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Abstract

Software Engineering research has become
extremely dependent on terms (words in textual data)
extracted from source code. Different techniques have
been proposed to extract the most “important” terms
from code. These terms are typically used as input
to research prototypes: the quality of the output of
these prototypes will depend on the quality of the term
extraction technique. At present no consensus exists
about which technique predicts the best terms for code
comprehension. We perform a literature review, and
propose a unified prediction model based on a Naive
Bayes algorithm. We evaluate our model in a field study
with professional programmers, as well as a standard
10-fold synthetic study. We found our model predicts
the top quartile of the most-important terms with
approximately 50% precision and recall, outperforming
other popular techniques. We found the predictions
from our model to help programmers to the same degree
as the gold set.

1. Introduction
“Terms” in source code are one of the most

predominant forms of data used in software engineering
research. Terms are alphanumeric strings in source code
such as variable names, function names, and words from
comments. Terms are not necessarily natural language
words – they often include context specific abbreviations
such as blkwrt for block write, or obscure
vernacular such as atof. Nevertheless, it is a key
assumption across many areas of software engineering
that source code terms contain valuable information.
Work in traceability link recovery [1], information
retrieval [2], feature location [3], summarization [4], bug
localization [5], quality analysis [6], clone detection [7],
and even security [8], all rely on this assumption. The
assumption persists even though terms are selected at the
discretion of programmers, and even though the terms
themselves do not affect the software’s behavior [9].

The reason that the assumption persists is that
programmers tend to encode high-level information in

terms, that is difficult to understand from the structure
of the code without the terms. For example, “airline
seat reservation” is easy for human programmers to
understand, but it would be quite difficult to comprehend
solely by tracing data flow or badly-named function
calls. This is a situation known as the “concept
assignment problem”, and has been studied for over two
decades [10]. The idea is firmly entrenched that terms
are important for both human comprehension and for
software engineering research.

But some terms are more important than others.
Both practitioners and researchers must prioritize
some terms over others due to time constraints and
information overload [11]. Terms in function signatures,
for example, are widely believed to be more important,
in general, than terms in other areas of code [12].
At the same time, popular measures such as term
frequency-inverse document frequency (tf/idf) are based
on the idea that terms that occur rarely and in a small
number of areas are more important than terms that
occur often in many areas – the term “access control”
is likely more valuable than “print” [13]. Other work
has suggested that important terms are ones that occur
frequently in other software of the same domain [14],
or are from APIs [15] (see Section 3.1 for a detailed
definition of term importance).

What is missing from software engineering research
is a unified model for identifying the importance of
terms in source code. A variety of different models
have been proposed which represent different theories
about what programmers need. These models each have
strengths and weaknesses, and some have been shown
to be quite accurate. However, these models are often in
conflict, or are accurate in some scenarios but not others.

In this paper, we propose a unified model based on
a literature survey to identify 20 prominent models for
the importance of terms. We implement a source code
metric for each model, and use those metrics as attribute
inputs for a machine learning algorithm. We use the
algorithm to train our model on a dataset that closely
approximates importance: terms ranked by tracking the
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eye movements of programmers as viewed longer and
more often than other terms. Our objective in using this
dataset is to train the model based on the programmers’
actual reading behavior. In this study, evaluation is
based primarily on comprehension-specific tasks, but
the hope overall is that the model can be extended in
a context-insensitive manner.

We evaluated and calibrated our unified model in
two ways. First, we performed a standard 10-fold
study using the training/testing datasets. Second, we
evaluated the output of our model for six different
software programs in a cross-validation user study, in
which human experts rated the output of our predictive
model and actual data. In the 10-fold study, our
approach predicted the top 25% of important terms
with a true positive rate (e.g. recall) of 51.1%, a false
positive rate of 24.5%, and a precision of 46.5%. In
the cross-validation user study, our predictive model had
equivalent performance for actual comprehension tasks,
as using the gold set data.

2. The Problem
The problem we target in this paper the lack

of consensus among software engineering researchers
about what terms in source code tend to be the
most valuable for programming tasks. A multitude
of software engineering techniques extract terms from
source code, for a variety of purposes, including feature
location, bug localization, etc. While these techniques
are rich and diverse in purpose, they are related by a
common need: to extract the terms from source code
that represent the high-level concepts that programmers
have about the code. Programmers use some terms
for comprehension more than others, and tools could
benefit by using the same terms. Several approaches to
extracting terms have been proposed. Without evidence
to support researchers in deciding how to extract these
terms, the researchers must guess which approach is
likely to extract the best terms.

A solution to this problem would have significant
impact on software engineering research, given the
quantity of work that extracts terms from source code.
Since these terms tend to be the input to the research
tools, the quality of the output of the tools is likely to be
increased with improved term extraction from code. It
is possible that some tools may need different input than
others (e.g., context-specific knowledge), though even
these tools are likely to benefit from a term extraction
technique that more-closely matches the techniques that
programmers use.

3. Background
In this section, we define “importance” of terms, in

the context of the related software engineering literature.

3.1. Important Terms
To say that a term is “important” here means that

that term is beneficial to programmers during program
comprehension. In theory, all terms are valuable for
comprehension to some degree. But in practice, some
terms are much more valuable than others – to the
degree that a programmer may only need to read a
single term in a function to gain an understanding
of the purpose of that function. A huge body of
literature has been devoted to studying how this is
possible. As Storey [16] points out, literary opinion
has organized into a few competing theories, with
different features of software highlighted as having
different effects on comprehension. However, one
consensus is that, over time, programmers have moved
from a preference for “systemic” comprehension [17,
18] to “opportunistic” comprehension [19, 20]. In
short, it means that programmers now “try to avoid
program comprehension” by reading only the minimum
number of terms necessary [21], whereas thirty years
ago, programmers tended to read a smaller number of
artifacts in greater detail [18]. While it is tempting
to ascribe this trend to personal factors such as
declining work ethic, it is more likely a consequence
of dramatically increased software size [22], availability
of software examples [15], and constant training from
work force churn [23]. The reality is that terms are now
more critical than ever for rapid comprehension, and
programmers need to find the most important terms as
quickly as possible.
3.2. Modeling Importance

Software engineering researchers have attempted to
create models of the importance of terms, independent
of a context. Through measurements such as tf/idf
and term location, researchers have attempted to predict
which terms in software are most important for any
context. In the example of tf/idf, terms are considered
more important for a section of code, if those terms
occur more often there than in other sections [24].
In Section 4, we describe 20 metrics that have been
proposed to model importance.

For validation of any model of importance, it is
crucial to measure the actual importance of terms
to programmers during programming tasks. There
are two key strategies to measure importance. First,
survey procedures may be used to ask programmers to
report the terms that they subjectively feel are valuable
for comprehension. Second, it is possible to record
observable behaviors that are indicative of importance,
such as number of times a programmer looks at a
term. In this paper, we use both survey procedures and
observable behaviors for validation. For our purposes,
both are context-specific to program comprehension.
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The observable behaviors we use for validation are the
eye movements, also known as fixations and gaze times,
that programmers make while comprehending code, as
detailed in the next section.
3.3. Eye-tracking Data

Eye-tracking technology is starting to be more
widely used in software engineering studies. Early on,
Crosby et al. performed a study that showed reading
source code is performed differently than reading
prose [25]. Both Crosby et al. and Bednarik et al. also
found in several studies that programmers tend to move
around the document, focusing on various, specific
sections of the code such as comments and outputs,
rather than reading the document straight through to
the end [26, 25]. In addition to naturally focusing on
specific areas, some studies have shown that fixation on
certain areas of code have an effect on bug detection and
requirements tracing [27, 28]. These studies show that
eye-tracking can be useful for guiding improvements
to software engineering and program comprehension
methodologies and tools.

For this study, we used Rodeghero et al.’s previous
eye-tracking data as a basis for determining what gaze
times should be considered important. In the previous
study, researchers examined the source code terms and
areas of code programmers focused on when reading
a method for the purpose of comprehension [12].
They recruited 10 professional programmers, with
approximately 13 years of experience each on average,
to quickly read unfamiliar Java methods and write a
short summary about each one. As the programmers
scanned the source code, we had an eye-tracking system
keeping record of their eye movements. The gaze times
were calculated for each separate fixation, then also
aggregated as a total gaze time for each term. The study
determined there were both areas of code and certain
terms in each method that programmers tended to focus
on. Given a gaze time associated with a term, they were
able to determine importance.
4. Our Approach

In this section, we describe our approach.

4.1. Key Idea
First, we parse the source code of a given project

to give us all possible terms. Second, we extract all
the metrics associated to each term. Third, we use a
combination of the metrics to create test data that can
be used for classification. Fourth, we use a classifier to
put each term into metric-based categories. Fifth, using
those categories, we calculate a predicted gaze time for
each term. Using previous work, we can make use these
gaze times for importance comparison. Finally, with that
gaze time available, we then determine which terms are
important on a per method basis.

4.2. Parsing the Source Code
For parsing, we do not assume that the project source

files are laid out in any specific directory structure.
We also do not assume that each Java source file only
contains one class or only belongs to one package.
Therefore, first, we parse every file in a Java project
individually. We keep a log of which project, class,
file, and method in which each term occurs. As each
file is parsed, we capture certain properties of each
class, method, line, and term contained within the file,
to facilitate the metric extraction. These properties
include the various amounts, sizes, positions, and names
associated with each piece of the Java source code file.
4.3. Extracting the Metrics

Next, we extract the metrics from the parsed source
code files and stored properties (see Table 1). Each
metric has its own calculation. The most simple
calculations are length, line size, relative position,
and line location, as those have a direct link to the
properties of each file that we captured during parsing.
Compound names, abbreviated names, capitalization,
assignment, variable, input parameter, and return value
are all relatively simple, as well, because they only
require a small additional parse of the line and/or term
involved. To calculate POS, LSA, and Complexity, we
used third-party libraries NLTK, GenSim, and Lizard,
respectively. Signature, invocation, conditional, and
nesting require additional parsing of small snippets of
code within each method, so these take additional time.
The metrics that took the most time and effort to collect
were tf/idf and scope, which require a full examination
of the entire source code project to gather all needed
information for calculation. As each metric is collected,
it is attached to every term, method, and class.
4.4. From Metrics to Importance

Then, we take these various metrics and combine
them with the terms into a test data file that can be used
for training and testing. Once the test file is constructed,
we use a Naive Bayes classifier to categorize each term
based on its metric values.

Using the categories now given to each term,
we calculate an appropriate gaze time determined by
Rodeghero et al.’s study’s collection of professional
programmer gaze times and selected important word
lists [12]. This calculation was tuned by extensive
calibration to make sure the addition of each metric
value added the right amount of gaze time to each term.

Finally, we use a gaze time threshold, determined
in Rodeghero et al.’s work [48], as our lower limit
of importance. If a term’s predicted gaze time is
above this limit, it is simply given an extra label of
“Important”. With this label, a program or tool used to
generate comments or summaries would know that this
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Metric Name Type Definition
Assignment* s whether the term is being assigned a new value within this method [29]

Cyclomatic Complexity s cyclomatic complexity of a method [30, 31, 29]
Conditional* s is in a conditional statement inside the method [12]

Input Parameter* s includes all the input terms to the method [32]
Invocation* s is in an invocation or function call inside the method [12]

Line location* s the location in which the term appears in the method by line number [29]
LSA s meaning associated with the term within the context of current method [33, 34]

Multiple nesting s how many loops the term is located within [29]
Relative location s the character number the word appears in relation to the method’s beginning [29]

Return Value s includes all the output terms from the method [32]
Scope of variable s the scope in which the term was created [29]

Signature s term is located inside the signature of the method [12]
Tf/idf s occurrence of a particular keyword in an individual document [35, 36, 37, 12]

Variable* s whether the term is a variable, as opposed to a constant, method, etc. [29]
Abbreviated name* t whether a term contains abbreviations or is abbreviated [6, 38]

Capitalization t if the keyword contains capitalization [6, 29]
Compound name* t how many words a term contains within itself [6, 38, 39, 40, 41]

Length t the total number of characters in a term [6, 29, 42]
Line Size t length of line, by characters, where the keyword resides in the method [43, 29]

Part of Speech* t the keyword’s part of speech in English [6, 44, 45, 46, 47]

Table 1. Our 20 “Importance” Metrics. Asterisks indicate metrics that remained after we determined the best

configuration of metrics (see Section 6.1). In the column “Type,” ’s’ stands for ’structural’ and ’t’ for ’textual’.

term needs to be included to maximize a programmer’s
understanding of the method. Additionally, we separate
terms into quartiles, of roughly even size, in order to
answer our research questions.
5. Synthetic Study Design

This section describes the synthetic study we
perform of our approach. The study is “synthetic”
because it evaluates how well our approach predicts the
importance of terms as determined by eye tracking data.

5.1. Research Questions
The objective of this study is to determine how to

configure our approach to have the highest possible
prediction quality, using a verifiable and reproducible
procedure. By “configure our approach”, we mean
which metrics to include as input – some have
higher predictive power than others. Since our
approach is based on a machine learning algorithm, the
Research Questions (RQ) we ask use quartiles for even
categories, as well as correspond to a standard 10-fold
cross-validation procedure for these algorithms:
RQ1 Which configuration of metrics has the highest

quality of predictions, in terms of quartiles of
important terms?

RQ2 Which class of metrics has the highest quality
of predictions, in terms of quartiles of important
terms?

The rationale behind RQ1 is that several
configurations of our approach are possible, in

terms of metrics to use as input. Ideally, a minimum
set of metrics would be used to achieve the highest
possible prediction quality. We choose to evaluate
against quartiles of important terms because a quartile
approach guarantees balanced data, which will avoid
bias from adding cost-sensitive modifications.

The purpose of RQ2 is to determine whether the
textual or structural metrics reach the quality of the best
configuration. A simplified approach could be created
based on only textual or structural metrics, since the
effort could be focused on extracting only one type of
data. In addition, since software engineering research
often contrasts textual and structural data [49], it may
benefit the research community to know how these types
of data affect the importance of terms.

5.2. Methodology
This subsection describes the methodology we

followed to answer the research questions above. We
followed the approach outlined in Section 4 to calculate
the 20 metrics (see Table 1) from the parsed Java source
code. We then created 26 configurations of the metrics.
Each configuration is a different grouping of the metrics.
While there are over a million possible configurations,
we chose these 26 based on specific questions, such as
”Would it still be useful to make predictions without
entire projects?” or ”Do textual or structural properties
provide better results?”. These 26 configurations break
down as follows: 1-20) one for each metric by itself,
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Figure 1. The overall accuracy measures for each configuration.

21) one for all metrics, 22) one for metrics related to our
previous eye-tracking study (i.e. Signature, Conditional,
and Invocation), 23) one for structural metrics, 24) one
for textual metrics, 25) one for metrics that only require
the method itself and not the whole project (e.g. not
LSA), and 26) a configuration automatically produced
by a feature selection algorithm 1 (the metrics marked
by an asterisk in Table 1). Next, for each of these
configurations, we trained a machine learning algorithm
to create a model for predicting importance, as described
in Section 4.4. The entire process for all six projects
took less than four hours. With each of these prediction
models, we were then able to answer our research
questions. To answer RQ1, for every metric group,
we predicted the quartiles and compared the predictions
to the actual quartile categorization. We performed a
similar comparison to answer RQ2.
5.3. Accuracy Measures

We use three main accuracy measures for
determining the effectiveness of our metric
configurations. Precision is the proportion of the
predicted positive cases that were correctly placed
into the appropriate quartile, as calculated using the
following equation:

Correctly Predicted Positive
All Predicted Positive

Recall/True Positive Rate (TPR) is the proportion
of positive cases that were correctly identified, as
calculated using the following equation:

Correctly Predicted Positive
All Actual Positive

False Positive Rate (FPR) is the proportion of
negative cases that were incorrectly classified as
positive, as calculated using the following equation:

1http://weka.sourceforge.net/doc.dev/weka/
classifiers/meta/AttributeSelectedClassifier.
html

Incorrectly Predicted Positive
All Actual Negative

The main accuracy measure we focus on is recall,
but all three measures are shown for each metric
configuration in Figure 1.
5.4. Threats to Validity

The first main threat to this study is the threats
carried over from the eye-tracking study, including
participant bias, the gaze data collection, the line
limitations, and the restriction of using Java methods
only. Also, since our data is originates from the same
system that this study is being tested against, there is
the possibility of some over-fitting during the machine
learning process. The second main threat to validity
in this study is the metric calculations. Since the
calculations for each metric were specifically written for
our parsed data, there may be a better way to represent
some metrics. We hope this threat is minimized from
the use of several different literature bases from which
these metrics were derived.

6. Synthetic Study Results
In this section, we present our results to each

research question. We also present the accuracy
measures for all metric configurations in Figure 1 to
complement these results.
6.1. RQ1: Best Metric Configuration

From our analysis, we found configuration 26 (the
automatic feature selection, see Section 5.2) to produce
the most accurate predictions. This group of metrics
led to an overall recall of 35.2%. It also has a recall
of 51.1% for the top quartile and a recall of 30.5% for
the bottom quartile. The metrics in this configuration are
marked by an asterisk in Table 1. The next most accurate
metric configuration for overall quartile prediction is
the method only configuration, with an overall recall
of 34.5%. The worst metric configuration for overall
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prediction is the configuration of only our eye-tracking
paper metrics, with an overall recall of 30.7%.
6.2. RQ2: Best Metric Class

From our analysis, we found Textual metrics to
produce more accurate predictions than Structural
metrics. Textual has an overall recall of 32.9%. It also
has a recall of 48.3% for the top quartile and a recall of
37.9% for the bottom quartile. However, Structural has
an overall recall of 30.8%, a top recall of 49.6%, and a
bottom recall of 25.4%.
6.3. Summary of Results

From our synthetic design results, we derive two
key interpretations. First, we note that the highest
performance occurred when using a subset of the 20
metrics we studied. Using this subset, we were able
to reproduce the gold set to approximately 50% top
precision and recall, meaning that we found about half
of the top quartile of terms. In a ranked list of the terms
in a typical method with 16 terms, at worst we would
predict two correct answers in positions 3 and 4 in the
list. A second interpretation is that textual attributes
had higher predictive power than structural attributes.
Note, even the metric tf/idf, which is popular in software
engineering work, achieved 37.9% top precision and
39.8% recall of the top quartile, considerably lower than
the best-performing configuration.
7. Empirical Study Design

This section describes the design of our empirical
study. The purpose of this study is to evaluate the
quality of the predictions from our approach in terms
of subjective human expert opinion.
7.1. Research Questions

The objective of this study is to determine the
predictive quality of our approach in terms of unbiased,
expert human opinion. In other words, we ask do our
predictions actually represent terms that are important
to programmers? In addition, we aim to compare the
terms that are predicted to be important, to the terms
that are known to be important from the gold set of eye
gazes. We pose the follow specific research questions:

RQ3 What is the difficulty of comprehension tasks
when given the top quartile of predicted terms,
versus the top quartile of actual terms?

RQ4 What is the difficulty of comprehension tasks
when given the top quartile of predicted terms,
versus the bottom quartile of predicted terms?

RQ5 What is the difficulty of comprehension tasks
when given the top quartile of actual terms,
versus the bottom quartile of actual terms?

In the context of these questions, the “predicted” terms
are the terms that our approach predicts to be in e.g. the

top quartile. The “actual” terms are the terms from the
gold set in the synthetic study – they are the terms that
are known to have the highest gaze time from a previous
experiment [12]. This gold set is only meant to represent
a strong basis for our comparison and does not represent
the best set of important terms overall.

The rationale behind RQ3 is to determine how well
the predicted terms approximate the actual terms for
usefulness during program comprehension tasks. We
know from the synthetic study that the top quartile of
predicted terms are not quite the same as the top quartile
of actual terms. RQ3 explores whether the inaccuracy of
the predictions significantly degrades the usefulness of
the predictions for comprehension tasks.

RQ4 compares the top quartile of terms predicted to
be important, to the bottom quartile of terms predicted
to be important. If our approach predicts terms that
are useful for comprehension, programmers should
have less difficulty comprehending when given the top
quartile of terms, than the bottom quartile. On the other
hand, if no difference in difficulty exists between top and
bottom quartiles, then it is evidence that the predictions
do not assist programmers during comprehension.

Likewise, RQ5 seeks to measure the difference
between top and bottom quartiles of the actual terms.
While we may expect a difference in difficulty based
on findings from related work [12], it is useful to know
the degree of this difference, for comparison to the
predictions. If the degree of difference is not significant
between top and bottom actual terms, to top and bottom
predicted terms, then it is evidence that our approach
reasonably approximates the actual terms.

7.2. Methodology
This subsection describes the methodology we

followed to answer the research questions above. We
recruited professional programmers to do program
comprehension tasks. In each “comprehension task”,
a programmer read the source code of one Java
method and wrote an English description of the
functionality of that code. Having the programmers
attempt to comprehend completely unfamiliar source
code is a known evaluation method called the “program
model” [16]. A programmer could spend as much time
on each task as desired, for 90 minutes. We chose this
format primarily in order to maintain consistency with
the data collected in earlier experiments [12].

However, a key difference from earlier experiments
is that we show the Java method to the programmer
twice. First, we show the method with only one quartile
of the terms visible. We obfuscated the other three
quartiles using a standard term-replacement technique
(replace the terms with non-meaningful strings such as
xxxx) [50]. For example, a Java method with 20 terms
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would have about five terms visible, and about 15 terms
obfuscated. The visible terms correspond to e.g. the top
quartile of predicted terms.

We asked the programmers to write an English
summary of the method after reading the code the
first time (with terms obfuscated). We also asked the
programmers to rate their perceived difficulty of the task
on a Likert scale from -2 to 2 where -2 corresponded
to “Very Difficult”, -1 to “Somewhat Difficult”, 0 to
“Neither Difficult nor Easy”, 1 to “Somewhat Easy”, and
2 to “Very Easy”.

Then, we showed the programmers the same method
again, except with all terms visible. We then gave the
programmer the option to modify his or her English
summary if he or she felt that the new information
benefits comprehension. The programmer also had the
option to modify his or her perceived difficulty.

We use both the perceived difficulty and the
English descriptions to answer the research questions.
The perceived difficulty ratings are quantitative
measurements of subjective human expert opinion.
We compute the difference in difficulty from the first
reading of the Java methods (with only one quartile
shown) to the second reading (with all terms shown).
For example, if a programmer reads a method and
marks a difficulty of -1, and then reads the method the
second time and remarks the difficulty as 2, then the
difference in difficulty is 3.

During the study, we gave the programmers
the comprehension tasks in a random order: the
programmers saw random Java methods with either 1)
the top quartile of predicted terms, 2) top quartile of
actual terms, 3) bottom quartile of predicted terms, or
4) bottom quartile of actual terms. Note that, although
randomly chosen, we did attempt to provide the same
number of dataset/quartile pairs to each participant for
statistical purposes. We then aggregate the differences
in difficulty for each of these four groups, and contrast
them. For example, to answer RQ1 we compare the
difference in difficulty for the top quartile of predicted
terms to the difference in difficulty for the top quartile
of actual terms. Finally, we use a statistical hypothesis
test to determine if the difference of the means in these
groups is statistically significant. Note that we used a
random order to minimize bias and to ensure that the
programmers did not know if they were reading a top
or bottom quartile. We also did not tell the participants
that there was the possibility of receiving the different
quartiles on different methods.
7.3. Participants

The participants of this study were all professional
programmers. There were 11 participants in total. Four
of the programmers came from the University of Notre

Dame, while the other participants came from various
industry companies, including IBM, Alden Systems,
and Uber Technologies. The participants’ years of
professional programming experience range from 1 to
16, with an average of 6.85.

7.4. Subject Applications
The subject applications in this study are the six

open source Java projects mentioned in Section 3.3.
These projects were chosen because of their constant
improvement and use, as well as their wide variety
of methods. In total, 50 methods were chosen from
amongst these six projects to be displayed to the
participants for purposes of summarization. Each of
these methods had around 22 LOC, ensuring that each
method would take roughly the same amount of time
to summarize and would match the limitations of the
original eye-tracking study. All of these methods also
have no accompanying comments.

7.5. Statistical Tests
We compared differences in difficulty using the

Wilcoxon signed-rank test [51]. This test is non
parametric and paired, and does not assume a normal
distribution. It is suitable for our study because we
compare patterns paired for each method and because
our data may not be normally distributed.

7.6. Threats to Validity
The main threats to validity in this study are 1) the

participants, and 2) the subject applications. Since the
ratings of difficulty are subjective opinions of human
programmers, we cannot guarantee that a different set
of programmers would not produce a different outcome
in the study. Various human factors such as fatigue,
bias, experience level, and temperament affect both
the subjective ratings and the English descriptions.
These ratings and descriptions are likely to change
considerably across programmers. We attempted to
mitigate this by recruiting professionals from a wide
range of backgrounds, including different industrial
affiliations. We showed the programmers the methods
in a random order, to prevent a bias introduced from the
programmers learning from one or another Java method.

A second threat to validity is our choice of subject
applications. We attempted to mitigate this threat by
using a wide range of Java projects, and by selecting
Java methods at random from these projects.

8. Empirical Study Results
In this section, we present our results to each

research question, along with examples of the answers.

8.1. RQ3: Top Predicted vs. Top Actual
We did not find a statistically significant difference

between the difficulty of the program comprehension
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Table 2. Statistical summary of the results for RQ3, RQ4, and RQ5. Wilcoxon test values are U , Uexpt, and

Uvari. Decision criteria is p. A “Sample” is one programmer for one method.
RQ H Dataset Quartile Samples x̃ Variance U Uexpt Uvari p

RQ3 H1
Predicted Top 43 1.093 0.991 6 7.5 11.25 0.0766Actual Top 43 1.116 0.819

RQ4 H2
Predicted Top 43 1.093 0.991 0 162.5 1187.5 <1e-4Predicted Bottom 43 1.767 1.849

RQ5 H3
Actual Top 43 1.116 0.819 0 150 1080 <1e-4Actual Bottom 43 1.791 2.122

tasks with the predicted top quartile of terms versus the
actual top quartile of terms displayed. We posed H1:
Hn The difficulty of comprehension tasks when given

the top quartile of predicted terms versus when
given the top quartile of actual terms is not
statistically different.

Using the Wilcoxon signed-rank test, we were unable to
reject the null hypothesis (see Table 2). These results
indicate that programmers have no more difficulty
summarizing source code with the top predicted terms
than with the top actual terms.

An illustrative example of a summary written for
each of these datasets from the same method:
Top Predicted: “increases the play count”
Top Actual: “updates the index of a certain value

within an array”
Both datasets appear to have provided similar
information to the programmer. These summaries
reveal enough to understand that a value is updated
within the method.
8.2. RQ4: Top Predicted vs. Bottom Predicted

We found statistically significant evidence that
programmers had less difficulty with the predicted top
quartile of terms displayed than with the predicted
bottom quartile of terms displayed. We posed H2:
Hn The difficulty of comprehension tasks when given

the top quartile of predicted terms versus when
given the bottom quartile of predicted terms is
not statistically different.

Using the Wilcoxon signed-rank test, we rejected the
null hypothesis (see Table 2). These results indicate that
programmers have less difficulty summarizing source
code with the top predicted terms than with the bottom
predicted terms.

An illustrative example of a summary written for
each of these datasets from the same method:
Top Predicted: “This function sets a keyword handler

in a thread safe fashion”
Bottom Predicted: “Sets handler for something”
It appears that the top dataset produced more
information to the programmers. The top summary
knows that the handler is for a keyword, while the
bottom does not.

8.3. RQ5: Top Actual vs. Bottom Actual
We found statistically significant evidence that

programmers had less difficulty with the actual top
quartile of terms displayed than with the actual bottom
quartile of terms displayed. We then posed H3:
Hn The difference in difficulty of comprehension tasks

when given the top quartile of actual terms versus
when given the bottom quartile of actual terms is
not statistically different.

Using the Wilcoxon signed-rank test, we rejected the
null hypothesis (see Table 2). These results indicate that
programmers have less difficulty summarizing source
code with the top actual terms than with the bottom
actual terms.

An illustrative example of a summary written for
each of these datasets from the same method:
Top Actual: “This sets newline characters and x to

escaped versions. So newlines become just a
string; etc.”

Bottom Actual: “Don’t know what it’s for”
This demonstrates how the top dataset helped the
programmer understand much more information with
the top quartile than the bottom. The top summary has
a mostly complete grasp on the method behavior, while
the bottom cannot tell anything about it.
8.4. Summary of Results

Our key finding is that there was no
statistically-significant difference between the difficulty
of the program comprehension task when using the top
predicted terms, versus the top actual terms. In other
words, the predicted terms helped the programmers to
the same degree as the actual terms.

This is a meaningful finding because it indicates that
our prediction model’s performance is equivalent to a
gold set for program comprehension tasks. In addition,
in RQ4 and RQ5, we found evidence that some terms
really do help programmers more than other terms: the
top predicted and actual terms led to less difficulty than
the bottom quartile predicted and actual terms.

This finding may seem in contradiction to the
findings in the synthetic study. In the synthetic
study, we found that approximately 50% of the actual
top terms occurred in the predicted top terms (see
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Section 6.1). One possible explanation is that these
terms still contained enough information to convey the
meaning of the source code to the programmers. The
lowest quartiles did not contain this information, leading
to greater difficulty of the comprehension task.
9. Conclusion

This paper contributes to Software Engineering
research in two ways. First, we presented a unified
prediction model for identifying the important terms in
source code. We trained a machine learning algorithm
using a dataset of actual programmer eye gaze times
on terms. Longer gaze times are strongly correlated
with importance (see Section 3.3), suggesting that our
predictions will detect gaze times. Furthermore, a
second contribution is that we evaluated our technique
with professional programmers in the field, from a
variety of industries. Our predicted important terms did
as well as the eye-tracking gold set of important terms,
when used for program comprehension tasks.

We recommend our unified model over tf/idf and
other importance metrics that are currently in use in SE
research. While a specific problem may benefit from
using one metric or another, it is our belief that this
unified model will lead to superior performance for tools
in a general case. However, we acknowledge that future
work is necessary to test our model as a replacement for
alternatives in the context of different SE problems apart
from program comprehension.
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