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Abstract

Despite the abundance of available urban data
and the potential for reaching enhanced capabilities
in the decision-making and management of city
infrastructure, current data-driven approaches to
knowledge discovery from city data often lack the
capacity for collective data exploitation. Loosely
defined data interpretation components, or disciplinary
isolated interpretations of specific datasets make it
easy to overlook necessary domain expertise, often
resulting in speculative decision-making. Smart City
Digital Twins are designed to overcome this barrier by
integrating a more holistic analytics and visualization
approach into the real-time knowledge discovery
process from heterogeneous city data. Here, we present
a spatiotemporal knowledge discovery framework for
the collective exploitation of city data in smart city
digital twins that incorporates both social and sensor
data, and enables insights from human cognition. This
is an initial step towards leveraging heterogeneous city
data for digital twin-based decision-making.

1. Introduction

Prior to the big data revolution and emerging
sources of urban data, researchers studied the dynamics
of cities with relatively high levels of abstraction,
mostly from a theoretical perspective. Recently,
researchers have begun to shift their focus to the
problem of making sense of the flood of high resolution
spatiotemporal city data that is now available, linking
it to growing urbanization issues. How we make
sense of this new abundance of city data determines
how we make decisions that will shape the future
of cities and the quality of the life of their citizens.
A city is generally studied from the perspective of
its largest infrastructure elements and its sustainability
deficit. While a city’s infrastructure systems provide
fundamental services such as water, energy, transport,
and communication for its citizens, these services

significantly impact sustainability. Research shows that
all of the United Nations (UN) 2030 Agenda targets
for 5 of its Sustainable Development Goals (SDGs 3,
6, 7, 9, and 11) are influenced by urban infrastructure
[1, 2], highlighting the importance of interdependencies
among city infrastructure and their collective impact on
urban sustainability. The availability of high resolution
spatiotemporal sensor data for city infrastructure
services is opening up important opportunities to
take advantage of its unique potential to support
enhanced decision-making and better management of
cities towards sustainability. Moreover, acquiring
spatiotemporal knowledge of events that take part in
relation to urban infrastructure elements from social data
(e.g., georeferenced data from social media and mobile
applications) provides additional insights into city
dynamics. The accurate exploitation and interpretation
of these heterogeneous data will enable us to capitalize
on smart city interventions that not only improve the
sustainable operation of the city’s infrastructure, but
also take the needs and preferences of its citizens
into consideration. However, current approaches to
knowledge discovery from city data often fail to provide
adequate capacity for collective data exploitation and
are limited in their ability to effectively integrate the
necessary domain expertise into data interpretation
components. This indicates that, irrespective of its
crucial role, domain expertise can be overlooked in the
process of automation or disciplinary isolation. Here
we discuss the current challenges facing knowledge
discovery from city data and present a spatiotemporal
knowledge discovery approach that better supports the
collective exploitation of city data in smart city digital
twins.

2. Knowledge Discovery from City Data

Effective knowledge discovery in cities utilizing the
heterogeneous data collected from multiple sources is
paramount in achieving smart city objectives. This
data can be generated from sensors or social platforms,
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and may take the form of structured (i.e., defined
and searchable data types) or unstructured data (e.g.,
audio, video, and social media postings) that are not
as easily searchable, including untapped information
that requires domain knowledge expertise to interpret.
Current approaches to knowledge discovery from city
data are either data-centric or focused on a particular use
case application.

Data-centric approaches focus on the collection,
processing, and management of city data regardless
of its source or application [3, 4]. These approaches
appear to have only a limited focus in establishing
a final data interpretation component. Cheng et al.
[3] built CiDAP, a city data and analytics platform
that integrates both unstructured and structured data
from human activities and Internet of Things (IoT)
sensor devices to serve part of a smart city testbed.
Although benefitting from a comprehensive system
architecture, the final ‘applications’ layer of the system
is only loosely defined, and there is little detail on how
the final data made available through such complex
data processing and analytics system can be utilized
in practice. Similarly, the services & applications
layer in Snchez et al.’s [4] smart city platform appear
to be disintegrated, branching out to loosely defined
application-specific data queries at the final stage.

In contrast, application-centric approaches to city
analytics tend to be overly focused on a particular
end point and may thus overlook any indirect
effects by excluding data sources [5, 6]. For
example, Jin et al.’s [5] IoT-based urban information
system is heavily focused on the management and
processing of the collected data, and is dispersed
into disciplinary applications. Its contribution to data
interpretation, which is the most critical step, is limited
to suggesting user-understandable visualizations while
acknowledging that it is “challenging to visualize
heterogeneous sensory data”. Application-centric
approaches such as Lècuè et al.’s [6] STAR-CITY,
a system built on human and machine-based sensor
data to implement semantic traffic analytics (i.e., a
focus on transportation), although application oriented
and discipline specific, suffers from the similar
limitations. Focusing on single infrastructure elements
fail to take into account the interdependencies between
different city infrastructure networks and can thus
lead to misleading conclusions. Cities are complex
evolving systems [7] and overlooking the complex
interdependencies between humans, infrastructures, and
technologies, along with sustainability concerns, may
fail to support integrated management decisions. Khan
et al. [8] has presented a more theoretical perspective on
integrating information when dealing with sustainability

and the socioeconomic growth of the city by collectively
examining crime and safety/economy and employment
data. Although his perspective is promising, it
lacks appropriate empirical validation and does not
incorporate human reasoning and domain expertise.

In this paper, we present a spatiotemporal knowledge
discovery framework for smart city digital twins to
explore the properties of an integrated approach to
analytics and the representation of city data. We
further demonstrate the application of this framework
for an urban health knowledge discovery case. This
framework, part of an ongoing project, draws on insights
from human intuition and cognition to facilitate the
collective discovery of knowledge from both social and
sensor data.

3. Knowledge Discovery in Digital Twins

3.1. Cities in Space and Across Time

Complexity is a systemic property of cities [7].
Evolving complex systems are best understood as
dynamic networks of interdependent interactions and
relationships. Such interactions and relationships
among humans, infrastructure, and technologies in
cities [9], in space and across time, can not be
regarded as mere aggregates of independent entities
or analyzed independently. The advent of geographic
information system (GIS) technology in the 1960s has
made spatial data such as satellite imagery and aerial
photography available to urban scientists and planners.
Temporal sets of this spatial data enabled the early
stages of spatiotemporal modeling of urban dynamics
[10, 11, 12]. More recently, technological advances
and the widespread usage of global positioning system
(GPS) technology at the individual (e.g., smart phones,
wearable devices) and infrastructure levels (e.g., IoT
sensors and devices in buildings and transportation
netwroks), now generates spatial data in significantly
higher volumes and finer resolutions that is streamed at
a real-time temporal resolution. Moreover, the ability to
access social media platforms (e.g., Twitter, Instagram,
Youtube, Facebook) on mobile devices has created
a huge influx of georeferenced socio-economic data.
Access to this level of high resolution spatiotemporal
data in cities allows for more complex urban modeling
and simulations, in which dynamic interactions and
interdependencies can be captured in space and across
time. However, meaningful knowledge discovery from
such heterogeneous sources of urban data remains
challenging for data abstraction and aggregation, and
issues with noise and missing data are problematic
when integrating heterogeneous datasets and linking
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structured to unstructured data. Simulating cities in
virtual environments appears to be a promising avenue
for facilitating these challenges [9, 13].

3.2. Cities across Reality-Virtuality

Creating virtual urban environments has traditionally
been limited to static physical representations of the
city [14, 15, 16]. Integrating these static physical
representations of the city with dynamic spatiotemporal
data, in which the reality-virtuality content coexists
interactively can boost model accuracy in space and
across time, greatly facilitating knowledge discovery.
Continuously streaming sensor-based reality data into
this (digital twin) environment, the static physical
representation becomes smarter, and the spatiotemporal
data is put into context.

Smart city digital twins [7] encompass Milgrams
virtuality continuum [17] (Figure 1), which expands
from complete real to complete virtual environments
(i.e., Virtual Reality (VR)). Any combination of the two
is located in-between, where real and virtual objects
are combined in either real (i.e., Augmented Reality
(AR)) or virtual surrounding environments. Similarly,
Mixed Reality (MR) refers to the merging of both real
and virtual environmnets, in which both real and virtual
objects are accessible [17].

Figure 1. Virtuality continuum. Adapted from “A

taxonomy of mixed reality visual displays” by Milgram

and Kishino [17].

Current virtual city models often lack a coherent
approach to knowledge discovery. They either consist
of limited data-types simply visualized in the model
without any analytics or simulation capabilities, such
as CityHeat (heat related to traffic using color-mapped
cubes) [18], VR Digital City Model (DCM) (landmark
locations and buildings) [19], Connected Cities VR
(city maintenance and 311 complaint information) [20],
and AR City (navigation and route highlights); or
are targeted towards particular audiences such as AR
City (users walking through the city), Connected Cities
VR (mayors and city stakeholders), and CityScapes
AR (Tourists visiting NYC). Although representative,
these virtual models are narrow in scope and lack the
ability to provide realistic simulations in space and
across time, incorporate interdependencies, and enable a
collective knowledge discovery process for a wide range

of disciplines and city stakeholders.
Both VR and AR technologies provide affordances

that enable more collective interpretation of data and
can enhance knowledge discovery. However, channeling
this heterogeneous city data into appropriate interactive
representations in VR and AR remains a challenge. In
the following sections, we discuss the most prominent
VR and AR affordances for virtual city modeling that
can facilitate knowledge discovery. We then present
the digital twin of an urban campus which allows
for spatiotemporal knowledge discovery from both
social and IoT sensor data for both outdoor (across a
campus corridor) and indoor (inside campus buildings)
environments while the users interact with both the
physical and virtual infrastructures. It can analyze and
track changes that take place in the real environment
in space, across time, and within context. This has
given rise to the areas of Immersive (using VR) [21] and
Situated (using AR) Analytics [22, 23].

3.3. Harnessing the Affordances of VR for
Knowledge Discovery

Unlike computer monitor displays, where data
visualizations are based on gestalt perceptual principles
[24] and visual elements are organized into groups
based on proximity, similarity, symmetry, etc. the
major benefits afforded by a VR immersive environment
are developed from the theory of affordance from
perceptual psychology [25]. Affordance theory suggests
that humans perceive the environment in terms of its
possibilities for action.

Gibson [26] introduced the term affordances to
represent all the action possibilities with an environment
in reference to both the environment and the human.
He further argued that humans exist in relation to
the environment as a system and in order to fully
comprehend a human behavior, it is necessary to study
the environment within which the behavior has taken
place. Norman [27] further links the affordance of
an object to the mental and perceptual capabilities
of the user as well as their past knowledge and
experiences. This suggests the significance of VR
for incorporating human perception, reasoning and
domain expertise into knowledge discovery. From the
perspective of affordance, VR provides the user with an
extended sensory experience. Not only aural, haptic and
kinesthetic approaches to data exploration are enabled,
but also the user will experience a sense of presence
within the ebbs and flows of data due to its perceptual
and interactive properties (e.g., spatial perception, shape
recognition, color differentiation, movement detection,
etc.) [17]. These affordances help the user develop
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better insights while interacting with the data.
Although affordance theory was developed in

response to the physical world, Stuckey et al. [28]
argues that immersing the user in a virtual environment
that is organized and structured in the same manner
as the real environment (e.g., urban or natural scenes)
can allow the user to similarly take advantage of the
sensory inputs they receive through their perceptions
from the real environment through the presence of
various objects, artifacts, and things. When immersed
in the virtual environment, although the user is
still physically present in the real environment, their
sensory experiences (visual, aural and kinesthetic)
are predominantly stimulated by synthetic content.
Therefore, a parallel virtual version (i.e., digital twin)
of the real urban environment systematically augmented
with extended sensory inputs from both social and
sensor data from the real environment can create an ideal
knowledge discovery experience. It enables a person to
take part in the data exploration process by incorporating
their domain expertise, which otherwise cannot easily be
automated.

For knowledge discovery in VR to be effective, it
is important to design a data exploration process in
which human reasoning and the domain expertise of
the users are combined with the computational power,
analytics capabilities, and speed of data processing.
Immersive analytics is most useful when we are not
certain what we are looking for: the end goals are vague
and can be regarded as a hypothesis generation process
for testing “what if ” scenarios [29]. This is particularly
the case when dealing with unstructured data, which
are not readily subject to analytics. Immersive
analytics augments computational analytics with human
cognition and visual perception. “Our conscious
perception is unified at any given moment” [30].
Coherence is one of the most unique characteristics of
human multimodal perception (e.g., our capability to
seamlessly integrate diverse information). It is thus
critical that all the information is relatively distributed
in space and across time, and that all sensory inputs
(including real world social and sensor data) are
spatiotemporally bound and collectively stimulate the
user’s perception at the exact same time and location.
This adds to the importance of matching the scale and
resolution of various information sources in space and
across time.

4. Design and Development of an Urban
Campus Corridor Digital Twin

In this section we discuss the design and
development of a digital twin of an urban academic

campus (Georgia Tech) corridor comprising three main
components: a VR-based analytics platform, linked to
an AR-based mobile application, coupled with a social
media platform (Twitter) to enable spatiotemporal
knowledge discovery from heterogeneous data. The
VR-based analytics platform is built on the Unity
cross-platform game engine [21]. The platform is
directly linked multiple application programming
interfaces (APIs) (e.g., AoT HTTP API) and web
portals (e.g., Georgia Tech EnergyWatch) for real-time
sensing of both outdoor and indoor environments. The
system architecture includes an iterative loop, within
which data, in different formats from various sources,
are first regulated and spatiotemporally stamped
(classified into various spatial and temporal scales
based on their input resolutions), and then semantically
stamped as they are immediately populated into
one or more of the predefined city infrastructure
performance areas (Figure 2). Once all the necessary
links are established, these datasets are stored in a
Structured Query Language (SQL) database linked to
a heterogeneous data repository that subscribes to the
platform for access and retrieval, where the data is
browsable and each datapoint has a spatiotemporal as
well as a semantic stamp and can be retrieved and called
into the VR environment at the corresponding time and
location.

4.1. City Infrastructure Performance Areas

The current meta-data includes data from four
different sources: (1) indoor IoT sensors including
data from building level electricity and gas meters;
(2) outdoor Array of Things (AoT) sensor nodes
including ambient data as well as urban dynamics (e.g.,
vehicle counts); (3) AR mobile application (CitySnap),
including unstructured georeferenced images, text, and
demographic data; and (4) social media (Twitter),
including georeferenced postings. Table 1 shows the
various sensors and sources that feed data into the
system together with their SDG and city infrastructure
performance classifications: energy, water, health,
environment, mobility, safety, equity, and beauty. The
process of semantic stamping is currently performed
by allocating the source sensor to the corresponding
performance area. Links between the data sources are
then generated by time and space. This process can be
automated if the number of sensors for the performance
areas exceeds a certain limit.

4.2. AR Crowdsensing Mobile App: CitySnap

CitySnap is an iOS AR crowdsensing mobile
application that is designed to capture citizen feedback
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Figure 2. Spatiotemporal knowledge discovery: Graphical representation of Digital Twin data flow across time

and space (x, y); as the time progresses, the Digital Twin gets updated with new real-time data. Every data point

is both spatiotemporally and semantically stamped and can be accessed and retrieved in the VR environment.

about the city infrastructure in relation to the predefined
performance areas, while reciprocally presenting them
with in situ information and interactivity that extends
the physical world. Figure 3 depicts the interface of the
application with an example of a user snapped image.
By tagging the snapped image to a city infrastructure
element linked to a performance area and including
editable feedback comment, the user generates a
georeferenced datapoint that appears directly in the
co-located digital twin VR view. Similarly, any
feedback virtually generated and tagged to the same
infrastructure in the same location appears in the AR
for the user to observe. Current and past postings,
color-coded by performance area and visually attached
to the infrastructure, are available both in a see-through
AR view and a Map view for the user, where they can
edit/remove the posting.

4.3. Social Media Crowdsensing

Information has a social life [16], on account of
the fact that information is embedded in a social life
and depends on context. Therefore, it is important
to incorporate this data into the knowledge discovery
process and make it available at the location where it
is originally generated, making it more responsive to
social and environmental settings. Visualizing social
media data occurs in the co-located digital twin VR
view [22]. Here, georeferenced social media data

Figure 3. CitySnap: augmented reality crowdsensing

mobile application.

is currently being anonymously collected through the
public Twitter Stream API from users who voluntarily
share georeferenced posting data.

4.4. Interactive Knowledge Discovery in VR

The current user interaction with the data in
the digital twin is via a spatiotemporally sensitive
on-demand HUD, which operates on the basis of a
network of attached game objects and scripts. The
spatiotemporal sensitivity of the HUD is set to update
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Table 1. Sensor/social city data per Infrastructure Performance Area in relation to the most impacted UN SDGs.

as the data presented to the user changes by a set
radius as the user navigates in the VR environment and
only the spatiotemporally relevant data are collectively
made available. The user can choose to see/filter
the data by performance area and toggle between or
overlay various data types within each performance
area (e.g., Temperature and Humidity within the
Environment performance area) as well as across
difference performance areas (e.g., Temperature from
Environment and Sulfur Dioxide (SO2) Air pollution
from Health). Spatiotemporally and semantically
linked user comments and tagged images from the
corresponding CitySnap and social media postings
appear in a side pane as the user navigates and interacts
with the data. An interactive graph representation is
coupled with a temporal slider that allows the user to
navigate across time and choose to explore specific
points or windows in time. The temporal range of
the slider automatically matches the first and the last
data entry. Any user-selected window in time can be
separately viewed in a radar graph or as a pop out
interactive 3D bar chart or cord diagram both indoors
and outdoors in the VR environment (Figures 4-5). The
user is thus able to customize and compare any two or
more combination of data from any sensor. A number of
typical interactive features are listed below:

AutoScroll – the graph view has an auto scroll
functionality that allows the graph to temporally scroll
through the data. The speed of the automatic scrolling
can be controlled using the left hand controller’s
thumbstick.

Temporal Range – the temporal range of the
graph data can be controlled using the right hand
controller’s thumbstick (pushing the thumbstick to
the right increases the temporal range of the graph,
thereby showing more graph points, while pushing the

thumbstick to the left decreases the temporal range of
the graph, thereby showing fewer graph points).

Go to—a particular instant in—Time – selecting a
CitySnap or a social media posting brings the user to the
same instant of time in the graph view when the posting
has originally been generated by a user. Similarly,
selecting any instant of time on the graph will populate
all temporally associated postings generated by users.

Go to—a particular instant in—Space – selecting
any CitySnap or social media posting (and using “Go to
Location”) teleports the user to the VR location that the
posting has been generated, where a spatially associated
(latitude, longitude, and compass direction) tweet panel
or real image from the CitySnap is displayed.

These interactive features are designed to provide
the user with sensory inputs from the environment
that are spatiotemporally relevant, and semantically
bound to facilitate a collective knowledge discovery
experience in every space and across time. Virtually
overlaying the environment with sensor and social data
adds an additional layer of, otherwise unavailable,
sensory inputs, which can help the user explore and
exploit knowledge more effectively. Readily available
correlations and spatiotemporal associations among
various structured and unstructured datapoints enable
the user to navigate the root cause of an anomaly and
allow for an enhanced decision-making process.

4.5. Urban Health Knowledge Discovery Case

An urban health knowledge discovery case example
described here demonstrates how the spatiotemporal
knowledge discovery framework introduced in this
paper links structured to unstructured data across the
time and space dimensions and can enhance knowledge
discovery from integrated heterogeneous sources of
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Figure 4. On-demand Digital Twin head-up display

(HUD). Georgia Tech Urban Academic Campus

(indoor). X-axis indicates the time of the day; Y-axis

indicates the attribute value (e.g., Temperature in C,

Humidity in %); Z-axis indicates the day of

measurement.

urban data. Figure 6 depicts the process of data
exploration in the urban campus corridor digital twin
for a case of Health performance area (see Table 1).
Considering various air quality measures listed in Table
1 as indicators of Health, at any given location in the VR
campus corridor, the user can launch the head-up display
(HUD) and select the Health icon from the left panel to
display all semantically stamped available health-related
data that belong to this specific location (Figure 6(a));
a Dynamic Radar Chart displays on the second panel
from the left in the HUD depicting comparisons of
multivariate air quality observations across time (Figure
6(b)); simultaneously, a Dynamic Time Series Graph of
air quality data is displayed in the middle section, which
can be navigated across time using the scrollbar. The
user can overlay and toggle between various air quality
measures to examine temporal fluctuations and identify
spikes and anomalies (Figure 6(c)); for any combination
of air quality measures, a 3D Cord Diagram can be
displayed on-demand outside the HUD to explore the
inter-relationships between various air quality measures.
The darker and thicker the cord between any two air
quality sensors, the stronger the correlation is between
the two air quality measures (Figure 6(d)); finally, all
the aforementioned graphs and data representations are
spatiotemporally linked to unstructured health-related
data in the right panel of the HUD, including user
posted images from CitySnap (Figure 3), as well as
postings from social media (Twitter) (Figure 6(e)). With
a collection of structured and unstructured data at the
user’s finger tips, while immersed in a simulated virtual
environment, the digital twin is providing the user

Figure 5. On-demand Digital Twin head-up display

(HUD). Georgia Tech Urban Academic Campus

(outdoor).

an with an extended sensory experience, incorporating
human perception, reasoning and domain expertise into
the knowledge discovery process.

Collective exploitation of city data in this way
incorporates both social and sensor data, and enables
insights from human cognition. This in turn promotes
human reasoning and the domain expertise of the
user, which is combined with the computational
power, analytics capabilities, and speed of data
processing at any given time and location in the VR
environment. Integrating unstructured data, which are
not readily subject to analytics, into the immersive
analytics environment of the urban campus corridor
digital twin facilitates hypothesis generation, identifying
anomalies, synthesizing knowledge, and testing “what
if ” scenarios.

5. IoT Interventions in Smart City Digital
Twins and Future Directions

A spatiotemporally data-rich digital twin such as the
example described here, in which both fixed and mobile
sensing of the infrastructure (via indoor and ambient
sensors, crowdsensing mobile applications, and social
media) enables the design and testing of various IoT
interventions: (1) monitoring (historic and real-time)
sensor data against thresholds to assess the current
and ongoing conditions (i.e., what happens here?); (2)
linking the observed correlations with the corresponding
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Figure 6. Urban Health Knowledge Discovery Case: (a) Health icon is selected from the left panel; a (b)

Dynamic Radar Chart depicts comparisons of multivariate air quality observations across time; a (c) Dynamic

Time Series Graph displays temporal fluctuations of air quality observations; an (d) on-demand Cord Diagram

displays inter-relationships between various air quality measures; all are spatiotemporally linked to (e)

health-related user posting images from CitySnap, as well as postings from social media (Twitter).

citizen feedback (i.e., data from CitySnap and Twitter)
to determine the root causes of the problem (i.e., why
it happens?); (3) perform predictions and time-to-event
analyses to examine “what if ” scenarios (i.e., what if
—– happens?); and finally (4) devise interventions to
automate, optimize, and improve the current or ongoing
conditions.

Future efforts will expand the two-way
communication module of the digital twin such that it
provides a more collaborative communication channel
between city stakeholders (i.e., government, citizens,
and the industry); reduce high levels of abstraction
where only numerical values are considered (i.e.,
structured data) by more comprehensibly integrating
unstructured data such that the user can explore
the semantic interdependencies between and within
performance areas, and allows for spatiotemporal event
and anomaly detection (finding patterns in data and
anticipating events that do not conform to expected
behavior).

6. Conclusion

Historically, the dynamics of cities were understood
with relatively high levels of abstraction from the
perspective of its largest infrastructure and their
significant impact on sustainability. More recently,
high resolution spatiotemporal sensor data on city
infrastructure services has brought the promise of
enhanced decision-making and management for cities.
However, current approaches to knowledge discovery
from city data lack the capacity for collective
data exploitation and effective integration of domain
expertise. We discussed the current challenges in
knowledge discovery from city data and presented
a spatiotemporal knowledge discovery approach for
collective exploitation of heterogeneous city data in
smart city digital twins, which integrates VR, AR,
and IoT technologies to create a sensory-rich data
exploitation city environment for decision-makers. This
is an initial step towards leveraging the full potential
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of these technologies in knowledge discovery from
heterogeneous city data.
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