
Practice Makes Perfect: Lesson Learned from Five Years of Trial and Error
Building Context-Aware Systems

Ryan Mullins
Aptima, Inc.

rmullins@aptima.com

Adam Fouse
Aptima, Inc.

afouse@aptima.com

Gabriel Ganberg
Aptima, Inc.

ganberg@aptima.com

Nathan Schurr
Aptima, Inc.

nschurr@aptima.com

Abstract

Recent advances in artificial intelligence have
demonstrated that the future of work will be defined
by collaborative human-machine teams. In order
to be effective, human-machine teams will rely on
context-aware systems to enable collaboration. In this
paper, we present three lessons learned from the past
five years of developing context-aware systems that
we believe will improve future system design. First,
that semantic activity must captured, modeled, and
analyzed to enable reasoning across missions, actors,
and content. Second, that context-aware systems
require multiple, federated data stores to optimize
system and team performance. Finally, that real-time
inter-actor communications are the essential feature
enabling adaptation. We close with a discussion of
the influences and implications that these lessons have
on human-machine teaming, and outline future research
activities that will be necessary before operationalizing
these systems.

1. Introduction

An analysis of recent events illustrates a simple
premise: machines are on the rise. This is shown
in several domains. In 2016, the Defense Advanced
Research Projects Agency (DARPA) hosted their Cyber
Grand Challenge, in which fully-autonomous cyber
reasoning systems successfully identified vulnerabilities
in software [1, 2, 3]. That same year, AlphaGo scored
the first machine victory over a human grand master in
the game Go [4]. In 2019, OpenAI released what may be
considered the first truly competent generative language
model in GPT-2 [5].

Despite these monumental successes, machines have
limitations. What they provide in scalability (the
velocity with which tasks can be completed) they lack
in adaptability (the variety of tasks they support). Garry
Kasparov, the first world champion chess player to lose
a match to a machine, posits a simple formula [6]:

human-machine teams engaged in the optimal process
will, eventually, outperform any combination of humans
and machines using a lesser process.

It is this premise that has motivated our work for
the last five years; designing, developing, and evaluating
context-aware systems to improve human-machine team
performance. How can we design systems that optimally
enable human-machine collaboration? How do we
reshape the capability curve (Figure 1) from convex to
concave?

Figure 1. Current and future capability curves of

human-machine teams.

Research in context-aware systems encompasses
many domains, from ubiquitous computing [7, 8],
adaptive user interfaces [9, 10], to knowledge bases
[11, 12], to recommendation engines [13, 14, 15].
These efforts have addressed conceptual aspects of
context-aware systems, such as how context is defined
and what role it plays, technical aspects, such as
selection of computational representations for context,
and outcomes, such as the performance benefits of

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 279
URI: https://hdl.handle.net/10125/63774
978-0-9981331-3-3
(CC BY-NC-ND 4.0)



context awareness.
In this paper, we contribute three lessons learned

to this line of research, drawn from prototyping
and evaluating context-aware systems, to aid in the
practice of human-machine collaboration. In our
reference systems machines act in supporting roles – as
assistants optimizing workflows, as monitors of health
reporting on system status, and as workers automating
common tasks. These systems were built for two
domains: information analysis, including long-running
and real-time analysis, and command and control of
cybersecurity operations. We close with a discussion
of the implications these lessons have for advancing
the design and evaluation of context-aware systems
enabling human-machine collaboration.

2. Related work

2.1. Knowledge management

Knowledge graphs [11, 16] have become
a best-practice for knowledge management in
context-aware systems [17, 18]. While there is yet
to be a universally accepted definition of a knowledge
graph [16], for the purposes of this research we define
the term as a datastore (another term for database)
connecting entities through relationships to enable
contextualized content retrieval.

The scope of knowledge graphs is determined
by the intended adaptability of the system. Large
knowledge graphs tend to focus narrowly on one task,
information retrieval, for example, as exemplified by
Google [11, 12] and others. Knowledge graphs of
this scale optimize global relevance, from a statistical
perspective, at the expense of addressing any specific
context. While these knowledge graphs are insufficient
to qualify as human-machine teaming systems, the data
enrichment methods they use – such as topic modeling,
named-entity extraction, and entity resolution – are
essential to enable those richer systems.

Methods to generalize knowledge graphs to include
nascent representations of actor preferences in the task
are now common. Consider commercial recommender
algorithms used by Netflix [13], Hulu [14], and Amazon
[15], which treat context as a series of sparse vectors
that can be isolated and assessed for similarity [19].
However, these techniques have a critical limitation that
inhibits them from providing generalized support: they
assume that individual preferences never change [14]
which does not hold for real-world work environments.
As a result of this assumption, recommender systems
are designed to support a single task, and can require
multiple knowledge graphs and analytical capabilities to

support multiple tasks.
Ganberg et al. [20] proposed a general framework

for modeling human-machine teaming context by
representing four distinct types of data – environment,
performers, mission, and interactions – as concrete
entities, and integrating them into a unified domain
model. Of particular relevance to this paper are
their representations of environment and interactions.
Environments are representations of a predominantly
physical world, with an emphasis on data collectors and
the performance space characteristics that capture work
in the physical space in a digital model. Interactions
are directed representations of communications
and actions, typically separated into pair-wise
relationships – performer-performer, performer-entity,
and entity-performer. Pfautz et al. [21] implemented
an expanded version of the domain model in a property
graph [22] database. This method has two limitations
that we seek to address with this paper: 1) the highly
explicit and static definitions of major concepts,
especially of the environment and interactions, that
inhibit adaptability; and 2) the reliance on a single
method for storing and analyzing data that can restrict
representation possibilities or induce performance
bottlenecks.

2.2. Temporal nature of context

A commonly used definition of context is ”any
information that characterizes a situation related to
the interaction between humans, applications and
the surrounding environment” [23]. While this
situation-focused definition recognizes the changing
nature of context over time, little attention has been
paid to the different time-scales at which context exists.
Of particular importance to our work is the relationship
between events in the world and changes to context.

To ground understanding of this relationship in
models of human behavior, we look to psychological
theories of event perception and segmentation.
According to this research [24, 25] human perception
of activity in the world is managed by segmenting the
activity into discrete events, which become the basic
unit. These theories posit (with support from behavioral
and neurological evidence) that events are represented
on multiple time-scales and organized in a hierarchy
ranging from short to long duration.

If we enrich the definition of context provided above
to posit that situations are partially defined by the
ongoing stream of events, it naturally follows that the
hierarchical nature of event perception should influence
how we model context and implement context-aware
systems. For example, take the event of writing a

Page 280



research paper. This event may be built out of smaller
events such as creating an outline, writing a section, and
editing. These may be further broken down into small
events such as re-writing a sentence.

To model the context of these events, the hierarchical
relationships need to be considered, and the support
provided would depend not only on the aggregate
context, but on the changes to the smaller-scale events
and their relationship to other scales in the hierarchy.
Previous work has applied these theories of event
segmentation to the design of information system, such
as guiding the timing of notifications [26] and the design
of planning software [27]. These applications have
shown improved performance, as measured by reduction
in interruption cost for notifications, and increased
accuracy of planning.

3. Methods

We developed the lessons learned presented in this
paper through an action research [28, 29] program
spanning five years. The goals of this program were
to simultaneously provide tools to improve performance
in the domains of study, while using the iteration
across multiple applications to identify principles of
context-aware system design through reflection on the
outcomes obtained from each iteration.

This program involved close collaboration with
users in three different organizations, participatory
design involving recently retired members of those
organizations, development of tools to be used by
members of those organizations, and iteration of
approach between efforts. Each application began
with domain analysis using techniques such as hybrid
Cognitive Task Analysis [30] and Contextual Design
[31]. These analyses provided grounding in the specifics
of each domain, an understanding of critical challenges
faced by users, guidance for interface requirements, and
definition of the components of context.

At a technical level, the three systems we developed
shared common characteristics: web-based user
interfaces and visualizations, with back-end components
providing data storage, processing, and analytics. The
specific details of each implementation followed from
the domain analysis, but common components allowed
for rapid development to enable frequent feedback from
users and iteration of design.

During development of those systems, we used
several techniques to collect data regarding the design
of these systems, with the technique chosen based on
the readiness of the software, availability of users,
and technical limitations of the users’ environment.
These data collection techniques included usability

studies, semi-structured interviews [32], and cognitive
walk-through [33]. At least two members of the research
team observed and recorded notes for each session, and
we used a grounded theory approach [34] to identify
themes that emerged from across sessions concerning
benefits and limitations of the systems we developed.
These themes form the basis of the lessons learned that
are reported in the following sections.

4. Lesson 1: Modeling semantic activity

Our first lesson is drawn from our experience
designing web applications for the information analysis
domain. Here, our typical human user is an analyst
researching and answering questions from one or more
content modalities, such as text, images, video, etc., that
are streaming new content and updates into the system.
We use Pirolli and Card’s information synthesis process
[35] as a generic model of the analyst’s work. Further,
tasking is assumed to be driven by a mix of top-down,
influenced by customer requirements, and bottom-up,
emerging from the analytical process, factors.

Under these assumptions, we prototyped a system
that addresses the critical need of modern analysts:
dealing with information at scale. How can the analyst
find the relevant content? How can the analyst know
that the content they find is reliable and credible? How
can the analyst leverage this content effectively in their
analysis?

Here, the role of the machine is that of an assistant;
finding, delivering, and characterizing content that is
relevant to their work. The machine must be able
to understand the information needs of the analyst,
which is to say, map the available content onto the
analytical structure, quantitatively assess the relevance
of the content given that mapping, and present content
to the human without overloading them.

This problem is analogous to challenges faced by
Netflix and others [13, 14, 15]. Typical solutions
leverage collaborative filtering [19] to predict relevance.
While this method has proven reliable and scalable,
the static preference assumption [14] negates its
applicability in highly-dynamic work environments.
Analyst’s needs can change from moment to moment
in response to myriad factors, such as the information in
the content they are examining, the availability of new
content, or the requirements of their customer. The only
way for the machine to adapt to or, ideally, anticipate the
human’s information needs is to analyze their activity.

This leads us to our first lesson: modeling
and quantifying semantic activity is the essential
feature space over which context-aware systems must
operate. This lesson poses two research challenges

Page 281



for context-aware system design: modeling semantic
activity and capturing semantic activity.

4.1. Activity in knowledge graphs

Our approach builds upon the groundwork laid by
[20] and [21], relying on a graph-centric representation,
specifically a property graph [22], to model semantic
activity. Here, we define semantic activity as an
observable unit of work within the system. As with
[20], we model semantic activity explicitly as nodes
within the graph. Each node represents an action that
is performed by an actor and, optionally, operates over
content to achieve a mission objective. This definition
allows us to simplify and enhance the domain modeling
approach used by Pfautz et al. [21] to four layers:

1. The Actor Layer is comprised of a two node
types, the actor node, which represents discrete
human or machine entities within the system,
and the group node, which represent related
collections of human or machine actors.

2. The Content Layer is a heterogeneous layer
representing the data over which actors operate. It
is equivalent, in many regards, to the traditional
form of a knowledge graph [11], linking
discrete source data nodes together through
myriad extracted nodes derived from automated
analytical methods or explicitly created from
actor interactions with the system.

3. The Mission Layer is a heterogeneous layer
that represents the goals, objectives, tasks,
requirements, constraints, products, and the
relationships there-between, that define the
workflow. The relationships between these
entities are typically defined by the domain,
policy, or best practices of the organization.
One common example would be TaskN having a
Create relationship to ProductQ.

4. The Activity Layer is a homogenous collection
of the semantic activity nodes described above.
The core of each activity node is the action, start
time, and end time attributes, stored as properties
on the node. Additional properties can be stored
depending on the domain needs. The semantics
of that action are modeled as four types of
relationships: inputs, outputs, actors, and mission.
Inputs and outputs model the semantic of content
transformation within the work process, which
can be extracting or aggregating data into relevant
information. Actor and mission relationships
capture the semantics for who is performing the

necessary work. An activity node must always
have an actor and a mission relationship. Input
and output relationships are not required unless
the action mutates content.

In our layered model, the activity layer acts as a
sort of connective tissue to fuse the knowledge graph,
allowing for use case-specific implementation of the
actor, content, and mission layers in the system. Figure
2 illustrates our approach for an information analysis use
case. Activity (orange) is represented as discrete nodes
in the graph, with edges pointing the associated actor
(green), mission (red), and/or content (blue) entities.
Activities 1, 2, 3, and 4 represent content extraction
by an actor. They use by relationships to denote the
actor, from relationships to identify the source content,
and extracted relationships to identify the newly-created
content. Activities 5 and 6 represent the actions of
referencing and quoting content in a product. They use
by relationships to denote the actor, in relationships to
denote the product, and relationships with semantically
meaningful labels (referenced and quoted) to denote
the specific type of action that was taken. The results
of these activities are represented as new relationships
(black) in the graph that link the associated actors,
content, and/or mission elements to each other directly
using a separate set of semantic layers, such as
provenance or structure. The advantage of this approach
is that it enables multiple types of pattern recognition
in the graph using different graph traversals. These
differences can be leveraged independently or jointly
by analytics, enabling several assessments of the data
space, as in [36].

4.2. Capturing semantic activity

Activity logging is a well-documented practice in
both academic and commercial realms. Traditional
approaches model system-level events, such as mouse
clicks, keystrokes, and/or window focus changes, then
use post-hoc analyses to derive insights [37, 38, 39]. We
find these methods to be insufficient for our purposes, as
they require significant additional information to imbue
the system events with process semantics, and are not
well-suited to dynamic task changes.

Instead, we capture and represent activity semantics
explicitly, as in [36, 40], by translating system-level
events into semantic events imbued with the requisite
data from our activity modeling approach explicitly
within the user interface. The minimum tuple that must
be captured is 〈actor, target, action〉, where target can
be an entity in the mission or content layers. This tuple is
appropriate when the actor is mutating a property of an
element, such as rating the credibility of the information

Page 282



Figure 2. An example model illustrating how activity nodes and edges (orange) connect the disparate subgraphs

of users (green), content (blue), and missions (red).

contained in a snippet of text. More complex activity
may also include an output. In this case, the tuple would
be adjusted to be 〈actor, source, output, action〉. We
do not impose limits on the tuples that are captured,
and recommend that the system capture as much detail
as possible. The critical element of information is to
label the actions of the activity nodes in a semantically
meaningful way. Looking again at Figure 2, the activity
nodes that capture the creation of derivative knowledge
elements use from and extracted relationships to denote
the source and the output. The precise semantics of these
relationships and analytics thereover will change with
the operational domain, use case, etc.

5. Lesson 2: Optimize representation

Our second lesson was drawn from the development
of situational awareness tools for organizations. Here,
we define an organization as a collection of actors who
can be divided into teams based on the nature of their
work. Our model organization was a security operations
center (SOC) [41] providing real-time and long-term
network defense to a large organization. The system was
designed to support the leader’s situational awareness
[42], given the specific considerations of the SOC and

the cyber domain [43]. The leader manages defensive
activities of multiple constituent teams with different
roles, such as incident response, forensic analysis, and
vulnerability assessment. Depending on the nature of
their tasking, teams may be able to execute in parallel,
require sequencing, or operate in opposition to each
other’s goals.

For this use case, we used SOC health as a proxy for
the leader’s situational awareness. To understand health,
the system requires real-time status monitoring for
individuals actors, teams, their tasking, and the network
infrastructure they are defending. SOCs are inclusive of
machine actors, who provide autonomous functions like
intrusion detection or network load monitoring.

Health monitoring in the cyber domain requires two
distinct types of information to define system context:
1) data at the edge, such as packet capture data from
a network traffic sensor, and 2) derived data, such as
measures of performance on a task, or the impact on
organizational capability if an asset goes down. There
exist significant data aggregations and transformations
between these two types of data, requiring a non-trivial
model of a data generating process to communicate the
derived health measures effectively. Further, the data
required for these analyses are significant in volume and

Page 283



velocity, therefore, the system must process these data
in place and communicate back only aggregate findings
to the user.

The combination of analytical complexity for
decision-support and analysis-in-place presents our
second lesson: context-aware systems should use
a datastore federation around a central knowledge
graph.

5.1. Multiple representation approach

As discussed in Lesson 1, we have found that a
knowledge graph is essential for context-aware system
design. However, the role of the knowledge graph
should be understood: these are fused representations
over heterogeneous data. Complex work environments,
such as SOCs, require multiple datastores operating as a
federation in order to optimally store and analyze data
for a specific task. When architecting the federation
for a context-aware system, there are five datastore
classes to consider: relational [44], indexes [45], spatial
[46], temporal [47], and blobs [48]. Depending on
the constraints and affordances, the system could be
architected to include any combination of datastores.

In these architectures, the knowledge graph serves
as the central fusion point, but it can also act as a sort
of memory for the system with minor enhancements to
the content and mission layers. For the content layer,
in addition to modeling the content actors operate over,
we have found that modeling the location and access
method for this content as relationships in the graph.
These relationships are only necessary for the content
entities that the actors explicitly use in their work.
For the mission layer, we have found that modeling
the methods actors use to complete their work provide
useful insight both into the data generating process, as
required by the SOC use case, and the general workflow
used by human-machine teams.

When enriched in these ways and fused through the
semantic activity entities described in Lesson 1, this
approach benefits both research and operations. First,
the knowledge graph provides a record of the work that
can be done by the system (e.g., tasking, goals, and
other mission layer entities), the work that was done by
the system (e.g., tasks completed and associated entities
in the activity layer), and, through these enhancements,
how that work was done. Critically, our approach does
this without over-burdening the graph, minimizing the
impact that centrality [49] and other metrics impose
on analytics. Second, these data provide a complete
record of the human-machine team workflow. To utilize
this record, the activity layer can be exported and
transformed into an index or time series of events for

further analysis. Some potential uses include real-time
augmentation via workflow recommendations [36], and
team optimization through post-hoc pattern analysis
[50, 51]. Finally, this record can be used to provide
data to myriad training or simulation tasks outside the
confines of operational use.

6. Lesson 3: Adapt to real-time needs

Our final lesson stems, again, from the information
analysis domain, this time exploring human-machine
collaboration for real-time video annotation. Here, our
typical human user is an analyst extracting data from a
live video stream as part of a team of analysts. They are
supported by automation in the form of computer vision
algorithms performing real-time image segmentation,
track extraction, etc. Despite this automation support,
humans remain in-the-loop to perform more complex
functions, such as confirming the output from computer
vision algorithms, translating that output into real-time
communications, or developing informational products
for customers.

The operational challenge is rapidly delivering on
dynamic customer requests. The primary measures of
performance are the volume, velocity, accuracy, and
precision with which products are generated. Tasking
in this environment comes from standing (known prior
to the start of operations) and emergent (arising out of
the observed events) requests. Each request generates an
informational product, which may have a time-bounded
performance metrics. For example, an emergent request
for an annotated video frame must be delivered to the
customer within X minutes.

As researchers, our challenge was imbuing the
system with a sufficient model of context to rectify the
interaction between the timescales of an ongoing effort
(e.g., past missions in the same area), an individual
analyst’s activity (i.e., their tasking in-the-moment), and
unfolding activity in the world that is captured by the
video. Although the approaches described in Lessons
1 and 2 incorporate models of context that update
over time as a function of user activity, the changes
in context are typically gradual, as opposed to rapid
changes as a result of events in the data. This brings
us to our final lesson: real-time reactions require that
context-aware systems maintain representations of the
temporal qualities of a changing knowledge graph.

6.1. Real-time adaptation approach

Real-time adaptation requires the system to reason
over multiple time scales. In addition to absolute
real-world time, we also need to consider relative time
as it passes during the course of a mission, and relative

Page 284



time as it relates to comparison to past data or events
[52]. For example, activity at the beginning of a
mission may be interpreted differently than activity at
the end of a mission, and the recency of past data
may determine whether the analyst or system should
prioritize its inclusion in the analysis process.

Our approach to addressing these challenges
of real-time adaptation enriches the heterogeneous
knowledge graph approaches described earlier in this
paper with label-based representations of temporal
data. This enrichment builds upon the notion of
absolute time, which is stored as a timestamp property
on all relevant content, mission, and activity nodes
in the knowledge graph, and augments it with time
category labels. For mission-relative events, the system
dynamically generates, assigns, and persists labels on
key data. For example, a node representing a product
in the content layer could have a time category label
”mission/id/created + 01 : 02 : 00” to denote that
the product was created one hour and two minutes into
mission execution. Similarly, for event-relative time,
the system dynamically generates and attributes labels
to events observed within a mission relative to their last
observation in the broader operational history. Triggers
for updating the system’s reasoning processes leverage
a distributed event architecture [53] keyed off of label
mutations.

6.2. Characterizing priorities

Analysts in these settings potentially need
support from the system across a variety of tasks,
such as understanding the activity they see in
the video, identifying which frames of video to
annotate, determining what annotations to create, or
understanding which products of the analysis need
to be collated and distributed. The system needs to
understand these different possible priorities, determine
when to provide support, and how that support may
have changed due to ongoing events.

Our methods for determining support rely on
multiple categories of time in combination with a
streaming data model. As new data comes into the
system, the data is evaluated both in isolation as well
as in the context of the knowledge graph. This enables
reasoning about intrinsic qualities of data (e.g., a priority
request or a stated goal) as well as changes to the overall
context.

A key input to changing context in this model
is communication between actors in the system.
The ongoing activity of the teams, especially
in real-time settings such as the analyst team
we consider here, is often orchestrated through

frequent communication. This includes structured and
unstructured communication, both within the team and
with external organizations.

While the activity node structure was originally
intended to represent interactions between actors and
systems, this model can also be adapted to capture
this communication between actors and each other. By
representing those communications within the temporal
knowledge graph, context reasoning can reflect the
temporally changing priorities of the team.

7. Discussion

7.1. Limitations and scope

The systems we have described in this paper can
be broadly described as decision and analysis support
tools, where the support is tailored to the needs of
users by representing and analyzing context. These
systems have two characteristics that bound the scope
of applicability for the lessons we have provided to the
field of human-machine teaming. First, these systems
were designed to support a limited view of the role that
machines can play in work – as assistants in knowledge
work that does not require physical embodiment in
order for machines to effectively participate on the
team. Extending these approaches to support embodied
work, such as human-robot collaboration, would require
a representation of the environment as a layer in the
knowledge graph, as described in [20, 21]. Support
for more autonomous machines requires a better model
of business processes, using techniques such as process
notation [54], and the incorporation of these processes
into the knowledge graph such that other actors can be
made aware of and are able to incorporate the outputs
of a machine actor’s work products [55]. Second,
the lessons presented in this paper were derived from
qualitative research methods, as discussed earlier. We
have not quantified the changes in team performance
as a result of the lessons presented, nor do we
suggest generalizable measures and metrics against
which performance can be compared. Further research
is required to address this question.

7.2. Implications for human-AI collaboration

The future of humans interacting with machines is
likely to be one of true collaboration. Recent advances
in the field of artificial intelligence – for example,
successes in application of deep learning techniques
to play complex games such as Dota2 [56] – indicate
an ever-increasing level of autonomous reasoning by
machines. But collaboration between humans and
highly autonomous machines remains elusive.

Page 285



The lessons described in this paper apply directly
to this problem. The first lesson, of the central
importance of representing semantically-meaningful
activity, applies not only to what support a system
should provide, but to when and how that support should
be provided. Knowing when and how to interact with
others is a critical feature of successful collaborative
teams [57].

The second lesson, of optimizing performance
through multiple federated data stores, underscores
the importance of flexibility and composability in
context-aware systems, that is, having the ability to
link native representations and analyses of data with
model-based representations of context. Such hybrid
techniques have been shown to provide advantages for
accelerating learning [58], but also provide a mechanism
for combining semantically meaningful representations
with powerful learning techniques.

The third lesson, of temporal representations that
include inter-actor communications, is critical for
heterogeneous teams. Successful collaborative teams
adapt their priorities and communication structures to
match the needs of the work at hand and anticipated
work of the future [59]. Collaborative systems cannot
require humans on such teams to provide explicit
representation of these mission and organization factors;
this would be inefficient and brittle. Rather, intelligent
collaborative systems should infer these changes based
on changing context, and let human teammates know
when that context needs additional input due to high
degrees of uncertainty.

7.3. Future work

Looking ahead, we see numerous challenges in the
future of context-aware systems and human-machine
teaming. In the short term, and for the purposes of this
paper, we have prioritized two: management and trust.

A major limitation of the current state-of-the-art
in human-machine teaming is that systems require
human intervention to manage configuration. In
particular, the schema underlying knowledge graph
requires human-driven updates to incorporate structural
changes. New methods for architecting and delivering
systems will be required to make this process more
resilient.

Considering the state-of-the-practice, we believe
that human understanding and inclusion of machines
as teammates is the major limiting factor on
human-machine collaboration and team performance.
Human understanding and inclusion of machines is a
classical problem of trust in autonomy. Hoffman et
al. [60] explore the difference between interpersonal

trust and human-machine trust, finding that the trust is
generally similar between these two framings, but that
machines lack the capabilities necessary to reestablish
trust once it has been eroded. Adding this capability will
be essential to enable true human-machine collaboration
in the future. Rahwan et al. [61] recently noted the
emergence of the field of artificial science, focused on
the empirical study of the mechanisms, development,
functions, and scale associated with machine behavior.
A key critique they make is that many new advances in
artificial intelligence (AI) are based on opaque methods,
such as deep learning. Efforts are being made to make
these methods less opaque, for example DARPA’s
Explainable AI program [62]. We plan to enhance
our approach to incorporate explainable methods, and
to associate them with mission, content, and activity
elements.

Acknowledgements

The authors would like to thank Ms. Stacy Pfautz,
Dr. Caroline Ziemkiewicz, and Mr. Roger Dziegiel for
their contributions to this work.

This work was conducted in connection with
Contracts #FA8750-14-C-0124, #FA8650-16-M-6736,
and #FA8750-17-C-0203 with the United States Air
Force Research Laboratory. The views, opinions, and
findings contained in this document are those of the
authors and should not be construed as an official
position of the United States Air Force.

References

[1] M. Walker, “Machine vs. machine: Lessons from the first
year of cyber grand challenge,” 2015.

[2] J. Song and J. Alves-Foss, “The darpa cyber grand
challenge: A competitor’s perspective,” IEEE Security
& Privacy, vol. 13, no. 6, pp. 72–76, 2015.

[3] J. Song and J. Alves-Foss, “The darpa cyber grand
challenge: A competitor’s perspective, part 2,” IEEE
Security & Privacy, vol. 14, no. 1, pp. 76–81, 2016.

[4] F.-Y. Wang, J. J. Zhang, X. Zheng, X. Wang, Y. Yuan,
X. Dai, J. Zhang, and L. Yang, “Where does alphago go:
From church-turing thesis to alphago thesis and beyond,”
IEEE/CAA Journal of Automatica Sinica, vol. 3, no. 2,
pp. 113–120, 2016.

[5] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
and I. Sutskever, “Language models are unsupervised
multitask learners,” OpenAI Blog, vol. 1, no. 8, 2019.

[6] G. Kasparov, Deep thinking: where machine intelligence
ends and human creativity begins. PublicAffairs, 2017.

[7] L. Barkhuus and P. Dourish, “Everyday encounters with
context-aware computing in a campus environment,”
in International Conference on Ubiquitous Computing,
pp. 232–249, Springer, 2004.

[8] A. K. Dey, G. D. Abowd, et al., “The context toolkit:
Aiding the development of context-aware applications,”

Page 286



in Workshop on Software Engineering for wearable and
pervasive computing, pp. 431–441, 2000.

[9] A. F. Norcio and J. Stanley, “Adaptive human-computer
interfaces: A literature survey and perspective,” IEEE
Transactions on Systems, Man, and cybernetics, vol. 19,
no. 2, pp. 399–408, 1989.

[10] P. Langley, “Machine learning for adaptive user
interfaces,” in Annual Conference on Artificial
Intelligence, pp. 53–62, Springer, 1997.

[11] A. Singhal, “Introducing the knowledge graph: things,
not strings,” Official google blog, vol. 5, 2012.

[12] H. Paulheim, “Knowledge graph refinement: A survey
of approaches and evaluation methods,” Semantic web,
vol. 8, no. 3, pp. 489–508, 2017.

[13] C. A. Gomez-Uribe and N. Hunt, “The netflix
recommender system: Algorithms, business value,
and innovation,” ACM Transactions on Management
Information Systems (TMIS), vol. 6, no. 4, p. 13, 2016.

[14] Y. Zheng, B. Tang, W. Ding, and H. Zhou, “A neural
autoregressive approach to collaborative filtering,” arXiv
preprint arXiv:1605.09477, 2016.

[15] G. Linden, B. Smith, and J. York, “Amazon. com
recommendations: Item-to-item collaborative filtering,”
IEEE Internet computing, no. 1, pp. 76–80, 2003.

[16] L. Ehrlinger and W. Wöß, “Towards a definition of
knowledge graphs.,” SEMANTiCS (Posters, Demos,
SuCCESS), vol. 48, 2016.

[17] L. O. Colombo-Mendoza, R. Valencia-Garcı́a,
A. Rodrı́guez-González, G. Alor-Hernández, and
J. J. Samper-Zapater, “Recommetz: A context-aware
knowledge-based mobile recommender system for
movie showtimes,” Expert Systems with Applications,
vol. 42, no. 3, pp. 1202–1222, 2015.

[18] J. Francis, A. Oltramari, S. Munir, C. Shelton,
and A. Rowe, “Context intelligence in pervasive
environments,” in 2017 IEEE/ACM Second International
Conference on Internet-of-Things Design and
Implementation (IoTDI), pp. 315–316, IEEE, 2017.

[19] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl, et al.,
“Item-based collaborative filtering recommendation
algorithms.,” Www, vol. 1, pp. 285–295, 2001.

[20] G. Ganberg, J. Ayers, N. Schurr, M. Therrien, and
J. Rousseau, “Representing context using the context
for human and automation teams model,” in Workshops
at the Twenty-Fifth AAAI Conference on Artificial
Intelligence, 2011.

[21] S. L. Pfautz, G. Ganberg, A. Fouse, and N. Schurr,
“A general context-aware framework for improved
human-system interactions,” Ai Magazine, vol. 36, no. 2,
pp. 42–49, 2015.

[22] M. A. Rodriguez and P. Neubauer, “Constructions from
dots and lines,” Bulletin of the American Society for
Information Science and Technology, vol. 36, no. 6,
pp. 35–41, 2010.

[23] A. K. Dey, G. D. Abowd, and D. Salber, “A
conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications,”
Human–Computer Interaction, vol. 16, no. 2-4,
pp. 97–166, 2001.

[24] J. M. Zacks and B. Tversky, “Event structure in
perception and conception.,” Psychological bulletin,
vol. 127, no. 1, p. 3, 2001.

[25] G. A. Radvansky and J. M. Zacks, “Event boundaries in
memory and cognition,” Current opinion in behavioral
sciences, vol. 17, pp. 133–140, 2017.

[26] S. T. Iqbal and B. P. Bailey, “Oasis: A framework
for linking notification delivery to the perceptual
structure of goal-directed tasks,” ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 17, no. 4,
p. 15, 2010.

[27] D. Billman, L. Arsintescucu, M. Feary, J. Lee, A. Smith,
and R. Tiwary, “Benefits of matching domain structure
for planning software: the right stuff,” in Proceedings of
the SIGCHI conference on human factors in computing
systems, pp. 2521–2530, ACM, 2011.

[28] R. L. Baskerville and A. T. Wood-Harper, “A critical
perspective on action research as a method for
information systems research,” Journal of information
Technology, vol. 11, no. 3, pp. 235–246, 1996.

[29] M. De Villiers, “Three approaches as pillars for
interpretive information systems research: development
research, action research and grounded theory,” in
Proceedings of the 2005 annual research conference of
the South African institute of computer scientists and
information technologists on IT research in developing
countries, pp. 142–151, South African Institute for
Computer Scientists and Information Technologists,
2005.

[30] J. M. Tappan, D. J. Pitman, M. L. Cummings, and
D. Miglianico, “Display requirements for an interactive
rail scheduling display,” in International Conference
on Engineering Psychology and Cognitive Ergonomics,
pp. 352–361, Springer, 2011.

[31] H. Beyer and K. Holtzblatt, Contextual design: defining
customer-centered systems. Elsevier, 1997.

[32] N. J. Cooke, “Varieties of knowledge elicitation
techniques,” International Journal of Human-Computer
Studies, vol. 41, no. 6, pp. 801–849, 1994.

[33] C. Wharton, “The cognitive walkthrough method: A
practitioner’s guide,” Usability inspection methods,
1994.

[34] K. Charmaz, Constructing grounded theory. sage, 2014.

[35] P. Pirolli and S. Card, “The sensemaking process and
leverage points for analyst technology as identified
through cognitive task analysis,” in Proceedings of
international conference on intelligence analysis, vol. 5,
pp. 2–4, McLean, VA, USA, 2005.

[36] A. Fouse, R. S. Mullins, G. Ganberg, and C. Weiss,
“The evolution of user experiences and interfaces
for delivering context-aware recommendations to
information analysts,” in International Conference on
Applied Human Factors and Ergonomics, pp. 15–26,
Springer, 2017.

[37] P. Cowley, J. Haack, R. Littlefield, and E. Hampson,
“Glass box: capturing, archiving, and retrieving
workstation activities,” in Proceedings of the 3rd
ACM workshop on Continuous archival and retrival of
personal experences, pp. 13–18, ACM, 2006.

[38] V. Deufemia, M. Giordano, G. Polese, and G. Tortora,
“Capturing users interest from human-computer
interaction logging,” in International Conference on Web
Information Systems and Technologies, pp. 312–327,
Springer, 2012.

[39] Z. Hinbarji, R. Albatal, N. OConnor, and C. Gurrin,
“Loggerman, a comprehensive logging and visualization

Page 287



tool to capture computer usage,” in International
Conference on Multimedia Modeling, pp. 342–347,
Springer, 2016.

[40] W. Dou, D. H. Jeong, F. Stukes, W. Ribarsky, H. R.
Lipford, and R. Chang, “Recovering reasoning processes
from user interactions,” IEEE Computer Graphics and
Applications, vol. 29, no. 3, pp. 52–61, 2009.

[41] S. C. Sundaramurthy, J. Case, T. Truong, L. Zomlot,
and M. Hoffmann, “A tale of three security operation
centers,” in Proceedings of the 2014 ACM workshop on
security information workers, pp. 43–50, ACM, 2014.

[42] M. R. Endsley, “Design and evaluation for situation
awareness enhancement,” in Proceedings of the Human
Factors Society annual meeting, vol. 32, pp. 97–101,
SAGE Publications Sage CA: Los Angeles, CA, 1988.

[43] U. Franke and J. Brynielsson, “Cyber situational
awareness–a systematic review of the literature,”
Computers & Security, vol. 46, pp. 18–31, 2014.

[44] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen,
and D. Wilkins, “A comparison of a graph database and
a relational database: a data provenance perspective,”
in Proceedings of the 48th annual Southeast regional
conference, p. 42, ACM, 2010.

[45] W. B. Croft, D. Metzler, and T. Strohman, Search
engines: Information retrieval in practice, vol. 520.
Addison-Wesley Reading, 2010.

[46] P. Rigaux, M. Scholl, and A. Voisard, Spatial databases:
with application to GIS. Elsevier, 2001.

[47] R. Snodgrass et al., “Temporal databases,” Computer,
no. 9, pp. 35–42, 1986.

[48] R. Sears, C. Van Ingen, and J. Gray, “To blob or not to
blob: Large object storage in a database or a filesystem?,”
arXiv preprint cs/0701168, 2007.

[49] M. Piraveenan, M. Prokopenko, and L. Hossain,
“Percolation centrality: Quantifying graph-theoretic
impact of nodes during percolation in networks,” PloS
one, vol. 8, no. 1, p. e53095, 2013.

[50] G. Levchuk, K. Pattipati, A. Fouse, R. McCormack,
and D. Serfaty, “Active inference in multi-agent
systems: Context-driven collaboration and decentralized
purpose-driven team adaptation,” in 2018 AAAI Spring
Symposium Series, 2018.

[51] A. Duchon, R. McCormack, B. Riordan, C. Shabarekh,
S. Weil, and I. Yohai, “Analysis of c2 and c2-lite
micro-message communications,” in Workshops at the
Twenty-Fifth AAAI Conference on Artificial Intelligence,
2011.

[52] S. M. Janssen, A. G. Chessa, and J. M. Murre, “Memory
for time: How people date events,” Memory & cognition,
vol. 34, no. 1, pp. 138–147, 2006.

[53] M. Fowler, “Event sourcing,” Online, Dec, p. 18, 2005.

[54] M. Zur Muehlen and J. Recker, “How much language
is enough? theoretical and practical use of the business
process modeling notation,” in Seminal Contributions
to Information Systems Engineering, pp. 429–443,
Springer, 2013.

[55] N. Schurr, A. Fouse, J. Freeman, and D. Serfaty,
“Crossing the uncanny valley of human-system
teaming,” in International Conference on Intelligent
Human Systems Integration, pp. 712–718, Springer,
2019.

[56] J. M. F. Fernandez and T. Mahlmann, “The dota 2 bot
competition,” IEEE Transactions on Games, 2018.

[57] C. McComb, J. Cagan, and K. Kotovsky, “Lifting
the veil: Drawing insights about design teams from
a cognitively-inspired computational model,” Design
Studies, vol. 40, pp. 119–142, 2015.

[58] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine,
“Neural network dynamics for model-based deep
reinforcement learning with model-free fine-tuning,” in
2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 7559–7566, IEEE, 2018.

[59] A. Fouse, G. Levchuk, N. Schurr, R. McCormack,
K. Pattipati, and D. Serfaty, “Aligning teams to the
future: Adapting human-machine teams via free energy,”
in International Conference on Intelligent Human
Systems Integration, pp. 471–477, Springer, 2019.

[60] R. R. Hoffman, M. Johnson, J. M. Bradshaw, and
A. Underbrink, “Trust in automation,” IEEE Intelligent
Systems, vol. 28, no. 1, pp. 84–88, 2013.

[61] I. Rahwan, M. Cebrian, N. Obradovich, J. Bongard, J.-F.
Bonnefon, C. Breazeal, J. W. Crandall, N. A. Christakis,
I. D. Couzin, M. O. Jackson, et al., “Machine behaviour,”
Nature, vol. 568, no. 7753, p. 477, 2019.

[62] D. Gunning and D. W. Aha, “Darpa’s explainable
artificial intelligence program,” AI Magazine, vol. 40,
no. 2, pp. 44–58, 2019.

Page 288


