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Abstract

We present a highly precise and robust module
for indoor place recognition, extending the work by
Lemaignan et al. and Robert Jr. by giving the robot
the ability to recognize its environment context. We
developed a full end-to-end convolutional neural network
architecture, using a pre-trained deep convolutional
neural network and the explicit inductive bias transfer
learning strategy. Experimental results based on the
York University and Rzeszów University dataset show
excellent performance values (over 94.75 and 97.95
percent accuracy) and a high level of robustness over
changes in camera viewpoint and lighting conditions,
outperforming current benchmarks. Furthermore, our
architecture is 82.46 percent smaller than the current
benchmark, making our module suitable for embedding
into mobile robots and easily adoptable to other datasets
without the need for heavy adjustments.

1. Introduction

While mobile robots have been used in industrial
environments for decades, they became affordable for
the consumer market in recent years as well. In
many homes, domestic robots, self-driving cars and
voice-activated assistants and interactions with them are
common nowadays. One of the most important aspects of
Human-Robot-Interaction (HRI) is the robots ability to
understand abstract spatial concepts and act accordingly
[1, 2]. For example, a robot vacuum cleaner may be asked
to clean the bedroom, therefore the robot’s recognition
of a bedroom should match the human’s understanding
of such a place [1].

Interaction with robots is becoming an important
part in modern work environments [2, 3]. Human-robot
teamwork is one of the most important topics of HRI
research [2, 4]. Studies on how to promote performance
in human-robot teamwork have shown the positive effects
of trust [4, 5, 6], team diversity [3], emotional attachment
[7] and robot personality [8]. However the impact of

context on robot personality [8] and contextual decision
making [2] is still open. To overcome the lack of
contextual reasoning, Lemaignan et al. [2] proposed
an architecture combining the Belief-Desires-Intention
(BDI) architecture and cognitive skills into the robot.

Research has shown that not only designing the
robot to increase a user’s situational awareness, but also
to implementation it into the robot itself (see Fig. 1),
improves the robot’s decision making [9]. The theory
of situational awareness [10] by Endsley consists of
three consecutive levels: perception of the elements in
the situation (level 1), comprehension of the situation
(level 2) and projection of future actions (level 3). A
weakness of most mobile robots is their lack of level 1
capabilities. Robots only have limited awareness of the
environment they are in and therefore they can only be
partially capable of contextual reasoning [2].

Figure 1. Situational awareness for context aware

mobile robots.

That is why we developed a robust place recognition
module for robot localization, to substantially enhance
a robot’s level 1 capabilities. Robot localization and
navigation has been extensively studied, using Lidar
[11], Sonar [12], GPS [13] and sensor information [14].
Place recognition on the other hand is mostly based on
categorizing monocular images into predefined classes
[15]. Robust place recognition is one of the most
difficult challenges, due to the high complexity of the
places themselves [16], changing lighting and viewpoint
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condition [15], occlusions of objects and landmarks [16]
and the presence of other dynamic objects [17].

We use the MobileNetV2 [18] architecture – a highly
optimized convolutional neural networks developed for
mobile and embedded devices – to build our place
recognition module. We train and evaluate our module
using the York University 11 and 17 places [15]
and the Rzeszów University 16 places dataset [19],
outperforming current benchmarks. Since both datasets
are relatively small we use a transfer learning approach
based on the explicit inductive bias L2-SP [20]. Our
results demonstrate the robustness of our module and
the advantage of a full end-to-end convolutional neural
network over its sole use as feature extractor.

In order to improve our previous approaches [9, 21,
22], we propose a module which can be implemented into
embedded devices such as mobile robots, shows robust
classification accuracy in various environments and can
be easily adopted to other environments and datasets.
Our most important contributions are:

1. We developed a highly precise indoor place
recognition module which outperforms the current
York University and Rzeszów University dataset
benchmarks with an accuracy of over 94.75 and
97.95 percent [19].

2. Our module is 82.46 percent smaller than
the benchmark models and therefore needs
significantly less computational power [19].

3. We extend the work of Lemaignan et al. [2] and
Robert Jr. [8] by giving the robot the ability to
precisely recognize its environment context.

4. Our approach is robust against severe changes in
lighting and viewpoint conditions [1] and shows
good performance in different environments [15].

5. Our module closes the gap between visual level 1
situational awareness capabilities for mobile robots
and HRI [8].

6. Our module can be easily adopted for other mobile
robot scenarios, without the need to massively
change the networks’ configuration.

The paper is organized as follows: First we give an
overview of the related work, including a description of
the current approaches for place recognition. Next we
provide the research methodology, with a description of
the deep learning methods and data used. After that we
show results of our recognition modules performance and
compare it with current benchmarks. We then discuss
the results and its implications, before concluding with
limitations and suggestions for future research.

2. Related Work

Robust place recognition for mobile robots is one
of the major challenges of HRI research. The high
complexity of robust place recognition comes from
changes in the scene [16], varying lighting and viewpoint
conditions [23], the limited computational resources [18]
and the high complexity of the places [1].

Earlier work on place recognition based on camera
images mostly adopted two separate stages: 1) extract
hand crafted feature from the images, 2) use a (shallow)
machine learning model like Support Vector Machine
to classify the image into a predefined category. Since
most shallow learning algorithms perform poorly on raw
image data, both global and local image descriptors have
been used to extract image features [23, 24, 25, 26, 27].
These feature descriptors extract textural features such
as edges or bright and dark spots, which can be used to
categorize the image [15]. Due to the high variability
of environments conditions, handcrafted descriptors
struggle with robustness [1, 17].

More recently, feature extractors based on
convolutional neural network have gained more
attention, substantially improving the quality of robot
place recognition. The results from [1, 16, 17, 19]
showed that convolutional neural networks are
more robust against changing image conditions than
handcrafted descriptors. However these approaches are
mostly based on very large ImageNet-winning network
architectures, which are very powerful but also very
computationally expensive at the same time [18, 28].
Most algorithms perform well under constant conditions,
but experience a significant drop in classification
accuracy under changing conditions. A highly precise,
robust and computationally efficient solution for place
recognition is still missing [1].

3. Methodology

In this section we describe the use of deep learning
methods and transfer learning strategies. To rigorously
evaluate our module we follow the specific machine
learning guidelines [18, 29, 30, 31] and conduct a
comprehensive literature research [32, 33, 34].

3.1. Convolutional neural networks

In recent years convolutional neural networks
(re-)emerged as the top method for solving complex
computer vision tasks. One of the major advantages
of convolutional neural network is the combination of
feature extraction and final classification into one step.
Using the backpropagation algorithm, the convolutional
layers, i.e. the feature extraction, is optimized with
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respect to the final classification task. Therefore
convolutional neural networks are able to automatically
learn a set of deep feature representation for high
quantities of different objects [31].

3.2. Transfer learning strategies

Compared to traditional machine learning methods,
deep convolutional neural networks are highly dependent
upon massive amounts of data for training. Usually
100,000 images or more are needed to train a deep
convolutional Network from scratch. In most application
scenarios the acquisition of such amounts of data is
unfeasible for various reasons [35]. However, the
necessary amount of training data can be greatly reduced
using transfer learning. Transfer learning tries to transfer
learned representation from another domain to the target
domain [20, 36].

The explicit inductive bias is a new strategy for
transfer learning with convolutional neural networks,
proposed by Li et al. [20]. In order to preserve
the initial knowledge of the network, an adapted L2

weight regularization is used. The so-called L2-SP
regularization prohibits the network from changing the
networks weights too far from initial pre-trained weights.
The degree of regularization can be adjusted using the
α and β parameters, where higher values carry greater
penalties [20].

3.3. Embedded convolutional neural network
architectures

In the search for more and more powerful
convolutional neural networks, researchers started
to massively increase network sizes to generate
more powerful networks. Most of the current
high-performance convolutional neural networks have
very high amounts of network parameters and therefore
carry high computational cost [18]. Networks such as
VGG16 (138.3M parameters) [37] or ResNet-50 (25.5M
parameters) [38] exceed the hardware capabilities of
most mobile or embedded devices and are therefore not
feasible for implementation.

Since computational and energy resources are limited
on embedded devices, convolutional neural networks
can only be implemented using efficient and lightweight
architectures [39]. To build lightweight networks
different approaches, such as training small networks
from scratch [9, 40] or shrinking pre-trained networks
[41, 42] were developed. Training small networks from
scratch has been successfully used to build very small and
efficient networks [9, 40], but architecture engineering
and optimization steps require significant amounts of
time [43].

In addition to the existing pre-trained networks,
architectures specifically built for implementation in
mobile and embedded devices have been proposed in
the literature. Networks like MobileNetV2 [18], NASNet
[43] and ShuffleNet [28] provide efficient network
architectures for applications with low computational
resources.

3.4. MobileNetV2 architecture

The MobileNetV2 architecture proposed by
Sandler et al. [18] is a convolutional neural network
architecture optimized to provide low memory
consumption and low computational cost during
inference. Inference refers to running the model
on new data to generate predictions. The main
improvement of MobileNetV2 is the introduction of
the inverted-residuals-with-linear-bottleneck-blocks,
which greatly reduced the memory consumption. The
size of MobileNetV2 can be adjusted using the width
multiplier and the input size. The width multiplier
thins or widens the network at each layer, smaller
input sizes such as 96x96 pixels reduce the networks’
size and computational costs in exchange for lower
classification accuracy. The standard MobileNetV2
network uses a width multiplier of 1.0 and 224x224
input images [18]. Besides the computational efficiency
of the MobileNetV2 architecture, one of its main benefits
is the broad availability of pre-trained MobileNetV2
implementation in many common deep learning
frameworks.

3.5. Evaluation data and data pre-processing

We trained and evaluated our recognition module
on the York University 11 and 17 places and the
Rzeszów University 16 places datasets [15, 19]. The
first dataset consists of 11 indoor places captured by two
robots (Pioneer and Virtual Me) under different lighting
conditions (daytime and nighttime) at York University.
The images were acquired using a color camera mounted
on top of the robots. For the Pioneer robot the camera is
88 centimeters above the ground, whereas the camera on
the Virtual Me robot is 117 centimeters above the floor.
For the 17 places dataset, images were only acquired
using the Virtual Me robot, representing six additional
places at the Coast Capri Hotel, Kelowna in British
Columbia [15]. As in previous work by [15, 19] the
place recognition accuracies are tested in four scenarios:

1. Same robot for training and testing with same
lighting conditions

2. Same robot for training and testing with different
lighting conditions

Page 565



3. Different robots for training and testing with same
lighting conditions

4. Different robots for training and testing with
different lighting conditions

The images were resized to 224x224 pixels and scaled
to [-1,1]. The total dataset size was 13,751 RGB images
for the 11 places dataset and 16,110 images for the 17
places dataset. To improve the classification accuracy we
used data augmentation to enhance the training data, by
rotating the images 90 and 270 degrees, horizontal and
vertical flipping and applying random image noise and
blur. Data augmentation is a common technique used to
increase classification performance and decrease model
overfitting [44]. Examples of each of the original images
are given in Fig. 2.

Figure 2. Sample images of the 17 places from [15].

In order to further evaluate our modules’
generalization capability on a greater variety of
possible environments, we used the Rzeszów University
dataset [19]. This dataset contains 8,000 RGB images of
16 different indoor places capture by the Nao humanoid
robot at the Rzeszów University of Technology. The
images were also resized to 224x224 pixels, scaled to
[-1,1] and enhanced using the data augmentation used on
the York University datasets. Unlike the York University
dataset, the Rzeszów University dataset only contains
images from a single lighting condition.

For performance evaluation of the predictor we use a
hold-out cross validation. The hold-out cross validation
splits the dataset into training and testing subsets. The
evaluation is only done using the testing data. This
data must not be shown to the model before evaluation.
Potential overfitting of the model could be identified
during the evaluation [30].

4. Results

To train the convolutional neural network we used the
Keras 2.1.5 package [45] with TensorFlow 1.8 backend
[46]. The training for all datasets ran on a Nvidia
GeForce GTX 1080 Ti for 20 epochs, using transfer
learning with explicit inductive bias (α = 0.1, β = 0.01)
and a RMSprop optimizer with an initial learning rate
of 1e-5. The evaluation data has not been shown to the
model during training. Execution speed for inference
was tested on an Intel Core i7-8750H notebook CPU and
a Nvidia GeForce GTX 1050 Ti notebook GPU.

4.1. Our recognition module architecture

Our recognition module utilizes a transfer
learning approach based on MobileNetV2 with 1.0
width-multiplier, 224x224 pixels input size and explicit
inductive bias as the transfer learning strategy. The final
classification layer at the end of the MobileNetV2 model
has been replaced with a 11-node, 16-node or 17-node
fully-connected layer, depending on the dataset used.
Besides changing the output layer to match the number
of classes in each dataset, no further adjustments to the
network have been made. The model receives RGB
images shaped 224x224x3. The final model contained
2.58M weights. The distribution of weights across the
blocks is shown in table 1.

4.2. Performance evaluation

For the York University 11-places dataset, we
compared our model with two state-of-the-art approaches
by Sahdev et al. [15] and Wozniak et al. [19]. As
shown in table 2 our model delivers a state-of-the-art
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Input Layer Rep. Weights

224x224x3 conv2d 1 992
112x112x32 inv bottleneck 1 705
112x112x16 inv bottleneck 1 5,568

56x56x24 inv bottleneck 1 9,456
56x56x144 inv bottleneck 1 10,512
28x28x32 inv bottleneck 3 53,312
14x14x64 inv bottleneck 4 236,169
14x14x96 inv bottleneck 3 399,040
7x7x160 inv bottleneck 3 1,126,720

7x7x1280 conv2d 1x1 1 414,720
7x7x1280 avgpooling2d 1 0
1x1x1280 dense-256 1 327,936
1x1x256 output 1 2,827

Table 1. Architecture of our module for 11-places.

Kernel size for all spatial convolutions is 3x3. Weights

are the total amount of weights per block. Rep.

denotes the times each block is repeated.

performance. In particular, even for the most challenging
experiment IV, our model achieves classification
accuracies above 90 percent, outperforming all the
baselines.

In the first and second experiments our module
shows comparable results with the benchmarks. The
high classification accuracy shows its robustness against
changing lighting conditions, while experiment III
demonstrates robustness against changes in camera
position on the robot platform. In particular in the
experiment IV, where both heavy changes in viewpoint
and lighting conditions occur, our module shows good
improvements in classification accuracy above the
current benchmarks. This shows our module’s ability
to generalize, irrespective of changing input conditions.

We further evaluated the performance of our
recognition module in the most challenging experiment
IV, with Virtual Me as training set and Pioneer as
testing set under different lighting conditions. Evaluation
metrics are class-averaged sensitivity (true positive rate),
precision (positive predictive value), Cohen’s Kappa
score and accuracy. As shown in table 3, the classifier
achieved excellent performance values.

The high classification accuracy under different
lighting conditions and with different robots show the
clear advantage of convolutional neural network based
place recognitions modules over traditional and mixed
methods. When comparing our recognition module on
the 17 place dataset in table 4, our module again shows
better overall classification accuracy especially under
changing lighting conditions. While the original 11
place dataset all represent location at York University,

the 17 places dataset also contains images taken at the
Coast Capri Hotel, Kelowna in British Columbia [15].
The 17 places dataset represents a larger variety of
places and increases the complexity of the recognition
task. The results of the second experiment show a
good improvement in classification accuracy over the
current benchmark. This suggests that our module is
capable of adapting to different locations and place
appearances, while still maintaining robustness across
changing lighting conditions.

To further evaluate our modules generalization
capability on different environments, we compared our
modules performance on the Rzeszów University dataset
for 16 places. As shown in table 5 our recognition module
achieves a very good classification result of 97.95 percent,
again outperforming the previous results [19]. The results
of the execution speed evaluation is shown in table 6.
The evaluation was done using different batch sizes.
Since graphic chips in particular are highly optimized
for parallel processing, larger batch sizes lead to higher
performance on runtime. In line with the original result
by Sandler et al. [18] the MobileNetV2 base of our
recognition module provides good computational speed
even on the CPU. Increasing the batch size on the CPU
nearly linear increases the computation time needed.

5. Discussion

As shown in table 2 our model is capable of
robustly identifying the robot’s location under changing
lighting and viewpoint conditions. With a mean
accuracy of 94.75 percent over the York University
experiments, our recognition module outperforms all
current benchmarks. Additionally in the toughest
experiment IV, our model shows its robustness against
changing lightning conditions and heavy viewpoint
changes. Results on the 17 places dataset further
underpins this, by showing the module’s ability to adopt
to other locations as well.

The results of the performance comparison in
table 3 and table 4 show the benefit of using an
end-to-end convolutional neural network architecture.
The combination of a convolutional neural network
for feature extraction feeding into a Support Vector
Machine for classification in [19], shows high accuracy
for static lighting and viewpoint conditions. However,
performance drops under a combination of changing
lighting and viewpoint conditions. Our proposed module
achieves very high recognition accuracies and maintains
robustness against changing conditions, while still being
low on computational costs. The further evaluation
on the Rzeszów University dataset in table 5 shows
the ability of our module to adapt towards different
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Accuracy (%)
Experiment Training Set Testing Set Lighting Sahdev et al. [15] Wozniak et al. [19] Ours

I Pioneer Pioneer same 98 99 98.91
Virtual Me Virtual Me same 98 98 98.59

II Pioneer Pioneer different 93 94 92.57
Virtual Me Virtual Me different 93 92 93.97

III Pioneer Virtual Me same 92 92 94.02
Virtual Me Pioneer same 92 95 96.38

IV Pioneer Virtual Me different 82 86 92.13
Virtual Me Pioneer different 85 89 91.48

Mean 91.63 93.13 94.75

Table 2. Comparison of recognition accuracy on the York University dataset [15] for eleven places.

Performance indicator Value (%)

Accuracy 91.090
True positive rate 91.487
True negative rate 99.092
Positive predictive value 91.033
Negative predictive value 99.085
Prevalence 9.091
Balanced accuracy 91.487
Kappa 90.019

Table 3. Evaluation indicators of our object

recognition module.

Accuracy (%)
# Training Testing Lighting [15] Ours

I VME VME same 98.34 98.60
II VME VME different 90.22 93.97

Mean 94.28 96.29

Table 4. Recognition accuracy on the York

University dataset [15] for seventeen places. VME

denotes the Virtual Me robot platform.

environments. While the Rzeszów University dataset also
mostly contains typical office environments, the results
show the very high adaption capability of our module
with limited data and in environments with different
shapes or configurations of the location itself.

The evaluation of the inference performance
demonstrates the high execution speed of our module.
The computations took 72ms per image on a CPU, with
a batch-size of 1. Using larger batch sizes of 16 images
per batch, almost linearly increases the computational
time needed. Since convolutional neural networks
mostly benefit from parallel processing, increases in
clock speed of the CPU only have a marginal impact

on the performance of the network [47]. However, as
the comparison of computational speed shows, GPU
powered model inference greatly increases the efficiency
of the network. The usage of a GPU powered embedded
platform such as the Nvidia Jetson Nano, could enable
model inference in real-time. The total of 2.58M weights
is considerably less than for the VGG-F model (14.71M
for the convolutional base only) from [19], resulting in
82.46 percent size reduction. This large reduction in
size enables our module to be integrated into the mobile
robot itself, whereas the much larger VGG-F network
consumes high amounts of computational resources
and is therefore not feasible for devices with limited
computational power.

6. Conclusion

Using L2-SP implementation of the explicit inductive
bias as a transfer learning strategy with the MobileNetV2
architecture as base network, we developed a highly
effective indoor robot localization module, showing
state-of-the-art results while being robust against
changes in image lighting and camera viewpoint. The
performance evaluation showed 91.487 percent balance
accuracy for the most complex evaluation scenario with
changing lighting and viewpoint conditions on the York
University dataset. The additional evaluation of the
Rzeszów University dataset shows our modules’ ability
to adapt towards different environments. In contrast to
the approach by [19], our module did not require any
parameter optimization to achieve good classification
results when applied to different datasets. Since our
module is based on commonly available open source
software and MobileNetV2, other scholars can easily
adapt our architecture. Our module achieved very good
results with limited data after a short training cycle
of 20 epochs, while the combination of heavy data
augmentation and L2-SP effectively reduced overfitting.
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Accuracy (%) Precision Recall F1-score

BoW, SURF, SVM [19] 79.07 79.07 73.12 73.10
VGG-F, SVM [19] 95.13 95.10 94.83 94.88
VGG-F, SVM, no-blur [19] 95.44 95.44 95.49 95.36
VGG-F fine-tuned [19] 97.19 97.12 97.20 97.16
VGG-F fine-tuned, aug. [19] 96.69 96.57 96.76 96.66
OURS 97.95 97.97 97.95 97.95

Table 5. Recognition accuracy on the Rzeszów University dataset [19] for sixteen places.

Batch Size CPU GPU

1 72ms 11ms
2 128ms 15ms
8 523ms 37ms
16 1117ms 67ms
25 1848ms 99ms
32 2447ms 126ms

Table 6. Execution speed for inference on CPU and

GPU using different batch sizes.

6.1. Limitations

One limitation is related to the datasets. While
they provide data for different places, these places are
mostly located at York or Rzeszów universities. While
our module shows good performance on both the 11
and 17 place York University dataset as well as the
Rzeszów University dataset, a majority of the images
represent typical office and laboratory environments. The
17 places dataset adds six more locations from a hotel
environment, which partially displays the model’s the
generalization ability to adapt to a completely different
environment. However, common domestic places like
living rooms are absent in the datasets. Furthermore
these images are available for the Virtual Me robot
platform only. Tests with more datasets representing
a greater variety of places are necessary to fully evaluate
the robustness of our module and its generalization
capabilities. Furthermore, object occlusion by other
moving objects, such as humans moving around, are
only present in a minor portion of the York University
17 places dataset. Since in real world scenarios moving
objects are common, these factors also have to be tested
in the future.

Another limitation is related to the hardware used
for performance evaluation. Calculations are currently
done on a standard laptop, however this laptop exceeds
the hardware capabilities of most embedded platforms.
While training is typically done using a powerful
workstation or laptop, inference of the trained module

takes place on the embedded hardware. More tests,
using different embedded platforms such as Raspberry
Pi or Nvidia Jetson Nano are necessary to evaluate the
performance of our module on embedded devices.

6.2. Future work

In order to fully asses our module’s generalization
capability, we will re-evaluate its performance using
more datasets with a much greater variety of places.
We will re-evaluate our module using datasets like
SUN397 [48], MIT Indoor67 [49], KTH-IDOL2 [50] and
Scene15 [51]. These datasets represent a broad variety
of different indoor and outdoor environments and also
include occlusion by moving objects. Furthermore we
will provide inference runtime comparisons for different
embedded platforms.

Additional challenges for mobile robots not only arise
from place recognition, but also from object detection.
Results by Sandler et al. [18] show that the MobileNetV2
architecture is a viable base for object detection tasks
as well. In future research we will use our existing
MobileNetV2 base for place recognition and object
detection tasks in a combined module.

Another future research line which we will follow is
to investigate how a user’s cognitive workload and related
user-oriented concepts [52, 53, 54] change in real-world
Human-Robot-Interactions due to the place recognition
module. Therefore we plan experiments

• to assess mental concepts such as cognitive
workload [55, 56, 57], concentration [58],
and mindfulness [59, 60] when using our
place recognition module in real-word
Human-Robot-Interactions in multi-agent-settings
[61, 62, 63, 64],

• to triangulate objective and perceived user-oriented
concepts [65, 66, 67] using physiological sensor
data (i.e., electroencephalographic data [68, 69, 70,
71] and spectra [72, 73, 74], electrocardiographic
data [75, 76], electrodermal activity [77], eye
fixation [78, 79, 56], eye pupil diameter [80, 81,
53, 82], facial expressions [83]), and,
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• to evaluate technology acceptance [84, 85, 86,
87] and trust [88] of our embodied module and
confirm if the automated approach improves the
coordination [89, 90, 91, 92, 93, 94, 95] more
efficiently.

To further improve our models performance, we
will pre-train the MobileNetV2 architecture on a scene
recognition specific dataset like Places365 [96], therefore
providing a domain specific convolutional base for place
recognition tasks.
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