0.107 0.106 0.105

Total RMSE 0.130 0.131 0.129 0.133

Table 3 presents the statistics of daily RMSE of
these 153 days’ predictions, along with the overall
statistics of these total 1703 option transactions. The
baseline model is the DVF function. It can be
observed that:

 The CNN models performed better than the
traditional DVF model in terms of both daily
and total RMSE. Specifically, the three CNN
models with different feature sets are better
than the DVF model in terms of the average
daily RMSE over 153 days (Table 3). The CNN
model with the combined feature set (Comb.)
decreased from 0.1334 to 01287 with an
enhancement of 3.55% in terms of the total
RMSE of 1703 option transactions.

 The CNN model with the combined input
feature set (Comb.) obtained the best
performance, which indicates that utilizing
more features is able to further improve the
predictive performance of the CNN model. One
of the good explanations is that the
convolutional mechanism of CNN is able to
dynamically merge the fundamental features to
obtain supreme fused features along with the
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constructed feature M , which is derived from
the fundamental features in a fixed economic
principle.

5.2. Option pricing with CNN.

Following implied volatility forecasting, in this
section, we estimate option prices by using the CNN
models based on two feature sets (BS-based set and
AHBS-based set) mentioned before in section 3.1.
We also use three other traditional parametric models
including SV, JD, and AHBS as baseline models.

Table 4 shows the pricing performances in terms
of RMSE.

Table 4. Option pricing

Index
CNN pricing Baseline models

CNNBS CNNAHBS SV JD AHBS

Daily
RMSE

Mean 0.018 0.017 0.041 0.029 0.035
Min. 0.003 0.004 0.003 0.001 0.002
Max. 0.081 0.082 0.107 0.119 0.154
Std. 0.013 0.013 0.022 0.022 0.036

Total RMSE 0.022 0.0209 0.045 0.0349 0.049

In Table 4, CNNBS means the CNN model for
option pricing based on the BS input set. CNNAHBS

represents the CNN model for option pricing based
on the AHBS input set. Similar to Table 3, this table
also presents the statistics of daily RMSE of these
153 days' predictions, along with the overall statistics
of these total 1703 options.

It can be observed that:
 The CNN models outperform the traditional
parametric models (SV, JD, and AHBS) in
terms of both daily and total RMSE.

 The JD model outperforms the other two
parametric models (SV and AHBS model).

 Both CNN Models with different feature sets
are better than the best-performed JD model in
terms of the average daily RMSE over these
153 days. The CNN model with the AHBS-
based input set (CNNAHBS ) decreased from
0.0349 to 0.0209 with an enhancement of
40.11% in terms of the total RMSE of these
1703 option transactions.

 The CNNAHBS model obtains better
performance than the CNNBS model, which
suggests that utilizing additional feature IV
that calculated from the previous section
(section 5.1) is able to further improve the
predictive performance. One of the good
explanations is that IV calculated from another

CNN model represents the option risks that can
contribute to the evaluation. And the
convolutional mechanism of CNN is able to
dynamically merge the input features to obtain
supreme fused characteristics that lead to more
precise results.

6. Conclusions.

Previous studies on option pricing are mostly
based on some strict and unrealistic assumptions,
which are too limiting to capture the complicated and
volatile option markets in the real world. In addition,
these studies estimate an option price mainly relies
on its historical transaction records without
considering the comovements and translation
invariance problems of other concurrent options.

In this study, we use pattern recognition of CNN
to tackle these problems. We proposed a CNN based
system for evaluating the option values. We consider
the comovements and time-invariance of options
when estimating the implied volatilities and prices. In
particular, the customized non-parametric learning
approach is first utilized to estimate the implied
volatility. Second, several traditional parametric
models are applied to estimate option prices. And
then convolutional neural networks are used to
estimated prices based on the volatility estimations.

The customized non-parametric learning structure
is tested with SSE 50ETF options. The empirical
result shows that CNN outperforms than traditional
parametric models in estimating implied volatilities
and option prices. Specifically, the CNN model
decreased from 0.0349 to 0.0209 with an
enhancement of 40.11% in terms of the total RMSE
of 1703 option transactions than the best-performed
JD model. In addition, derived features including
moneyness M and implied volatility IV can further
improve the estimation accuracy, as that the
convolutional mechanism of CNN can dynamically
merge the input features to obtain supreme fused
characteristics that lead to more precise results.
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