
Easy and Efficient Hyperparameter Optimization to Address Some Artificial 

Intelligence “ilities” 

 
Trevor J. Bihl 

Air Force Research Laboratory, USA 
Trevor.Bihl.2@us.af.mil 

 

Joseph Schoenbeck 
The Perduco Group, USA 

joe.schoenbeck@theperducogroup.com 

 

Daniel Steeneck & Jeremy Jordan 
Air Force Institute of Technology, USA 
{Daniel.Steeneck; Jeremy.Jordan}@afit.edu 

 

Abstract 
 

Artificial Intelligence (AI), has many benefits, 

including the ability to find complex patterns, 

automation, and meaning making. Through these 

benefits, AI has revolutionized image processing 

among numerous other disciplines. AI further has the 

potential to revolutionize other domains; however, this 

will not happen until we can address the “ilities”: 

repeatability, explain-ability, reliability, use-ability, 

trust-ability, etc. Notably, many problems with the 

“ilities” are due to the artistic nature of AI algorithm 

development, especially hyperparameter 

determination. AI algorithms are often crafted 

products with the hyperparameters learned 

experientially. As such, when applying the same 

algorithm to new problems, the algorithm may not 

perform due to inappropriate settings. This research 

aims to provide a straightforward and reliable 

approach to automatically determining suitable 

hyperparameter settings when given an AI algorithm. 

Results, show reasonable performance is possible and 

end-to-end examples are given for three deep learning 

algorithms and three different data problems.   

 

 

1. Introduction  

 
Analytics and machine learning (ML),  

colloquially termed Artificial Intelligence (AI) [1], are 

becoming increasingly ubiquitous for classification 

and prediction across a broad spectrum of applications  

due to their ability to learn nonlinear patterns in data 

[1]. Fundamentally, AI/ML are complex algorithms 

that automate procedures based on statistics and 

nonlinear optimization [1] [2]. However, as a result of 

their complexity, issues exist in broadly adopting AI 

solutions [3].  

Throughout the space of AI/ML, users must not 

only decide which algorithms to use, but the settings 

for the selected algorithm, also known as 

hyperparameters. This is a complex trade space due to 

ML methods being brittle and not robust to conditions 

outside of those on which they were trained.  While 

attention is now given to hyperparameter selection [4] 

[5], in general, as mentioned in Mendenhall [6], there 

are “no hard-and-fast rules” in their selection.  In fact, 

their selection is part of the “art of [algorithm] design” 

[6], as appropriate hyperparameters can depend 

heavily on the data under consideration itself. Thus, 

ML methods themselves are often hand-crafted and 

require significant expertise and talent to appropriately 

train and deploy.  
 

 
Figure 1. Conceptualization of a general 

hyperparameter problem: adapted from [2, pp. 

312-313]. 
 

A conceptual example of this problem is presented 

in Figure 1, adapted and extended from [2, pp. 312-

313].  Here, one is attempting to optimize the learning 

rate ε, i.e., the rate at which an algorithm converges to 

a good solution (w*).  Ideally, one would want to find 

ε = εopt, the optimal rate, depicted in Figure 1a, but this 

is largely impossible to find for any meaningful 

problems due to existence of multiple local optima. A 

slower, sub-optimal, convergence rate is good when ε 

is much smaller than εopt, Figure 1b, but this can take 

a long time (100s of hours or more in today’s deep 

learning systems) to train. A reasonable, sub-optimal 

rate, when ε < εopt, Figure 1c, can be ideal since 

convergence is relatively quick and performance is 

stable. However, when the learning rate increases 

above the optimal rate, Figures 1d for ε > εopt and 

Figure 1e for ε  much larger than εopt, highly oscillatory 

behaviors can be introduced that bound around local, 

or global, optima.  However, the example in Figure 1 

A
cc

u
ra

cy

ww w w
w* w* w* w*

a) ε = εopt c) ε < εopt d) εopt < ε e) εopt << ε

w*

b) ε << εopt

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 943
URI: https://hdl.handle.net/10125/63857
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326835265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is simple and conceptual; due to the nature of both data 

and algorithms, there is a naturally complex 

relationship between hyperparameter settings and 

results. 

The overall opacity of algorithms, required 

knowledge in tricks of the trade, and the general 

misunderstandings how algorithms in general work 

are pervasive [7]. Due to these factors, as noted in [8], 

issues exist in using ML solutions due to the inability 

of addressing the ML “ilities” [9], e.g., the reliability, 

repeatability [8] [3], replicability [3], trust-ability [10], 

and explain-ability [11] of the algorithms. In general, 

the “ilities” of can also be further expanded to include 

general software quality metrics, e.g. ISO 9126, of: 

functionality, reliability, usability, efficiency, 

maintainability, and portability [12]. 

The vast majority of these “ilities” are relate to 

typical questions users ask of automation [13]: 

• What is it doing? 

• Why is it doing that? 

• What will it do next? 

Many of these questions are related to ad hoc 

algorithm development and deployment methods and 

a general misunderstanding of capabilities and 

operations [9]. To understand the “ilities”, and 

likewise address these general questions, [9] presents 

Shaw’s [14] software engineering framework as a 

general model of maturity of engineering disciplines, 

presented in Figure 2 which identifies three stages in a 

field’s development: craft, commercial, and 

professional engineering.  

 

Production

Craft

Commercial

Science
Professional 

Engineering

• Virtuosos and 

talented amateurs

• Intuition and brute 

force

• Haphazard progress

• Casual transmission

• Extravagant use of 

available materials

• Manufacture for use 

rather than sale

• Skilled craftsmen

• Established procedure

• Pragmatic refinement

• Training in 

mechanics

• Economic concern for 

cost and supply of 

materials

• Manufacture for sale

• Educated 

professionals

• Analysis and theory

• Progress relies on 

science

• Educated 

professional class

• Enabling new 

applications through 

analysis

• Market segmentation 

by product variety  

Figure 2. Shaw’s Model of the evolution of 

engineering disciplines, from [14]. 
 

As illustrated in Figure 2, craft involves highly 

experiential work, which involves tricks of the trade, 

and various and haphazard approaches to transmit 

 
1 For example, DataRobot (https://www.datarobot.com/), AutoML (http://www.automl.org/), and SigOpt (https://sigopt.com/) 

knowledge. When a discipline moves to more 

established procedures, production, and developing 

applications for sales, then one has moved to a 

commercial stage.  However, even at this stage, a lack 

of sound methodologies can limit reproducibility.  

When one adds scientific approaches to a discipline, 

one can take commercial art to professional science. 

At the professional engineering stage, many of the 

“ilities” are naturally met since understanding exists 

about the underlying approaches. As noted in [9], ML 

development can yield highly sophisticated 

commercial products yet still be a result of craft and 

not science as ML requires significant experience to 

get meaningful results. In contrast, professional 

engineering disciplines have established 

methodologies to rigorously develop products [9]. One 

such approach for this problem in ML is developing a 

defined process from which to determine the 

hyperparameters of interest. 

While approaches, such as CRISP-DM [15]  

(CRoss-Industry Standard Process for Data Mining), 

provide general end-to-end (business concept to 

deployment) processes for develop data mining 

solutions, these are high level in nature and do not 

address the complex space of ML algorithm decisions. 

What is missing is a general approach that spans the 

Data, Modeling, and Evaluation layers of CRISP-DM 

with hyperparameter optimization which enables one 

to 1) select a dataset, 2) select an AI algorithm from 

literature or a library, and then 3) automatically 

determine workable hyperparameter settings without 

expert algorithmic knowledge.  

While general solutions to this problem already 

exist, they are either 1) automated cloud-based 

approaches which provide almost unlimited 

computing resources1, 2) automated methods which 

provide a predefined list of algorithms [16], or 3) 

theoretical approaches to find optimal hyperparameter 

settings [5].  Each of these solutions presents a 

challenge: 1) cloud-based solutions introduce security 

issues can exist if one wishes to analyze proprietary or 

secured data, 2) automated approaches can be limited 

in their list of available algorithms, and 3) theoretical 

optimization approaches require additional subject 

matter expertise. For example, Snoek et al. [5] propose 

Bayesian Optimization (BO) for AI hyperparameter 

optimization; however, implementing [5] requires 

advanced knowledge of mathematics and algorithms.   

The contributions of our paper is fourfold. First, we 

present a framework to automatically tune AI 

algorithm hyperparameters, extending upon [5] to 

create a simple and straightforward process when one 

is given a general AI algorithm. Next, we show how 

Page 944



this approach provides workable results on different 

ML recognition tasks. Third, we draw on software 

engineering body of knowledge, incorporate CRISP-

DM and show how this approach facilitates ML 

moving from craft based implementations to more 

professional engineering use. Finally, we present a 

minor contribution by introducing a short taxonomy of 

AI hyperparameter determination methods.  The end 

result is a further democratization of AI and facilitates 

wider adoption of AI algorithms. 

 

2. Background  
 

Success or failure in the application of an ML 

algorithm is a result of multiple factors. Firstly, the 

quality of the trained ML model is a result of the data 

itself, the algorithm selected, and model development 

process. Next, ML performance is heavily linked to 

assumptions made in the model building process, 

which includes the initial learning rates as well as 

architecture decisions.   

 

2.1. AI “ilities” 
 

All of these are requisite to understand, apply, 

trust, and manage new uses of AI algorithms [11]. 

Issues abound in AI applications when algorithmic 

details, references, settings, and training conditions are 

not mentioned [8]. At first, this appears to be a concern 

of only repeatability; however, the “ilities” themselves 

overlap to some degree.   

As noted in Zhang [8], to address repeatability and 

usability problems of AI methods, one needs to 

provide sufficient details on the algorithm, the data, 

and experimental conditions. For example, merely 

reporting that a) a deep learning algorithm was used to 

develop the b) model on the c) given data is 

insufficient to be repeatable.  

Repeatability and replicability are important in 

data science [8], and proper reporting involves 

discussing the data used, what data splitting 

approaches were applied, and any other data 

cleaning/wrangling [8]. Beyond this, one needs to 

mention both the algorithm and any key particulars, 

e.g. number of layers and nodes in a neural network, 

in addition to the hyperparameters, initial learning 

rates, training methods, types of nodes, etc. and etc.  

From this, one has developed a model which can 

process data.    

However, the results from only one model are 

insufficient to address reliability and trust-ability 

concerns since ML algorithms are typically stochastic, 

and thus appropriate intervals and replications are 

needed. While additional concerns about explainable 

and accountable AI have recently extended to 

extracting fully explainable results [11], we posit that 

what is of interest for most applications are trustable 

and reliable AI.  Thus, one can consider AI/ML 

solutions in a similar way as service dogs which, 

though reliable and trustable, are still opaque since 

they cannot be queried or questioned.  

 

2.2. Illustrative Examples 
 

An example of good reporting for repeatability is 

seen in Table 1, from Cireşan et al. [17] in 2012.  Table 

1 shows a network of some complexity with sufficient 

details to recreate the overall network structure.  In 

reading the paper, additional assumptions can also be 

found. However, missing are initial learning rates and 

other hyperparameters key to repeatable results [4].  

 

Table 1. Example of a Deep Learning 

architecture and parameters from [17] 

Layer Type 
 Kern. 

Size 

0 Input 1 map of 95x95 neurons  

1 Convolutional 48 maps of 92x92 neurons 4x4 

2 Max pooling 48 maps of 46x46 neurons 2x2 

3 Convolutional 48 maps of 42x42 neurons 5x5 

4 Max pooling 48 maps of 21x21 neurons 2x2 

5 Convolutional 48 maps of 18x18 neurons 4x4 

6 Max pooling 48 maps of 9x9 neurons 2x2 

7 Convolutional 48 maps of 6x6 neurons 4x4 

8 Max pooling 48 maps of 3x3 neurons 2x2 

9 Fully connect. 200 neurons 1x1 

10 Fully connect. 2 neurons 1x1 

 

Tables such as Table 1 are descriptive and provide 

most of the details needed to reproduce results. 

However, for ever larger-and-larger neural networks, 

a table like this can become cumbersome. One solution 

is that presented by Cireşan et al. in 2012 [18].  This 

solution presents the network as an expression, e.g.  

 

 
2x48x48-100C5-MP2-100C5-MP2-

100C4-MP2-300N-100N-6N 
(1) 

 

which encapsulates the general architectural 

components of the network. Using the Cireşan 

notation, (1) can be decoded using the following 

mapping: 2x48x48 represents a network taking inputs 

of 2 images both of 48x48 pixels, xCy a convolutional 

layer with x maps and filters of y x y weights, MPy a 

max-pooling layer with y x y pooling size, and xN a 

fully connected layer with x neurons [18].   

While both [17] [18] include copious details, they 

do not (and cannot reasonably due to space) include all 

possible details needed to best recreate the exact 

network. However, these details are needed to achieve 

results similar to those published.  For example, 

Page 945



consider the LeNet-4 algorithms of [19]; its published 

accuracy on its benchmark test set is 98.9% [19].  

However, while the LeNet-4 architecture itself is 

known, the hyperparameters that yielded this 

performance are not.  As will be shown in Section 4, 

these are critical since an accuracy of only 92.23% was 

achieved when first recreating this network on the 

same data.  However, by using the process presented 

herein, accuracy of 99.2%,above the published results, 

can be realized.  Notably, the process to reach these 

results is not manual hyperparameter determination, 

but an automated process.   

 

2.3. AI Hyperparameter Determination   

  
Hyperparameter determination is an emerging 

discipline in AI and includes a multitude of methods. 

A general taxonomy of these approaches is presented 

in Figure 3. These can largely be separated into model-

free and model-based approaches [20].  

 

Model-Free Model-Based

AI Hyperparameter Selection Methods

Experiential

Grid Search

Response

Surface

Methods

Design

of 

Experiments

Random

Search

Bayesian

Optimization

Other 

Methods

Evolutionary

Algorithms

Stochastic 

Approximation

 
Figure 3. General taxonomy of algorithm setting 

determination methods, extended from [20] 

 

Model-free approaches can be 1) scientific, e.g. 

grid searches, or 2) haphazard, e.g. a coder 

experientially finding settings that “just work,” or 3) 

random searches which use random seeds (notably a 

competitive method). Grid searches involve creating 

an experimental design where design points are 

explored and then one uses either a spreadsheet search 

or a response surface method to find suitable operating 

points [21].   

Model-based approaches employ what can be 

considered as a wrapper. Wrappers are essentially 

another algorithm operating on an outer loop around 

the function of interest. These methods systematically 

determine settings for a given algorithm and hopefully 

converge to a good solution. Important model-based 

approaches include: 

• Stochastic Approximation [21], hill climbing 

where hyperparameters are individually and 

sequentially changed  

• Evolutionary algorithms [20], which randomly 

start, select the best initial results (parents), and 

then generate multiple possible outcomes 

(children), and then repeat the process  

• Bayesian optimization (BO) [5]  which treats the 

objective function as a random function and uses 

randomly determined hyperparameters to 

construct a distribution around the results 

• Other approaches which do not fit cleanly into 

these three groups, e.g.   Radial Basis Functions 

[22], Hyberband [23], Nedler-Mead [24], and 

spectral approaches [25]. 

Beyond this work, further approaches include 

extensions of BO and combinations of methods. 

Currently, BO is one of the most competitive 

hyperparameter optimization methods [5]; however, it 

should be mentioned that some recently developed 

methods claim to outperform BO [23] [24]. Despite 

recent advances, the authors focus on BO since it is 

readily available, reliable, and well known.   

 

2.4. Bayesian Optimization (BO) 
 

 BO tends to find reasonably good choices of 

hyperparameters [5]. Let ℎ𝑖,𝑗 be the value of the 𝑖𝑡ℎ 

hyperparameter of the algorithm at the 𝑗th evaluation 

of the algorithm, and let 𝒉𝑗 be vector of these 

hyperparameters. Additionally, ℎ𝑖,𝑗 is in the bounded 

set ℋ𝑖 , which can be continuous or integer valued.  Let 

𝑓(𝒉𝑗) be the unknown fuction of performance measure 

of interest of the algorithm versus choice of 

hyperparameters. Note that 𝑓(𝒉𝑗) is stochastic in 

nature as it is depends on the training set of data, which 

is randomly selected. Let 𝑦𝑗 = 𝑓(𝒉𝑗) and  let 

{𝑦𝑗 , ℎ𝑗}
𝑗=1

𝑛
 be a sequence of 𝑦𝑗 and ℎ𝑗 pairs.  Based on 

this sequence, a Gaussian process can be fit to 𝑓(∙), 

denoted by 𝐺𝑃 ({𝑦𝑗 , ℎ𝑗}
𝑗=1

𝑛
), which in Matlab is done 

using fitrgp. Finally, an 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, denoted 

by 𝑎 (𝒉|𝐺𝑃 ({𝑦𝑗 , ℎ𝑗}
𝑗=1

𝑛
)) is maximized to find a new 

set of candiate hyperpameters.  The function 𝑎(∙) can 

be chosen by the BO designer, but common choices are 

expected improvement, probability of improvement, 

and lower confidence bound; herein, the expected 

improvement acquistion function was used. 

 The broad outline of BO is given by the following 

steps: 

1. Obtain 𝑛0 initial evaulations of 𝑓(∙) at 

randomly selected values of hyperparameters 

Page 946



within the specified hyperparameter bounds. 

Set 𝑘 = 0. 

2. Fit a Gaussian Process onto {𝑦𝑗 , ℎ𝑗}
𝑗=1

𝑛𝑘
, 

denoted as 𝐺𝑃 ({𝑦𝑗 , ℎ𝑗}
𝑗=1

𝑛𝑘
). 

3. Set 𝒉𝑗+1 = argmax
𝒉

𝑎 (𝒉|𝐺𝑃 ({𝑦𝑗 , ℎ𝑗}
𝑗=1

𝑛𝑘
))  

4. Evaluate 𝑦𝑗+1 = 𝑓(𝒉𝑗+1), set 𝑛𝑘 = 𝑗 + 1 and 

𝑘 = 𝑘 + 1.  If termination criteria 𝜏 is not 

met, go-to step 2. 

Practically, BO is implemented in many software 

packages, e.g. bayesopt in Matlab [26], as used herein, 

and hyperopt in Python [27].  

 

3. Easy and Efficient Hyperparameter 

Optimization for Initial Settings  

 
Historically, developing AI solutions was the 

domain of the human expert who implemented the 

machine learning algorithm. Recently, the mindset has 

shifted to allowing statistical optimization techniques 

to assist in finding the best hyperparameters for the 

algorithm. However, the modeler still must wisely set 

search spaces, interpret the results, and refine the 

searches with knowledge of the objective.  

While the BO process in Section 2.3 has been 

shown to be highly effective in tuning ML algorithms, 

c.f. [5], it still requires some experience in applying to 

a ML problem. The authors thus propose that one does 

not need to report all initial hyperparameter settings, 

but rather: 

1. The architecture, algorithms and software  

2. The data and data splitting methods  

3. The hyperparameter determination method and 

initialization settings 

4. Results with sufficient replications and intervals. 

The authors aim to codify these components by 

introducing a simple workflow which then improves 

the general CRISP-DM process with an aim towards 

addressing the “ilities”.   

While CRISP-DM includes a step for revising 

parameter settings within the Modeling task and 

Assess Model output, this can be a discipline in itself 

as discussed in Section 2.3. Of interest for this paper 

are the general Data Preparation, Modeling, and 

Evaluate steps of CRISP-DM.  To address the 

hyperparameter problem, the authors overlay their 

proposed solution onto the CRISP-DM process in 

Figure 4.  Here, the additions to include: A) 

preprocessing, B) initial training and optimization, and 

C) evaluating results. 

A1. Data Wrangling This step implies the 

collection and preconditioning of data so it can be 

analyzed by algorithms. It is estimated that this step 

can consume 80% of a data scientists time since data 

quality is key to further successes [28]. This step also 

involves dividing the data into a training set, for model 

development, and a testing set for model verification.  

No consensus exists except that: 1) the model is not 

trained on the test set, 2) approaches to dividing are 

well stated (random, deterministic) and discussed, and 

3) percentages of the total data are reasonable 

(generally 10-50% for testing) [8].  Beyond these 

matters, data wrangling is outside the scope of this 

paper, and solid methodologies can be found in [28]. 

 

 
Figure 4. CRISP-DM Model overlaid with general 

steps (A, B, C) to develop ML solutions  
 

A2. Select ML Architecture involves finding the 

desired, prescribed/given, or a suitable algorithm to 

explore for the data. This step can involve significant 

research in itself.  For an example, we will consider 

MATLAB code from the MATLAB example 

“Classify Fashion Items with a Convolutional Neural 

Network” [29].  Here, a deep learning neural network 

is used to classify grayscale images of clothes.   

Using notation presented in Table 2, adapted from 

the Cireşan notation of (1), the example algorithm can 

be represented as  

 

 
28x28-8C3-BN-ReLu-MP2_2-10N-SM-CL 

 
(2) 

which is decoded per Table 2, an extension of the 

notation in [18].  

 

Business

Understanding

Data

Understanding

Data

Preparation

Modeling

Evaluation

Deployment

Data

A

B

C

A1.  Data Wrangling

A2.  Select ML Architecture

B1.  Train ML Model Using Default Weights

B2.  Optimize Hyperparameters

C.    Test & Compare Optimized Models

Page 947



Table 2. Brief handbook of Cireşan-style 

notation for neural networks, extended from [18] 
Notation Meaning Example 

y x z   
Input size is of 

dimensionality   y x z  
Input is 48x48 

pixels 

xCy 

Convolutional layer with x 

maps and filters of y x y 

weights 

8C3 

MPy_p 
Max pooling layer with y x 

y pooling and p stride 
MP2_2 

APy Average pooling layer of  AP2 

ReLu 
rectified linear units layer 

of size y x y 
ReLu 

SM Softmax layer SM 

BN Batch normalization Layer BN 

DOx Drop out layer with x nodes DO25 

xN 
Fully connected layer of x 

neurons 
100N 

CL Classification layer CN 

 

Notably, Table 2 is not an exhaustive list of all 

possible neural network architecture parameters, but 

one to begin a discussion on report-ability standards in 

ML, and especially when using neural networks.  If 

one were considering a non-neural network, one 

would adequately describe the general function and 

input settings, i.e. as if one were going to call the 

function within a program.  For example, this could 

appear as  

 

 Algorithm(α = c, β = d, …, ω = z), (3) 

 

where α, β, and ω are hyperparameter, and c, d, and z 

are the algorithmic or operational settings (continuous, 

integer, categorical, etc.) used to achieve stated results.  

 

B1. Train ML Model Using Default Weights 

involves taking the algorithm from A2 into the 

programming environment to train and explore results. 

At this step, the authors recommend using default 

settings from the functions themselves or example 

settings from help documentation. The purpose of this 

is to find baseline results since the next step will be to 

find reasonable settings. For example, we likely don’t 

know the optimal settings for a given algorithm on a 

given dataset, but we do know the default, or example, 

settings in software.   

Figure 5 illustrates the B1 process advocated by the 

authors. For this example, we will consider Matlab 

(2019a, Mathworks, Natick, MA) with examples of 

how to quickly convert a simple description of an ML 

algorithm to a trained model.  Here, the notation from 

A2 is seen in step 1.  This is converted to MATLAB 

notation in step 2, the mapping from equation (2) to 

step 2 is rather straightforward and logical, e.g. xCy is 

convolutional2dLayer(y,x), and involves being 

mindful of notation and syntax.   

From step 2, one must find default/example 

settings for typical hyperparameters.  While this can 

involve some investigation, in general, these are inputs 

to the functions in step 2 and consists of learning rates 

and other factors.  An example of default settings from 

general help documents is seen in step 3.  With this 

setup, the algorithm is then trained using the selected 

data in step 4 which results in a fully trained algorithm.   

Notably, the setup in Figure 5 ignores the default 

settings of the MATLAB example in [29].  This is 

purposeful to illustrate the process and to provide a 

comparison of this process to the default example 

results. 

 

layers = [
1x28x28
8C3
BN
ReLu
MP2_2
10N
SM
CL
]

layers = [  
imageInputLayer([28 28 1])            
convolution2dLayer(3,8)            
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)            
fullyConnectedLayer(10)            
softmaxLayer
classificationLayer
]

Conversion 
to Matlab

and making 
assumptions 

D
evelo

p
m

en
t 

o
f N

et

net = trainNetwork( Train_Data, 
Train_Labels, layers, options)

options = trainingOptions('sgdm', 
'MaxEpochs’,5, 
'ValidationData’,{Val_Data
Val_labels},
'Plots’, 'training-progress')

Initial Settings
Hyperparameters 
allowed to be 
defaults

1 2

3

4
 

Figure 5. Step B1:  Conceptualization and Matlab 

code from [29] illustrate converting the function (2) 

as a black box for hyperparameter optimization 

 

B2. Optimize Hyperparameters involves finding 

reasonable settings via hyperparameter optimization.  

As discussed in Section 2, BO will be used for this 

process; however, determining the hyperparameters to 

optimize is important. Difference between 

architectural settings and hyperparameters are 

important to note.  Changing architectural settings, e.g. 

number of nodes in a layer or the number of layers, 

yields a new method entirely, but changing 

hyperparameters is merely finding settings that tune 

the algorithm.  

Page 948



If one is given a general function, e.g. the SVDD 

function briefly mentioned in A2, one would optimize 

its two hyperparameters. But, for more complicated 

examples, e.g. (2), then one must determine what 

parameters are available.  Even in the example of [29], 

some parameters are left to internal defaults, e.g. the 

batch size.   

In general, for neural networks and deep learning, 

the following hyperparameters are ones to consider 

which do not involve specifying a new architecture.  

These hyperparameters, are roughly described as in 

Table 3.  One further challenge exists when optimizing 

via BO, or most hyperparameter optimization 

methods.  This is where one must specify upper and 

lower bounds for each hyperparameter. Here, the 

authors adopt a process of using wide intervals 

because the goal herein is to achieve suitable (or 

acceptable) performance results when given an 

architecture.  For this, the authors adopt the intervals 

in the last column of Table 3 where NC is the number 

of classes. 

 

Table 3. General Hyperaparameters for Deep 

Learning, with Initial Search Region 

Param. Meaning 
Initial Search 

Interval 

lr 
Learning Rate - update speed 

at each training step 
[0.0001,  0.01] 

mep 
Number of Epochs - An epoch 
is one time through the entire 

training data 

[5,  8] 

lrdf 

Learn Rate Drop Factor -  
Percentage of the Learn Rate 

to retain after a specified 

period 

[0.75,  0.9] 

lrdp 
Learn Rate Drop Period -  The 
epoch at which the Learn Rate 

Drop Factor is employed 

[3,  7] 

mom 
Momentum - the carryover of 
the Learning Rate from one 

epoch to the next 

[0.95,  1.0] 

mbs 

The Batch Size -  the number 

of training samples to 
consider at one time 

[128,  256] 

dn 

Number of Dense Nodes  - 

The size of the fully 
connected classifier layer 

[1/2•NC,  10•NC] 

 

With the bounds from Table 3, the authors have 

setup a similar process in Figure 6 to optimize the 

algorithm from Figure 5.  Here, the optimization 

variables are setup in step 5 and the function in (2) is 

treated as the objective function in Step 6, along with 

the optimization variables and some basic settings.   

 

C. Test & Compare Optimized Model involves 

assessing performance of the model from both B2 and 

B1. Once a baseline is found in step B1 and the model 

is optimized in step B2, one must use effective 

performance measures to evaluate results. Here one is 

interested in various aspects: overall accuracy on the 

sequestered test set, training and test set accuracy, 

accuracy by class, etc. Various discussions exist on 

this matter, e.g. [30].   

One critical aspect of this assessment is 

considering multiple replications of the same model on 

the same data. Since ML algorithms are typically 

stochastic, random variation in the results exists since 

randomness exists at almost all steps.  Thus, running 

the algorithm multiple times and reporting the average 

accuracy and the confidence interval from the results 

is important. For all examples herein, the authors will 

consider reporting test set accuracy with the mean and 

a 95% confidence intervals from 10 replications.  

 

optimize_var = [
optimizableVariable('lr',[0.001 0.01], 'Transform' , 'log')
optimizableVariable('mbs',[128  256],'Type' , 'integer')
optimizableVariable('mep',[5 8], 'Type' , 'integer')
optimizableVariable('dn',[5  100], 'Type' , 'integer')
optimizableVariable('lrdf',[0.75 0.9] )
optimizableVariable('lrdp',[3  7], 'Type' , 'integer')
optimizableVariable('mom',[0.95  1] )
]

BayesObject = bayesopt(ObjFcn,optvars, ...
'AcquisitionFunctionName','expected-improvement-plus',...
'ExplorationRatio', 0.50, ...
'NumSeedPoints',10, ...
'MaxObjectiveEvaluations',30, ...
'MaxTime',3600000, ...
'Verbose',1); 

5

6
 

Figure 6. Step B2: Example and conceptualization 

of hyperparameter optimization for Equation (2) 

using the net from Figure 4 and the Bayesian 

Optimization (BO) approach within MATLAB 

 

4. Example Application Results  

 
For an illustration of example application, the 

authors considered three common benchmarking 

datasets, as presented in Figure 7: MNIST [19] in 

Figure 7a, Fashion-MNIST [31] in Figure 7b, and 

CIFAR-10 [32] in Figure 7c. Along with these 

datasets, the authors consider one representative 

algorithm for each dataset.  

 

4.1. Example Datasets 
 

MNIST is a collection of handwritten digits (0, 1, 

…, 9) in grayscale.  Each digit is size-normalized to 

20-by-20 pixels, and centered within a 28-by-28 pixel  

Page 949



box [19]. Figure 7a presents a representative example 

of MNIST data by visualizing 36 digits.  MNIST is 

composed of  70,000 observations with a predefined 

𝑛𝑇𝑆𝑇 = 10,000 observations sequestered for testing. 

Fashion-MNIST [31] is conceptually similar to 

MNIST in being a large grayscale dataset, with images 

of comparable size, while being harder to accurately 

classify.  For this task, the originators took pictures of 

clothes from a sales website and downsampled to 

28x28 grayscale images [31].  The result is a dataset 

of 70,000 fashion products, equally distributed into 10 

categories (T-shirt, trouser, pullover, dress, coat, 

sandals, shirt, sneaker, bag, and ankle boots) [31].  

Fashion-MNIST is also similarly pre-divided into 

𝑛𝑇𝑁𝐺  = 60,000 for training and 𝑛𝑇𝑆𝑇 = 10,000 [31].  

CIFAR-10 (Figure 7c) [32] is a set 60,000 color 

images (32x32x3), equally distributed into 10 

categories (airplane, automobile, bird, cat, deer, dog, 

frog, horse, ship, and truck), and grouped into 𝑛𝑇𝑁𝐺  = 

50,000 images and 𝑛𝑇𝑆𝑇 = 10,000 images [32]. This 

dataset is more difficult than MNIST and Fashion-

MNIST since each image is more complex, with color 

and rich background details. 

 

4.2. Algorithms and Results  

 
To illustrate the applicability of the process in 

Section 3, one algorithm is considered for each 

problem.  First, the example algorithm from the 

example of [29], equation (2), is presented to illustrate 

the overall process. This is beneficial since we have 

access to suitably performing settings from 

Mathworks. Next, the authors consider the seminal 

LeNet-4 algorithm of [19], one of the first Deep 

Learning algorithms that was applied to MNIST.  

Finally, the authors apply the methodology to a 

CIFAR-10 example. 

 

4.2.1 MATLAB Example for Fashion-MNIST. This 

example, equation (2), was built around Fashion-

MNIST as an example of MATLAB deep learning 

capabilities.  The framework and initial settings for 

using the authors’ process for this algorithm are 

discussed in Section 3. Of interest, to illustrate the 

process from Section 3, is considering four sets of 

results: 1) baseline results on the test set from step B1, 

2) BO results from step B2, 3) model training accuracy 

results, showing BO progression, and 4) results using 

the prescribed example settings (lr = 0.001, lrdf = 0.40, 

lrdp = 9). 

 
Figure 8. Accuracy of Deep Learning Algorithm in 

Equation (2) on the Fashion MNIST Data 
 

Figure 8 presents these accuracy results on 

Fashion-MNIST. Notably, this figure has both test set 

results and model building results and some care is 

thus needed in reading results. The first set of results 

are a 95% t-test confidence interval on test set results 

using default settings (per step B1).  This is centered 

at 87.03% and is located at iteration 1. The results from 

using BO are seen at the right and centered at 88.35%.  

Next to these results are the baseline performance 

from the MATLAB settings, centered at 87.94%. 

Notably the B2 optimized results and the MATLAB 

results are similar.  

In Figure 8, between the baseline results and the B2 

and MATLAB results we present an illustration of the 

 
a) 

 
b) 

   
c) 

Figure 7. Example Datasets: a) the first 36 observations from MNIST, b) a randomly selected set of 25 

examples from Fashion-MNSIT, c) representative sample of CIFAR-10 

Page 950



BO training set results that yielded the final model.  

These are “x’s” since these are individual accuracy 

scores on the training set.  Notably these results are 

overall higher in accuracy than the test set, this is to be 

expected since the test set is unknown to the models. 

 

4.2.2 Further Results: MNIST and CIFAR-10 

LeNet-4 is considered because its development largely 

started the Deep Learning domain in 1995. While 

Deep Learning methods have advanced significantly 

since the introduction of LeNet, they are of interest in 

reproducing for providing a baseline and continued 

research. Using Table 2, LeNet-4 can be represented 

as:  

 

 
32x32-4C5-AP2-16C5-AP2-120N-

10N-SM-CL 
(5) 

 

Notably, the accuracy on MNIST test set is reported as 

98.9% [19]. But neither are the settings that produced 

this know, or reported in [19], nor is the interval on the 

average performance known. The authors note that 

reporting such details was not common practice at that 

time, see [8].   

 

 
a) 

 
b) 

Figure 9. Test Set Accuracy of a) LeNet-4 on 

MNIST and b) Keras Example on CIFAR-10 
 

Figure 9a presents the results of the authors’ 

process with the results of [19] noted as LeCun. The 

initial results from Step B1 show a wide 95% t-test 

confidence interval (standard error of 0.013) which 

does not reach the published results.  However, after 

30 iterations of Step B2, the authors reach a very stable 

solution at 99.17% (standard error of 1.7•10-4).  Thus, 

without this process, one might be suspect of the 

posted results; but, with the process of Section 3 we 

have both validated, and exceeded, the results of [19] 

while showing the importance of hyperparameters.   

As a further example, the authors consider the 

examples found within Keras, an open source Python 

neural network library, specifically for CIFAR-10 

[33]. Using notion from Table 2, we represented it as:  

 

 

32x32x3-32C3-32C3-MP2-DO25-

64C3-64C3-MP2-DO25-576N-640N-

DO50-10N 

(6) 

 

Notably, the originators reported that 75% test set 

accuracy is possible after 25 epochs, and 79% after 50 

epochs [33].  When using the process from Section 3, 

again ignoring the provided hyperparameter settings, 

the authors realized the results in Figure 9b, which are 

similar to the posted results.  

  

5. Conclusions 

 
The authors presented a systematic approach to 

developing AI/ML models when given an algorithm 

and data.  This contribution addresses recent concerns 

in AI/ML literature involving the “ilities”, e.g. 

explainability, repeatability, and usability, of AI/ML, 

with an aim of making AI/ML algorithm development 

more scientific. To this aim, we explored 

hyperparameter optimization methods and introduced 

a short taxonomy of methods.  With an understanding 

of the problem and possible mathematical solutions, 

the authors presented a straightforward framework, 

with example code, which 1) provides the ability to 

automatically find algorithm hyperparameters, 2) 

enables one to verify the posted results of others’ 

algorithms, and 3) provides reasonable results when 

getting started with complex algorithms. Furthermore, 

the authors illustrated this approach on three different 

ML algorithms on three image recognition datasets.   

 

6. References  
 

[1] N. Kühl, M. Goutier, R. Hirt and G. Satzger, "Machine 

Learning in Artificial Intelligence: Towards a Common 

Understanding," Hawaii International Conference on 

System Sciences., pp. 5236-5245, 2019.  

[2] R. O. Duda, P. E. Hart and D. G. Stork, Pattern 

Classification, 2nd ed., John Wiley & Sons, 2001.  

[3] C. Drummond, "Replicability is not reproducibility: nor 

is it good science.," International Conference on Machine 

Learning (ICML), 2009.  

[4] D. Mishkin and J. Matas, "All you need is a good init.," 

arXiv preprint arXiv:1511.06422., 2015.  

[5] J. Snoek, H. Larochelle and R. Adams, "Practical 

bayesian optimization of machine learning algorithms," 

Advances in neural information processing systems, pp. 

2951-2959, 2012.  

Page 951



[6] M. J. Mendenhall, A Neural Relevance Model for 

Feature Extraction from Hyperspectral Images, and its 

Application in the Wavelet Domain, PhD Dissertation: Rice 

University, 2006.  

[7] D. Desai and J. Kroll, "Trust but verify: A guide to 

algorithms and the law.," Georgia Tech Scheller College of 

Business Research Paper No. 17-19, 2017.  

[8] G. Zhang, "Avoiding pitfalls in neural network research," 

IEEE Transactions on Systems, Man, and Cybernetics, Part 

C (Applications and Reviews), vol. 37, no. 1, pp. 3-16, 2007.  

[9] R. Potember, Perspectives on Research in Artificial 

Intelligence and Artificial General Intelligence Relevant to 

DoD, McLean, VA: JASON, The MITRE Corporation, 

2017.  

[10] A. Shadowen, Ethics and Bias in Machine Learning: A 

Technical Study of What Makes Us “Good”, MS Thesis: 

CUNY John Jay College of Criminal Justice, 2017.  

[11] D. Gunning, Explainable artificial intelligence (xai), 

Defense Advanced Research Projects Agency (DARPA), 

2017.  

[12] A. Abran, A. Khelifi, W. Suryn and A. Seffah, 

"Consolidating the ISO usability models," International 

Software Quality Management Conference, pp. 23-25, 2003.  

[13] D. D. Woods, "Decomposing automation: Apparent 

simplicity, real complexity," in Automation and human 

performance: Theory and applications, 1996, pp. 3-17. 

[14] M. Shaw, "Prospects for an Engineering Discipline of 

Software," IEEE Software, vol. 7, no. 6, pp. 15-24, 1990.  

[15] C. Shearer, "The CRISP-DM model: the new blueprint 

for data mining," Journal of data warehousing, vol. 5, no. 4, 

pp. 13-22, 2000.  

[16] L. Kotthoff, C. Thornton, H. Hoos, F. Hutter and K. 

Leyton-Brown, "Auto-WEKA 2.0: Automatic model 

selection and hyperparameter optimization in WEKA," The 

Journal of Machine Learning Research, vol. 18, no. 1, pp. 

826-830, 2017.  

[17] D. Ciresan, A. Giusti, L. Gambardella and J. 

Schmidhuber, "Deep neural networks segment neuronal 

membranes in electron microscopy images," Advances in 

neural information processing systems, pp. 2843-2851, 

2012.  

[18] D. Cireşan, U. Meier and J. Schmidhuber, "Multi-

column deep neural networks for image classification," 

arXiv preprint arXiv:1202.2745, 2012.  

[19] Y. LeCun, L. Jackel, L. Bottou, C. Cortes, J. Denker, H. 

Drucker, I. Guyon, U. Muller, E. Sackinger, P. Simard and 

V. Vapnik, "Learning algorithms for classification: A 

comparison on handwritten digit recognition," Neural 

networks: the statistical mechanics perspective, 1995.  

[20] P. Lorenzo, J. Nalepa, M. Kawulok, L. Ramos and J. 

Pastor, "Particle swarm optimization for hyper-parameter 

selection in deep neural networks," Proceedings of the 

Genetic and Evolutionary Computation Conference, pp. 

481-488, 2017.  

[21] T. Bihl and D. Steeneck, "Multivariate Stochastic 

Approximation to Tune Neural Network Hyperparameters 

for Criticial Infrastructure Communication Device 

Identification," Hawaii International Conference on System 

Sciences (HICSS), pp. 2225-2234, 2018.  

[22] G. Diaz, A. Fokoue-Nkoutche, G. Nannicini and H. 

Samulowitz, "An effective algorithm for hyperparameter 

optimization of neural networks," IBM Journal of Research 

and Development, vol. 61, no. 4/5, 2017.  

[23] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh and 

A. Talwalkar, "Hyperband: A novel bandit-based approach 

to hyperparameter optimization," The Journal of Machine 

Learning Research, vol. 18, no. 1, pp. 6765-6816., 2017.  

[24] Y. Ozaki, M. Yano and M. Onishi, "Effective 

hyperparameter optimization using Nelder-Mead method in 

deep learning," IPSJ Transactions on Computer Vision and 

Applications, vol. 9, no. 1, 2017.  

[25] E. Hazan, A. Klivans and Y. Yuan, "Hyperparameter 

optimization: A spectral approach.," arXiv preprint 

arXiv:1706.00764., 2017.  

[26] R. Martinez-Cantin, "Bayesopt: A bayesian 

optimization library for nonlinear optimization, 

experimental design and bandits," The Journal of Machine 

Learning Research, vol. 15, no. 1, pp. 3735-3739, 2014.  

[27] J. Bergstra, D. Yamins and D. Cox, "Hyperopt: A 

python library for optimizing the hyperparameters of 

machine learning algorithms," Proceedings of the 12th 

Python in science conference, pp. 13-20, 2013.  

[28] B. Boehmke, Data Wrangling with R, Springer 

International Publishing, 2016.  

[29] Mathworks, "Classify Fashion Items with a 

Convolutional Neural Network," Mathworks Help, 2019.  

[30] T. Fawcett, "An introduction to ROC analysis," Pattern 

recognition letters, vol. 27, no. 8, pp. 867-874, 2006.  

[31] H. Xiao, K. Rasul and R. Vollgraf, "Fashion-mnist: a 

novel image dataset for benchmarking machine learning 

algorithms," arXiv preprint arXiv:1708.07747., 2017.  

[32] A. Krizhevsky and G. Hinton, Learning multiple layers 

of features from tiny images, Toronto, CA: University of 

Toronto, 2009.  

[33] Keras, "Train a simple deep CNN on the CIFAR10 

small images dataset.," Keras Documentation, [Online]. 

Available: https://keras.io/examples/cifar10_cnn/. 

[Accessed 10 May 2019]. 

 

 

Page 952


