
Automated Testing of Motion-based Events in Mobile Application

Seyedeh Sepideh Emam

University of Alberta

 emam@ualberta.ca

James Miller

University of Alberta

 jimm@ualberta.ca

Abstract

Automated test case generation is one of the main

challenges in testing mobile applications. This

challenge becomes more complicated when the

application being tested supports motion-based events.

In this paper, we propose a novel, hidden Markov

model (HMM)-based approach to automatically

generate movement-based gestures in mobile

applications. A HMM classifier is used to generate

movements, which mimic a user’s behaviour in

interacting with the application’s User Interface (UI).

We evaluate the proposed technique on three different

case studies; the evaluation indicates that the

technique not only generates realistic test cases, but

also achieves better code coverage when compared to

randomly generated test cases

1. Introduction

Embedding hardware devices, such as movement

sensors (accelerometers and gyroscopes), in mobile

devices complicates testing procedures. Users are able

to interact with the application by touching, tilting,

shaking, and rotating the mobile devices. When a

device is in motion or its screen is continuously

touched, the probability of unintentional inputs

increases; in such circumstances, automatically

generated test suites are needed to produce accurate

test cases and accelerate the mobile application testing

procedure. Tools and techniques have been developed

to test the quality of mobile applications, but the

number of approaches that focus on automated testing

is very limited. The majority of these automated testing

tools offer capture-and-replay functionality to test the

application’s User Interface (UI).

Writing and continually improving motion-based

test cases is a difficult task when testing mobile

applications that use movement-sensor data. Therefore,

considering existing mobile testing tools and

approaches, two problems exist: 1) no automated

approach is provided; and 2) generating test cases for

motion-based mobile applications remains

unconsidered. Thus, we propose a new approach to

address these limitations. It is argued that mimicking

user behaviour is one of the key factors in generating

gesture-based test cases. It helps in executing realistic

test scenarios and standard gestures [1], [2].

We propose a novel approach, which synthesizes

the motions, and subsequently, simulates the test cases

based upon the formalized gestures. Motion data is

represented by the data captured, using the movement

sensors and the objects’ positions (2D coordinates) on

the screen. An application can then use the sequences

of motions to simulate the gestures and test the UI. To

increase the chance of generating realistic movements,

a set of training data is generated by human users and

is used to train hidden Markov model (HMM)

classifiers; these models are iteratively used to generate

new motion sequences. Gestures and animations are

commonly considered to be the key components in

modern mobile user interface design; hence this work

directly targets the heart of the matter in this new and

evolving application domain.

In summary, the generated motions are used to

automatically produce test cases, mimicking human-

generated gestures with the technical goal of increasing

code coverage. This study contributes to the research in

this area by:

• Proposing a new approach to synthesize

motion data, and make it executable as a test input to

the application being tested.

• Applying a HMM classifier on the training

data to create a set of HMMs, and subsequently using

them to generate motion sequences.

• Evaluating the effectiveness of the proposed

approach in terms of, (1) mimicking the user’s

behavior; and (2) increasing the code coverage of the

software under test (SUT).

This paper is organized as follows. Section 2

provides background information on mobile

applications, particularly motion-based gesture testing.

Section 3 describes an overview of the proposed

approach, the gesture synthesis and simulation

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60181
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7441

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:emam@ualberta.ca
mailto:jimm@ualberta.ca

procedures, while Section 4 provides the design and

implementation details. Section 5 provides a running

example of the proposed test case generation approach.

Section 6 discusses the evaluation phase, experimental

setup, and results. Finally, Section 7 presents the

conclusions.

2. Background and Literature Review

The growth in developing mobile testing

procedures and techniques has been insufficient.

Although many testing methods and tools exist for

desktop and server/host software, most of them are not

applicable for testing “mobile software” [3]. Although

many traditional testing tasks are common between

mobile applications and the desktop/web-based

applications, several key factors cause challenges in

the mobile testing procedure. Mobile devices are

different in terms of screen sizes, platforms, input

methods, and the quality of the sensor data. Such

differences can easily multiply testing efforts. This can

easily affect the quality of the application, along with

the time of the marketplace and the costs of

construction. Integrating automation approaches with

test case generation procedures is a key factor in

addressing these issues in the “mobile testing era”,

where many test cases need to be executed on a large

selection of mobile devices and configurations.

In this regard, [4] presents a framework to test the

functionality of mobile applications when a device is

moved to a new network. The framework uses an

application-level emulator to transfer the application

across networks to ease the testing process under

different network technologies. Additionally, [5]

suggests a quality assurance framework to define key

patterns and metrics in mobile application testing.

Although these studies provide insights into the testing

of mobile applications, they do not cover the test case

generation phase. Several studies focus on automated

testing for mobile applications have also been

conducted; [6]–[9] suggest different, automated,

graphical user interface (GUI) testing approaches for

Android applications.

To test the GUI, the mobile application needs to be

executed with user interaction events. With

technological advancement in smartphones and tablets,

natural user interfaces (NUIs), which no longer use

keyboards and keypads as human-machine interfaces,

have become popular. Touch-sensitive screens, speech

recognizers, and gesture detectors are the primary

interaction channels in the new generation of mobile

applications. This era of application testing is relatively

new, and only a limited number of studies have been

performed to address these testing challenges [9], [10].

Mobile applications, which allow users to control

the applications’ functionality through NUIs, normally

recognize gestures by using the data provided by the

embedded sensors in the mobile device [11]. Several

smartphones and tablets contain accelerometers to

control motion inputs. One of the most common

applications of accelerometers is presenting the

landscape and portrait views of the screen based on the

way the device is being held. The 3-axis model of the

accelerometer is able to measure the magnitude and

direction of the acceleration (gravitational force) as a

vector [𝑎𝑥𝑘 , 𝑎𝑦𝑘 , 𝑎𝑧𝑘] for a motion 𝑘 in a 3D space.

Combining all three accelerations, lets the application

detect the device’s movement in any direction and

obtain the device’s current orientation. Depending on

the graphical capabilities of mobile applications, 2D or

3D versions of the acceleration vector are considered.

From the tester’s perspective, testing applications that

support motion-based events introduce a new

complexity to the testing procedure; motion-based

gestures should be accurately specified and reliably

reproduced [9]. The lack of formal motion-gesture

specification prevents testers from developing an

automated test generation approach. The next section

presents the simulation and synthesis procedures of

such motion-based events.

3. Gesture Simulation

 In the simplest process, test data-points can be

provided by using a random test generation approach,

which randomly creates data frames within a defined

range to move the object on the screen. It can be

expected that the number of reasonable gestures, which

are created randomly are very limited. Therefore, even

if these test cases are able to cover an acceptable

number of branches in the source code, they may not

be able to reveal faults a human user can discover

simply because they cannot replicate standard gestures.

This study considers an automated test case

generation procedure for applications interacting with

users using motion-based events. Users normally

interact with these applications by performing a

sequence of gestures, e.g. by moving a flying or

bouncing object on the screen or drawing geometrical

shapes by touching the screen. User-generated gestures

are transferred to the object or touched location to

move the object toward the desired direction or to draw

a geometrical shape (e.g. circle) around the touched

point. It is noteworthy that motion-based events are not

only used to move an object on the screen; sometimes,

shaking a mobile phone in a specific direction or

touching and dragging the screen leads to executing a

function or opening another application. This study

Page 7442

focuses on the procedure to automatically generate test

motions on both types of applications: (1) applications

with flying object(s) (two case studies); and (2)

applications with a touch-sensitive screen (one case

study). In such cases, several parameters can affect a

single motion (such as the object size, the size of the

screen, an object’s location, etc.). Since users are free

to touch, move and shake their mobile phones in any

desirable direction and speed, a testing approach must

be able to generate sets of standard gestures, which are

not only executable on the application but also

resemble the human-generated motions.

The proposed technique contains several steps and

details, which are depicted in the framework provided

in Figure 1. The proposed approach consists of the

following steps:

1. Gathering training data: A user interacts with

the application and generates motions to be used as a

training set. (It is worth noting that the person is not

instructed to generate any specific motions and the

generated motions are the result of a volunteer

interacting with the application for the first time.)

2. Clustering motions: the k-means clustering

algorithm is used to identify the relationship between

data points (motions) generated. It is well known that

data clustering is a successful approach in recognizing

and categorizing human expressions, gestures and

actions. More specifically, the motion parameters are

partitioned into k clusters, such that each motion is

allocated to the cluster with the nearest mean.

3. Training Initial HMM: In order to produce the

first gesture, an initial HMM is trained using human-

generated motions. As we utilize time-varying motion

sequences, HMMs can be used to model human skills

such as interactions with mobile applications. Using

the expectation-maximization (EM) algorithm the

initial HMM trains a model, where its hidden states

indicate motions’ clusters, generated in the first step.

The probability of a gesture belonging to a specific

cluster (state) is estimated and used to calculate the

first motion acceleration parameters. The first motion’s

acceleration is calculated by computing the mean of

the accelerations in each HMM state and by selecting

one pair randomly. Hence, we can hypothesize that the

test sequence produced can potentially mimic human

generated gestures.

4. Generating the test data using HMM

classifiers: We apply HMM classifiers on clustered

data to generate test motions. For each cluster, the

dynamics of each motion class is learned with one

HMM. Thus, having 𝑚 motion-clusters, 𝑚 HMM

classifiers need to be applied. HMM classifiers classify

each motion as a function of a future time frame [12].

Thus, the probability of a test case belonging to each

cluster is calculated using the Forward algorithm [11].

The motion-cluster with highest Forward probability is

selected and the mean of the acceleration of the

motions belong to this cluster is considered as the next

motion’s acceleration.

5. Adding generated motions to the training set:

in order to avoid over-fitting the model, the motions

should be added to the training set. This helps the

model to learn from the data rather than memorizing

the trend.

6. Storing and executing test cases: Once, for

example, the ball hits the vertical wall the set of test

motions generated, since the last hit, are stored as test

cases and will be used to generate real motions.

 Figure. 1. An overview of applying the proposed approach on the application with flying object. It consists of both training the initial

HMM (top) and test generation process using HMM classifiers (bottom)

Train Data

Test Cases

Gathering training data

from interacting human

user with the application

Clustering the training

data to m cluster

Training the initial HMM

Using the clustered data

Training m HMM classifiers from

clustered data to generate next test

motions

Generating test motions

using HMM classifiers

and Physics equations

Executing Test Cases

HMM1

HMMk

HMMm

Initial HMM

Generating the first test

motion using the initial

HMM by randomly

selecting from the

possible suggested

motions from the HMM

Adding generated

motions to train data

Page 7443

3.1 Synthesizing Motion Sequences

This section describes the method of instantiating

motion sequences for complicated motion-based

applications, which transfer the users’ gestures to a

bouncing object. However, the application of this

approach is not limited to events using sensor-

generated data; it can be easily used to generate

automated test cases for any type of motion-based

events. Following the previous section, two sets of data

(motion sequences) are considered in this study:

 The training data, which is captured during a

real user’s interaction with the application and is used

to train the initial HMMs.

 The second set is the test data, which is

generated by using the test generation algorithm and is

presented to the application being tested to evaluate its

functionality. To create meaningful test data, which is

recognizable by the trained HMM and its

corresponding classifier, we describe a single motion 𝑘

by a 6-tuple (𝑙𝑥𝑘 , 𝑙𝑦𝑘 , 𝑣𝑥𝑘 , 𝑣𝑦𝑘 , 𝑎𝑥𝑘 , 𝑎𝑦𝑘), where

𝑙𝑥𝑘 , 𝑙𝑦𝑘 indicates the object’s location, 𝑣𝑥𝑘 , 𝑣𝑦𝑘

determine the velocity, and 𝑎𝑥𝑘 , 𝑎𝑦𝑘 describe the

acceleration of the motion in 2D space at a specific

time interval. Figure 2a shows the 3D acceleration axes

on a smartphone, which also contains a z-axis. In order

to simplify the explanation of the algorithm and cover

more common applications.
This study also considers two time intervals during

the test generation procedure:

 The first time interval happens every 𝜑 ms [7]

to capture information regarding the current motion

and position of the object and to calculate the next

motion using SUVAT equations [13], [14].

 The second time interval happens every θ ms,

which is estimated by selecting the minimum

possible time between two gestures, generated

by human users. Hence, the estimation of θ

assists the algorithm to generate more realistic

(complex) gestures as it accounts for the

limitations of kinematics.

Figure 2b shows a gesture consisting of a sequence

of motions happening within these two intervals. Each

sequence of motions is terminated by the occurrence of

a specific condition in the application being tested; for

example, when the flying object hits another object.

 Definition1: A test case (𝑇𝐶) consists of a set

of motions (𝑀 = {𝑚1, … , 𝑚𝑛}),where 𝑚𝑘≤𝑛 is a 6-

tuple (𝑙𝑥𝑘 , 𝑙𝑦𝑘 , 𝑣𝑥𝑘 , 𝑣𝑦𝑘 , 𝑎𝑥𝑘 , 𝑎𝑦𝑘). The number of

tuples (motions) in each TC depends on the number of

detectable motions before the termination condition.

4. HMM-based Test Case Generation

The clustering algorithm is applied to groups of

motions with similar behaviour and allocates them into

a single cluster. These clusters will be used as the class

labels for the HMM classifiers. This means that each

class indicates a set of similar motions in the

corresponding cluster. The clustered data will be used

to train an initial Hidden Markov Model. The HMM in
this study is characterized by the following elements:

 a set of latent states 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝐿}, which

are hidden from the external observer and indicates the

class of motion sequences;

 a set of observable states 𝑉 =
{𝑣1, 𝑣2, … , 𝑣𝑁}, where each is mapped to a

corresponding motion sequence (𝑚𝑘);
 a transition probability [𝐴]𝑖𝑗 = {𝑎𝑖𝑗},

𝑎𝑖𝑗 = 𝑃(𝑄𝑡+1 = 𝑠𝑗|𝑄𝑡 = 𝑠𝑗), 1 ≤ i, j ≤ L, which

determines the transition probability between different

classes. For the initial modelling process, because

human users generate the motions, the initial transition

probabilities between different classes of motions can

be extracted directly from the training data;

 an emission probability [𝐵]𝑗𝑘 = {𝑏𝑗 (𝑣𝑘)},

𝑏𝑗 (𝑣𝑘) = 𝑃(𝑀𝑡 = 𝑣𝑘|𝑄𝑡 = 𝑠𝑗), 1 ≤ j ≤ L, 1 ≤ k ≤

Nwhich indicates the probability of a motion sequence

belonging to a specific class (estimated by frequency

counting on the clustered training corpus); and

 initial state distribution, Π = {𝜋𝑖},
𝜋𝑖 = 𝑃(𝑄1 = 𝑠𝑖), 1 ≤ i ≤ L. Each and every state

can be an initial state in this study.

Using the values of A, B, and Π, an HMM can be

used as a generator to create an observation sequence

Figure. 2. (a) screen after hitting the edge in first time-

interval 𝜑; (right) the 3D acceleration axes on smartphones; and

(b) a gesture containing a sequence of motions happening within
two intervals: (left) a bouncing object moving in the proposed

approach calculates the next movement after the second time-

interval 𝜃

-Z

+Z

+Y

-Y

-X +X

Page 7444

(where 𝑇 is the number of motions in the test case):

𝑀 = {𝑀1, 𝑀2, 𝑀3, … , 𝑀𝑇}. This initial HMM model is

used as an input to an expectation-maximization (EM)

algorithm. This algorithm estimates the optimal model

with the highest likelihood of the estimated parameters.

In algorithm 1, this procedure is done by running the

HMM function in the first line. Then, the initialAccel

function initializes, the acceleration parameters of the

first test motion by calculating the mean of the

acceleration pairs in each HMM state and by selecting

one pair randomly. Then, in lines two and three of this

algorithm, the CreateMotion function generats a

motion sequence using the SUVAT equations and the

Update function stores the newly created motion

sequence as the current motion. After generating the

initial motion, the CreateMotion and Update functions

are called again but this time within the time interval

𝜑, until a termination condition happens (line 4-8).

This procedure generates a simple gesture based upon

the previous motion, using appropriate physics

equations. In order to generate more realistic and

complicated gestures, we propose using the HMM

classifier to detect the sequence class label at each

interval 𝜃.

 The HMMClassifier function in line 10 of the

algorithm classifies the current motion sequence into

an appropriate class of gestures. This function

combines a set of sequences of motions and a list of

class labels to train one HMM per class label (where 𝐿

is the number of class labels). Subsequently, the

trained models are used to calculate the forward

probability of a motion sequence per model. The

forward algorithm computes the forward

probability,𝛼𝑘(𝑡), as the joint probability of observing

the first t vectors 𝑚𝑡 , 𝑇 = 1, … , 𝑡 while in state k at

time t. Given a list of forward probabilities, we are able

to select a model with the maximum probability and

assign its corresponding class label as the motion’s

class label and estimate the next motion values by

calculating the mean of the accelerations of the

motions (the Accel function in line 10). Moreover, the

generated motion is added to the training set to avoid

over-fitting. This helps the model to learn from the

data rather than memorizing the trend (line 14).

Putting it all together, lines four to fourteen of

Algorithm 1 create a set of motion sequences within

two different intervals. Simple gestures are generated

based on physics equations once the first time-interval

happens; more complicated motions (e.g. gestures with

variable accelerations) that may require a longer time

period to be created by a human user are generated

within the second time interval. An example of a

simple motion is the one calculated by the SUVAT

equations after the bouncing ball hitting the horizontal

wall. While the complex one is a motion calculated by

HMM classifiers for a ball slowly bouncing in the

middle of the screen.

ALGORITHM 1. TEST CASE GENERATION PROCEDURE FOR CASES WITH

ACCELERATION INVOLVED

Input: Initial position of the bouncing object (x,y), training data set

(S), set of class labels (C); 𝑖 = 2;
Output: Test case (TC)

1. (ax,ay)⟵ initialAccel(HMM(S,C))

2. 𝑚1 ⟵CreateMotion(ax,ay,x,y)
3. Update(ax,ay,x,y)

4. While (!terminalCondition)

5. 𝒊𝒇 (𝑐𝑢𝑟𝑇𝑖𝑚𝑒 – 𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒1) ≥ 𝜑)

6. 𝑖 ← 𝑖 + 1

7. 𝑚𝑖 ⟵CreateMotion(ax,ay,x,y)
8. Update(ax,ay,x,y)

9. 𝑆 ← 𝑆 ∪ {𝑚𝑖}

10. 𝒊𝒇 (𝑐𝑢𝑟𝑇𝑖𝑚𝑒 – 𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒2) ≥ 𝜃)
11. (ax,ay)⟵Accel(HMMClassifier(𝑚𝑖,S,C))

12. 𝑖 ← 𝑖 + 1

13. 𝑚𝑖 ⟵ CreateMotion(ax,ay,x,y)
14. Update(ax,ay,x,y)

15. 𝑆 ← 𝑆 ∪ {𝑚𝑖}

16. End while

17. Return 𝑇𝐶 ← {𝑚1, … , 𝑚𝑖}

*lastUpdate1 indicates the last update that happened at interval

𝜑 while lastUpdate2 indicates the last update that happened at

interval 𝜃

5. Running Example

In order to clarify the proposed test case generation

procedure, we consider a very small portion of the

training data generated by a human user in the

bouncing ball application. An example of a single

motion is provided below:
05-07 17:36:15.828: Vx(32065): -2.7148619
05-07 17:36:15.828: Vy(32065): -2.7148619
05-07 17:36:15.828: lBallX(32065): 549.0
05-07 17:36:15.828: lBallY(32065): 20.0
05-07 17:36:15.828: Ax(32065): 0.090979666
05-07 17:36:15.828: Ay(32065): -0.1233013

In this running example, we follow the test

generation framework (Figure 1) step by step to

generate test cases:

1. Gathering training data: 30 motions in the

format of 6-tuple (𝑙𝑥𝑘 , 𝑙𝑦𝑘 , 𝑣𝑥𝑘 , 𝑣𝑦𝑘 , 𝑎𝑥𝑘 , 𝑎𝑦𝑘) are

gathered as the result of user interaction with the

application.
2. Clustering motions: the training data is

clustered into 2 distinct clusters (classes) using the k-

means algorithm. Due the space limitations. a partial

view of the clusters are provided in Table 1.
3. Initial HMM training: the clustered data is

then used to train the initial HMM using Baum Welch

algorithm. In this case, the HMM model contains 30

Page 7445

observable states and 2 hidden states (since there are

only two clusters). Then, the acceleration parameters of

the first data motion are generated by calculating the

mean of the acceleration pairs of the motions

belonging to each hidden state of the initial HMM and

subsequently selecting one pair randomly. After

determining the initial acceleration parameter, the first

motion is created:
(1) initial acceleration parameter:

(𝑎𝑥, 𝑎𝑦) = (0.59855044, −0.91578215)
(2) the initial location of the ball in the screen:

(𝑙𝑥0, 𝑙𝑦0) = (309,253)
(3) knowing that the initial velocity is equal to zero

(ball is not moving at the beginning):
(𝑣𝑥0, 𝑣𝑦0) = (0,0)

motion
𝑚1(309.080798,252.876369,0.1755132, −0.2747346,0.059855044, −0.091578215)

is generated using physics equations: 𝑣 = 𝑎𝑡 + 𝑣0 and

𝑙 = 𝑙0 + 𝑣0𝑡 +
1

2
𝑎𝑡2

Then within the time interval 𝜑 = 300𝑚𝑠 other

motions are also generated through the same process

with the difference that the acceleration of the current

motion is used as the initial acceleration for the next

motions. These motions will be added to the training

set to avoid over-fitting. (Figure 3 depicts a schema of

the trained initial HMM).

4. Test data generation using HMM classifiers:

Now, in order to generate more complex motions

(within time interval 𝜃 = 500 𝑚𝑠), two (number of

classes) HMM classifiers are trained and the forward

probability of the current motion is calculated to reveal

the class of motions it belongs to. Then, the mean of

the accelerations of the motions belonging to this class

are calculated; and again, are used as input of the

motion equations to calculate the velocity and location

parameters. For example, if the occurrence likelihood

(forward probability) of the current motion
 𝑚𝑖(20, 492.07,2.1625056,2.1625056, −0.00778115, 0.24600422)

in class 𝑐2 reaches the maximum amount compared to

the other class (𝑐1), the mean of the acceleration of the

motions in class 𝑐2 is calculated and will be used as the

new current motion’s acceleration. In this case, the

mean of the accelerations in 𝑐2in equal to

(0.3471,1.1162). Therefore, using physics equations, the

next motion would be:
𝑚𝑖+1(21.1246403,493.2907778, 2.3360556,2.7206056,0.3471,1.1162),

This motion also will be added to the training set.

Once, the ball hits the vertical wall, the motions

generated since the last hit, are saved in the form of a

test case and will be executed to move the ball.

6. Empirical Evaluation

To study the proposed approach, we performed an

experiment on three case studies; we attempt to answer

the following research questions:

 Can the test-generated motions mimic actual

user behaviour?

 Does the proposed method improve the code

coverage of the SUT when compared to existing

automated techniques (random testing)?

The first case study is an Android application, a
bouncing ball application, designed to record a data
set of coordinates from shake and tilt gestures
performed by human users (LOC=716). This
application contains one flying object (round ball),
which bounces on the screen; the ball moves by
processing information it captures from a mobile
devices accelerometer. The dynamics of a bouncing
ball follows a set of physics laws and equations [30],
which are used in this study. Since covering the
details of such equations is beyond the scope of this
research, we only discuss some of the case-specific
motions and equations:

 When the application starts, the ball is stable

in a corner of the screen, waiting for a motivation.

Depending on the power of the first motion, the ball

starts moving toward the motion’s direction. In this

study, the time interval 𝜑 is fixed at 300 milliseconds,

following [9], [10] to capture the information regarding

the current motion and position of the ball on the

screen and to calculate its next position.

 The second time interval 𝜃 is equal to 500

milliseconds because the time windows between

gestures created by users it varies from 500

milliseconds to one second, we select the lower bound

to create standard motions.

 Each sequence is terminated whenever the

ball hits the vertical edges of the screen.

Table 2 (First two columns) indicates the simplest

possible actions that can be performed in this

application, along with their corresponding gestures. It

is noteworthy that in designing this table, it is assumed

that the ball has enough space to move toward each

direction. Obviously, it cannot for example move to the

left when it has already hit the right-side edge. Any

combinations of these actions (e.g. curving), which

may be produced by rotating, tilting the device. For

Figure. 3. An overview of trained HMM in running example

1 2 3 30

1 2

Observable states
(Train motions)

Hidden states
(Clusters)

Page 7446

example, when the user rotates or tilts the mobile

phone toward the right, the ball can moves in a curve

instead of moving in a straight line to the right.

The second case study is another android

application called Bubbles, which is able to draw

circles around the touched points on the screen

(LOC=423). In order to generate circles (bubbles), the

user touches or pushes the screen resulting in a circle

being gradually grown from the touched point. The

maximum length of the circle’s radius is predefined

and fixed, so the circle keeps growing until its radius is

equal to the maximum number or the user touches

another point in the screen. Table 2 (Second two

columns) shows the action (motion event) and its

corresponding gesture. The sequences of motions are

continuously generated until a border is touched. Then,

the generated set is considered as a test case.
In order to evaluate the performance of proposed

test case generation approach in a more complex

framework, we modified the Bouncing ball application

by adding a second more flying object. The second ball

behaves the same as the first one (Table 2 – First two

columns), except for the difference that its initial

location in the bottom right-hand corner (the original

ball is located in the left side), thus depending to the

amount of acceleration received from the sensors, they

can move in diverse directions. The same test

generation algorithm is used to produce test cases for

the extended Bouncing ball application (LOC= 1054)

and test motions are stored in two separate sets of test

suites for each ball.

6.1 Experimental Results

To answer the research questions and evaluate the

efficiency of the proposed test generation approach,

volunteers interacted with the applications and

produced motion sequences which are then used as

training sets. In the Bouncing ball application, a set of

training data was obtained by recording the motion

coordinates for three minutes from a total of 317

gestures performed on two different Android devices.

Applying the silhouette score, we grouped the motions

into 95 clusters. For the extended version of this

application, 600 motions and 105 clusters were

considered. This data is recorded in 6 minutes. For the

Bubble application, these numbers were 481 and 95

respectively (motions are stored for 2 minutes). The

amount of time allocated to each training process is

estimated based upon the time a new user needs to

become visually familiar with the application and to

generate a set of motions. In this study, this time is

estimated by calculating the mean of the time that new

users require to generate a reasonable set of motions

for the considered applications.

To evaluate the quality of the generated test cases

in all case studies, 20 sets of 200 motion sequences

were generated using the proposed technique. In

addition, for the Bouncing ball application, the same

number of motion sequences (20 sets of 200 motions)

was created by random test generator procedures:

 Algorithm 3: takes a human-user motion to

initialize the acceleration or position parameters then

creates the further motions based on the current one by

randomly selecting a physics equation.

 Simple Random Algorithm: Creates test cases

by simply generating random motion sequences within

the data ranges supported by the hardware. In this

study, a human user also generates the initial motion.

Since, the HMM-based technique is using human-data

to train the initial model and generate the first motion,

the simple random test case generation process also get

initialized by human-generated data.

 Hybrid approach: In order to conduct a fair

comparison, some experiments have been designed to

execute combinations of human and randomly

generated test cases (e.g. “Human + Simple random”

and “Human + Algorithm 3”). This means that using

human data is not limited to the initialization phase and

user-generated data forms half of the test cases.

Therefore, a hybrid test case consists of a combination

of human generated motions and random motions.

Since the acceleration parameter and its

corresponding physics equations are not considered in

the second case study, only the simple random

algorithm is implemented to generate the random

touched-points.

To answer the first research question, we classified

test cases by using the HMM classifier. Then the

occurrence likelihood (LC) of each sequence of

motions for each class label are calculated where
{𝐿𝐶 = 𝑃(𝑀|Λ𝑖), 𝛬𝑖≤𝐿𝑎𝑛𝑑 𝑀 ∈ 𝑇𝐶}, where L is the

number of classes. In this case, when max
𝐿

𝑃(𝑀|Λ𝑖) is

a small quantity, it can be concluded that the test case

TC is not behaving similar to the test cases that were

used to create the classes. Additionally, since these

classes are created using human-generated motions, it

can be implied that the probability of the test case TC

being generated by a human user is low.

The results show that the motions generated using

the HMM-related technique have a higher forward

probability (occurrence likelihood) compared to other

approaches. Accordingly, it can be concluded that the

test cases generated using the proposed technique are

more likely to be generated by a human user. The

reason is that each class label describes a set of human-

generated motions; therefore once a motion has high

occurrence likelihood in one of these classes, it can be

Page 7447

concluded that the probability of being generated by a

human user for this motion is high.

To address the second research question, the

JaCoCo code coverage library was used. Using this

toolkit, bytecode instrumentation is applied, and the

branch coverage value is measured. Since we

generated 20 sets of 200 test cases using each

approach, the means of the coverage percentages on all

sets, are calculated to achieve more accurate results (In

total, 64000 motion sequences are generated during the

experiments). Table 3 reports the means of the branch-

coverage percentages calculated by running each of the

test case generation approaches. The result of applying

the Wilcoxon signed rank test indicates the HMM-

based approach is significantly different from the other

techniques in terms of code coverage. Table 3 also

reports the p-values and delta estimates at the 95%

confidence interval. The Cliff’s Delta measure

provides more detailed information to this picture by

showing that a “large” effect size exists (in favour of

HMM-based approach) for all of the comparisons. The

achieved results confirm that the HMM-based test case

generation approach not only automates the test

generation and execution procedure for motion-based

events, but also (1) creates better test cases in terms of

mimicking actual user gestures; and (2) improves the

(branch) code coverage for the SUT (Table 4).

Table 1. Simplest Supported Actions and Gestures in Both Types of Application

Cluster 1 Cluster 2

(211.36267, 502.0, 9.787367, 9.787367, -0.30645782, 7.948151) (20.0, 344.4505, 24.511274, 24.511274, -4.5637164, -3.260261)

(220.37634,502.0, 9.259302, 9.259302, 0.55006784, 7.753622)

(229.64267,502.0, 8.681731, 8.681731, -0.55006784, 7.753622)

(245.16068,502.0,7.443665,7.443665, -0.8355764, 7.9068513)

(252.28542,502.0, 6.5663095, 6.5663095,-0.8355764, 7.9068513)

(270.06726,502.0, 2.6941133, 2.6941133, -1.039682, 7.953538)

(272.01288,502.0, 1.5729084, 1.5729084, -1.067814, 7.89907)

(271.1313, 502.0, -1.6668775, -1.6668775, -1.1701661, 7.817667)

…

(20.0,45.516983, 8.89769, 8.89769, -6.5458517, 6.4084578)

(26.236174,20.0,3.8991215,3.8991215,11.504282,5.4646373)

(20.0,182.77194, 23.407976, 23.407976,8.195976, -7.834369)

(20.0,235.21193, 19.96578, 19.96578, -8.742604,0.1829845)

(300.0,118.05718, -28.868063, -28.868063, -8.03005, -4.4044623)

(300.0,367.61127, -36.233944, -36.233944, 8.330351, 1.1209484)

(20.0,378.44443, 28.222904, 28.222904, -2.80235, -0.7510143)

…

Table 2. Simplest Supported Actions and Gestures in Both Types of Application

Bouncing Ball / Extended Bouncing Ball Bubbles

Action Gesture Action Gesture

Tilt the device toward left.
The ball bounces to the left

side of the screen.

Touch/Push the screen.
The circle is drawn around

the touched-point.
Tilt the device toward right.

The ball bounces to the right

side of the screen.

Tilt the device to the front. The ball bounces down.

Tilt the device to the back. The ball bounces up.

Table 3. Results of Calculating Effect Size Measure and the Mean of Code Coverage For Test Case Generation Methods in All

Case Studies

 Approach
Mean of Code

Coverage (%)
Approach Delta Estimate p-value

B
o
u
n

ci
n
g

 b
al

l

HMM-based 79.26 HMM-based Vs. Algorithm 3 -0.965 4E-05

Algorithm 3 55.95 HMM-based Vs. Simple Random -1 4E-05

Simple Random 33.05 HMM-based Vs. Human + Algorithm 3 -0.7357 0.00019

Human + Algorithm 3 63.63 HMM-based Vs. Human + Simple Random -0.6761 0.00034

Human + Simple Random 62.73 HMM-based Vs. Human -0.7225 0.00017

Human 60.2

Page 7448

E
x

te
n

d
ed

 B
o

u
n

ci
n

g

b
al

l

HMM-based 81.3 HMM-based Vs. Algorithm 3 -0.95 1.9E-06

Algorithm 3 52.75 HMM-based Vs. Simple Random -0.95 1.9E-06

Simple Random 31.77 HMM-based Vs. Human + Algorithm 3 -0.71 3.4E-05

Human + Algorithm 3 62.78 HMM-based Vs. Human + Simple Random -0.575 0.0028

Human + Simple Random 62.98 HMM-based Vs. Human -0.62 0.0002

Human 62.05

B
u
b
b

le
s

HMM-based 92.06 HMM-based Vs. Human + Simple Random -0.9325 5E-05

Simple Random 74.28 HMM-based Vs. Human -0.9325 4E-05

Human + Simple Random 79.97 HMM-based Vs. Simple Random -1 4E-05

Human 78.94

Table 4. Results of Providing Same Resources as HMM-based to Random

 Approach Code Coverage (%) 𝒕𝒈(min) 𝒕𝒆(min)

Bouncing ball HMM-based (200 motions) 75% 0.5 3

Random (33800 motions) 42% 0.17 23

Extended Bouncing ball HMM-based (200 motions) 75% 0.5 3.2

Random (33800 motions) 40% 0.17 24

Bubbles HMM-based (200 motions) 92% 0.2 1.2

Random (33800 motions) 78% 0.08 15.6

7. Conclusions

 Testing mobile applications that use motion-

based gestures to interact with users poses a new

challenge. Test inputs should be realistic motion

sequences, which are able to simulate the user’s

behaviour in interacting with the application. This

helps in revealing defects, which remain unknown in

applications because they do not conform to expected

human-generated motions. Since, Markovian models

have been successfully used in software testing studies

to generate models representing common user

behaviour in UI testing.

In this paper, we have proposed a new HMM-based

approach, which presents a solution for automating the

testing process for applications supporting motion-

based events. Using this method, gestures can be

formally specified as sequences of motions, which are

easy to re-execute in the application. Therefore, an

HMM classification approach is used to classify the

current movement into a class of motions providing the

best description of the gesture’s characteristics. Then,

according to the results provided by the classification

approach and using standard movement equations, a

realistic proxy for the likely next movement

coordinates can be estimated.

We evaluated our approach by generating a set of

test inputs for three Android applications with a

gaming theme. The empirical results show that the

generated test cases using HMM-based approach not

only cover a higher number of branches in the source

code compared to randomly generated test cases, but

the occurrence likelihood of the corresponding motion

sequences in model trained by user generated data is

also higher in HMM-based approach. This indicates

that the new approach outperformed the random

method in generating test cases that mimic human-user

behaviour.

8. References

 [1] M. Hesenius, T. Griebe, S. Gries, and V. Gruhn,

“Automating UI Tests for Mobile Applications with Formal

Gesture Descriptions,” in Proceedings of MobileHCI’14,

2014, pp. 213–222.

[2] C. J. Hunt, G. Brown, and G. Fraser, “Automatic

testing of natural user interfaces,” IEEE 7th Int. Conf. Softw.
Testing, Verif. Valid., pp. 123–132, 2014.

[3] B. Kirubakaran and V. Karthikeyani, “Mobile

application testing — Challenges and solution approach

through automation,” in 2013 Int. Conference on Pattern

Recognition, Informatics and Mobile Engineering, 2013, pp.
79–84.

[3] I. Satoh, “A testing framework for mobile

computing software,” IEEE Trans. Softw. Eng., vol. 29, no.
12, pp. 1112–1121, 2003.

[5] D. Franke and C. Weise, “Providing a software

quality framework for testing of mobile applications,” in 4th

IEEE Int. Conf. on Softw. Testing, Verif., and Valid., 2011,

Page 7449

pp. 431–434.

[6] D. Amalfitano, A. R. Fasolino, P. Tramontana, S.

De, U. Federico, and I. I. Napoli, “Using GUI Ripping for

Automated Testing of Android Applications,” in Proc. of the

27th IEEE Int. conf. on Automated Software Eng., 2012, pp.
258–261.

[7] C. Hu and I. Neamtiu, “Automating gui testing for

android applications,” in Proc. of the 6th Int. work. on Auto.
of software test - AST ’11, 2011, p. 77.

[8] C. D. Nguyen, A. Marchetto, and P. Tonella,

“Combining model-based and combinatorial testing for

effective test case generation,” in Proc. of the 2012 Int. Sym.
on Soft. Test. and Anal., 2012, p. 100.

[9] C. M. Prathibhan, A. Maliani, N. Venkatesh, and

K. Sundarakantham, “An automated testing framework for

testing android mobile applications in the cloud,” in IEEE

Int. Conf. on Adv. Comm. Control and Comput. Tech. , 2014,
pp. 1216–1219.

[10] R. N. Zaeem, M. R. Prasad, and S. Khurshid,

“Automated generation of oracles for testing user-interaction

features of mobile apps,” IEEE 7th Int. Conf. Softw. Testing,
Verif. Valid., pp. 183–192, 2014.

[11] J. An and K.-S. Hong, “Finger gesture-based

mobile user interface using a rear-facing camera,” IEEE Int.
Conf. on Consumer Electronics, 2011, pp. 303–304.

[12] O. Perez, M. Piccardi, G. Jesus, and J. M. Molina,

“Comparison of Classifiers for Human Activity,” Lect. Notes
in Comput. Science, 2007, pp. 192–201

[20] E. S. Choi, W. C. Bang, S. J. Cho, J. Yang, D. Y.

Kim, and S. R. Kim, “Beatbox music phone: Gesture-based

interactive mobile phone using a tri-axis accelerometer,” in

Proc. of the IEEE Int. Conf. on Industrial Technology, 2005,
pp. 97–102.

[12] C. B. Park and S. W. Lee, “Real-time 3D pointing

gesture recognition for mobile robots with cascade HMM and

particle filter,” Image Vis. Comput., vol. 29, no. 1, pp. 51–63,

2011.

[13] S. O. Hara, Y. M. Lui, and B. A. Draper,

“Unsupervised Learning of Human Expressions , Gestures ,

and Actions,” in IEEE Int. Conf. on Auto. Face & Gesture

Recognition, 2011, pp. 1–8. [23] S. Gibet, N. Country,

and J.-F. Kamp, Lecture Notes in Artificial Intelligence.
2005.

[14] D. Kleppner and R. Kolenjow, An Introduction to

Mechanics. Cambridge University Press, 2013.

2007.

Page 7450

