
Automated Testing of Motion-based Events in Mobile Application  

 
 

Seyedeh Sepideh Emam 

University of Alberta 

 emam@ualberta.ca   

 

 

James Miller 

University of Alberta 

 jimm@ualberta.ca 

 

 

Abstract 
 

Automated test case generation is one of the main 

challenges in testing mobile applications. This 

challenge becomes more complicated when the 

application being tested supports motion-based events. 

In this paper, we propose a novel, hidden Markov 

model (HMM)-based approach to automatically 

generate movement-based gestures in mobile 

applications. A HMM classifier is used to generate 

movements, which mimic a user’s behaviour in 

interacting with the application’s User Interface (UI). 

We evaluate the proposed technique on three different 

case studies; the evaluation indicates that the 

technique not only generates realistic test cases, but 

also achieves better code coverage when compared to 

randomly generated test cases 

 

 

1. Introduction  

 
Embedding hardware devices, such as movement 

sensors (accelerometers and gyroscopes), in mobile 

devices complicates testing procedures. Users are able 

to interact with the application by touching, tilting, 

shaking, and rotating the mobile devices. When a 

device is in motion or its screen is continuously 

touched, the probability of unintentional inputs 

increases; in such circumstances, automatically 

generated test suites are needed to produce accurate 

test cases and accelerate the mobile application testing 

procedure. Tools and techniques have been developed 

to test the quality of mobile applications, but the 

number of approaches that focus on automated testing 

is very limited. The majority of these automated testing 

tools offer capture-and-replay functionality to test the 

application’s User Interface (UI).  

Writing and continually improving motion-based 

test cases is a difficult task when testing mobile 

applications that use movement-sensor data. Therefore, 

considering existing mobile testing tools and 

approaches, two problems exist: 1) no automated 

approach is provided; and 2) generating test cases for 

motion-based mobile applications remains 

unconsidered. Thus, we propose a new approach to 

address these limitations. It is argued that mimicking 

user behaviour is one of the key factors in generating 

gesture-based test cases. It helps in executing realistic 

test scenarios and standard gestures [1], [2].  

We propose a novel approach, which synthesizes 

the motions, and subsequently, simulates the test cases 

based upon the formalized gestures. Motion data is 

represented by the data captured, using the movement 

sensors and the objects’ positions (2D coordinates) on 

the screen. An application can then use the sequences 

of motions to simulate the gestures and test the UI. To 

increase the chance of generating realistic movements, 

a set of training data is generated by human users and 

is used to train hidden Markov model (HMM) 

classifiers; these models are iteratively used to generate 

new motion sequences. Gestures and animations are 

commonly considered to be the key components in 

modern mobile user interface design; hence this work 

directly targets the heart of the matter in this new and 

evolving application domain. 

In summary, the generated motions are used to 

automatically produce test cases, mimicking human-

generated gestures with the technical goal of increasing 

code coverage. This study contributes to the research in 

this area by: 

• Proposing a new approach to synthesize 

motion data, and make it executable as a test input to 

the application being tested. 

• Applying a HMM classifier on the training 

data to create a set of HMMs, and subsequently using 

them to generate motion sequences. 

• Evaluating the effectiveness of the proposed 

approach in terms of, (1) mimicking the user’s 

behavior; and (2) increasing the code coverage of the 

software under test (SUT). 

This paper is organized as follows. Section 2 

provides background information on mobile 

applications, particularly motion-based gesture testing. 

Section 3 describes an overview of the proposed 

approach, the gesture synthesis and simulation 
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procedures, while Section 4 provides the design and 

implementation details. Section 5 provides a running 

example of the proposed test case generation approach. 

Section 6 discusses the evaluation phase, experimental 

setup, and results. Finally, Section 7 presents the 

conclusions.  

 

 

2. Background and Literature Review 

 
The growth in developing mobile testing 

procedures and techniques has been insufficient. 

Although many testing methods and tools exist for 

desktop and server/host software, most of them are not 

applicable for testing “mobile software” [3]. Although 

many traditional testing tasks are common between 

mobile applications and the desktop/web-based 

applications, several key factors cause challenges in 

the mobile testing procedure. Mobile devices are 

different in terms of screen sizes, platforms, input 

methods, and the quality of the sensor data. Such 

differences can easily multiply testing efforts. This can 

easily affect the quality of the application, along with 

the time of the marketplace and the costs of 

construction. Integrating automation approaches with 

test case generation procedures is a key factor in 

addressing these issues in the “mobile testing era”, 

where many test cases need to be executed on a large 

selection of mobile devices and configurations.  

In this regard, [4] presents a framework to test the 

functionality of mobile applications when a device is 

moved to a new network. The framework uses an 

application-level emulator to transfer the application 

across networks to ease the testing process under 

different network technologies. Additionally, [5] 

suggests a quality assurance framework to define key 

patterns and metrics in mobile application testing. 

Although these studies provide insights into the testing 

of mobile applications, they do not cover the test case 

generation phase. Several studies focus on automated 

testing for mobile applications have also been 

conducted; [6]–[9] suggest different, automated, 

graphical user interface (GUI) testing approaches for 

Android applications.  

To test the GUI, the mobile application needs to be 

executed with user interaction events. With 

technological advancement in smartphones and tablets, 

natural user interfaces (NUIs), which no longer use 

keyboards and keypads as human-machine interfaces, 

have become popular. Touch-sensitive screens, speech 

recognizers, and gesture detectors are the primary 

interaction channels in the new generation of mobile 

applications. This era of application testing is relatively 

new, and only a limited number of studies have been 

performed to address these testing challenges [9], [10]. 

Mobile applications, which allow users to control 

the applications’ functionality through NUIs, normally 

recognize gestures by using the data provided by the 

embedded sensors in the mobile device [11]. Several 

smartphones and tablets contain accelerometers to 

control motion inputs. One of the most common 

applications of accelerometers is presenting the 

landscape and portrait views of the screen based on the 

way the device is being held. The 3-axis model of the 

accelerometer is able to measure the magnitude and 

direction of the acceleration (gravitational force) as a 

vector [𝑎𝑥𝑘 , 𝑎𝑦𝑘 , 𝑎𝑧𝑘] for a motion 𝑘 in a 3D space. 

Combining all three accelerations, lets the application 

detect the device’s movement in any direction and 

obtain the device’s current orientation. Depending on 

the graphical capabilities of mobile applications, 2D or 

3D versions of the acceleration vector are considered. 

From the tester’s perspective, testing applications that 

support motion-based events introduce a new 

complexity to the testing procedure; motion-based 

gestures should be accurately specified and reliably 

reproduced [9]. The lack of formal motion-gesture 

specification prevents testers from developing an 

automated test generation approach. The next section 

presents the simulation and synthesis procedures of 

such motion-based events. 

 

3. Gesture Simulation  

 
        In the simplest process, test data-points can be 

provided by using a random test generation approach, 

which randomly creates data frames within a defined 

range to move the object on the screen. It can be 

expected that the number of reasonable gestures, which 

are created randomly are very limited. Therefore, even 

if these test cases are able to cover an acceptable 

number of branches in the source code, they may not 

be able to reveal faults a human user can discover 

simply because they cannot replicate standard gestures. 

This study considers an automated test case 

generation procedure for applications interacting with 

users using motion-based events. Users normally 

interact with these applications by performing a 

sequence of gestures, e.g. by moving a flying or 

bouncing object on the screen or drawing geometrical 

shapes by touching the screen. User-generated gestures 

are transferred to the object or touched location to 

move the object toward the desired direction or to draw 

a geometrical shape (e.g. circle) around the touched 

point. It is noteworthy that motion-based events are not 

only used to move an object on the screen; sometimes, 

shaking a mobile phone in a specific direction or 

touching and dragging the screen leads to executing a 

function or opening another application.  This study 
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focuses on the procedure to automatically generate test 

motions on both types of applications: (1) applications 

with flying object(s) (two case studies); and (2) 

applications with a touch-sensitive screen (one case 

study). In such cases, several parameters can affect a 

single motion (such as the object size, the size of the 

screen, an object’s location, etc.). Since users are free 

to touch, move and shake their mobile phones in any 

desirable direction and speed, a testing approach must 

be able to generate sets of standard gestures, which are 

not only executable on the application but also 

resemble the human-generated motions.  

The proposed technique contains several steps and 

details, which are depicted in the framework provided 

in Figure 1. The proposed approach consists of the 

following steps: 

1. Gathering training data: A user interacts with 

the application and generates motions to be used as a 

training set.  (It is worth noting that the person is not 

instructed to generate any specific motions and the 

generated motions are the result of a volunteer 

interacting with the application for the first time.) 

2. Clustering motions: the k-means clustering 

algorithm is used to identify the relationship between 

data points (motions) generated. It is well known that 

data clustering is a successful approach in recognizing 

and categorizing human expressions, gestures and 

actions. More specifically, the motion parameters are 

partitioned into k clusters, such that each motion is 

allocated to the cluster with the nearest mean. 

3. Training Initial HMM: In order to produce the 

first gesture, an initial HMM is trained using human-

generated motions. As we utilize time-varying motion 

sequences, HMMs can be used to model human skills 

such as interactions with mobile applications. Using 

the expectation-maximization (EM) algorithm the 

initial HMM trains a model, where its hidden states 

indicate motions’ clusters, generated in the first step. 

The probability of a gesture belonging to a specific 

cluster (state) is estimated and used to calculate the 

first motion acceleration parameters. The first motion’s 

acceleration is calculated by computing the mean of 

the accelerations in each HMM state and by selecting 

one pair randomly.  Hence, we can hypothesize that the 

test sequence produced can potentially mimic human 

generated gestures.  

4. Generating the test data using HMM 

classifiers: We apply HMM classifiers on clustered 

data to generate test motions. For each cluster, the 

dynamics of each motion class is learned with one 

HMM. Thus, having 𝑚 motion-clusters, 𝑚 HMM 

classifiers need to be applied. HMM classifiers classify 

each motion as a function of a future time frame [12]. 

Thus, the probability of a test case belonging to each 

cluster is calculated using the Forward algorithm [11]. 

The motion-cluster with highest Forward probability is 

selected and the mean of the acceleration of the 

motions belong to this cluster is considered as the next 

motion’s acceleration. 

5. Adding generated motions to the training set: 

in order to avoid over-fitting the model, the motions 

should be added to the training set. This helps the 

model to learn from the data rather than memorizing 

the trend. 

6. Storing and executing test cases: Once, for 

example, the ball hits the vertical wall the set of test 

motions generated, since the last hit, are stored as test 

cases and will be used to generate real motions. 

 

 

 
 Figure. 1. An overview of applying the proposed approach on the application with flying object. It consists of both training the initial 

HMM (top) and test generation process using HMM classifiers (bottom) 

Train Data

Test Cases
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Using the clustered data  
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Executing Test Cases

HMM1

HMMk
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Initial HMM

Generating the first test 
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3.1 Synthesizing Motion Sequences 

This section describes the method of instantiating 

motion sequences for complicated motion-based 

applications, which transfer the users’ gestures to a 

bouncing object. However, the application of this 

approach is not limited to events using sensor-

generated data; it can be easily used to generate 

automated test cases for any type of motion-based 

events. Following the previous section, two sets of data 

(motion sequences) are considered in this study: 

 The training data, which is captured during a 

real user’s interaction with the application and is used 

to train the initial HMMs.  

 The second set is the test data, which is 

generated by using the test generation algorithm and is 

presented to the application being tested to evaluate its 

functionality. To create meaningful test data, which is 

recognizable by the trained HMM and its 

corresponding classifier, we describe a single motion 𝑘 

by a 6-tuple (𝑙𝑥𝑘 , 𝑙𝑦𝑘 , 𝑣𝑥𝑘 , 𝑣𝑦𝑘 , 𝑎𝑥𝑘 , 𝑎𝑦𝑘), where 

𝑙𝑥𝑘 , 𝑙𝑦𝑘  indicates the object’s location, 𝑣𝑥𝑘 , 𝑣𝑦𝑘 

determine the velocity, and 𝑎𝑥𝑘 , 𝑎𝑦𝑘 describe the 

acceleration of the motion in 2D space at a specific 

time interval. Figure 2a shows the 3D acceleration axes 

on a smartphone, which also contains a z-axis. In order 

to simplify the explanation of the algorithm and cover 

more common applications.  
This study also considers two time intervals during 

the test generation procedure: 

 The first time interval happens every 𝜑 ms [7] 

to capture information regarding the current motion 

and position of the object and to calculate the next 

motion using SUVAT equations [13], [14]. 

 The second time interval happens every θ ms, 

which is estimated by selecting the minimum 

possible time between two gestures, generated 

by human users. Hence, the estimation of θ 

assists the algorithm to generate more realistic 

(complex) gestures as it accounts for the 

limitations of kinematics.  

Figure 2b shows a gesture consisting of a sequence 

of motions happening within these two intervals. Each 

sequence of motions is terminated by the occurrence of 

a specific condition in the application being tested; for 

example, when the flying object hits another object. 

        Definition1: A test case (𝑇𝐶) consists of a set 

of motions (𝑀 = {𝑚1, … , 𝑚𝑛}),where 𝑚𝑘≤𝑛 is a 6-

tuple (𝑙𝑥𝑘 , 𝑙𝑦𝑘 , 𝑣𝑥𝑘 , 𝑣𝑦𝑘 , 𝑎𝑥𝑘 , 𝑎𝑦𝑘). The number of 

tuples (motions) in each TC depends on the number of 

detectable motions before the termination condition. 

 

 

 

4. HMM-based Test Case Generation  

 
The clustering algorithm is applied to groups of 

motions with similar behaviour and allocates them into 

a single cluster. These clusters will be used as the class 

labels for the HMM classifiers. This means that each 

class indicates a set of similar motions in the 

corresponding cluster. The clustered data will be used 

to train an initial Hidden Markov Model. The HMM in 
this study is characterized by the following elements:  

 a set of latent states 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝐿},  which 

are hidden from the external observer and indicates the 

class of motion sequences; 

  a set of observable states  𝑉 =
{𝑣1, 𝑣2, … , 𝑣𝑁}, where each is mapped to a 

corresponding motion sequence (𝑚𝑘); 
 a transition probability [𝐴]𝑖𝑗 = {𝑎𝑖𝑗}, 

𝑎𝑖𝑗 = 𝑃(𝑄𝑡+1 = 𝑠𝑗|𝑄𝑡 = 𝑠𝑗), 1 ≤  i, j ≤  L, which 

determines the transition probability between different 

classes. For the initial modelling process, because 

human users generate the motions, the initial transition 

probabilities between different classes of motions can 

be extracted directly from the training data; 

 an emission probability [𝐵]𝑗𝑘 = {𝑏𝑗 (𝑣𝑘)}, 

𝑏𝑗 (𝑣𝑘) = 𝑃(𝑀𝑡 = 𝑣𝑘|𝑄𝑡 = 𝑠𝑗), 1 ≤  j ≤  L, 1 ≤  k ≤

Nwhich indicates the probability of a motion sequence 

belonging to a specific class (estimated by frequency 

counting on the clustered training corpus); and 

 initial state distribution, Π = {𝜋𝑖}, 
𝜋𝑖 = 𝑃(𝑄1 = 𝑠𝑖), 1 ≤  i ≤  L. Each and every state 

can be an initial state in this study. 

Using the values of A, B, and Π, an HMM can be 

used as a generator to create an observation sequence 

 
Figure. 2. (a) screen after hitting the edge in first time-

interval 𝜑; (right) the 3D acceleration axes on smartphones; and 

(b) a gesture containing a sequence of motions happening within 
two intervals: (left) a bouncing object moving in the proposed 

approach calculates the next movement after the second time-

interval 𝜃  
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(where 𝑇 is the number of motions in the test case): 

𝑀 = {𝑀1, 𝑀2, 𝑀3, … , 𝑀𝑇}. This initial HMM model is 

used as an input to an expectation-maximization (EM) 

algorithm. This algorithm estimates the optimal model 

with the highest likelihood of the estimated parameters. 

In algorithm 1, this procedure is done by running the 

HMM function in the first line. Then, the initialAccel 

function initializes, the acceleration parameters of the 

first test motion by calculating the mean of the 

acceleration pairs in each HMM state and by selecting 

one pair randomly. Then, in lines two and three of this 

algorithm, the CreateMotion function generats a 

motion sequence using the SUVAT equations and the 

Update function stores the newly created motion 

sequence as the current motion. After generating the 

initial motion, the CreateMotion and Update functions 

are called again but this time within the time interval 

𝜑, until a termination condition happens (line 4-8). 

This procedure generates a simple gesture based upon 

the previous motion, using appropriate physics 

equations. In order to generate more realistic and 

complicated gestures, we propose using the HMM 

classifier to detect the sequence class label at each 

interval 𝜃.  

        The HMMClassifier function in line 10 of the 

algorithm classifies the current motion sequence into 

an appropriate class of gestures. This function 

combines a set of sequences of motions and a list of 

class labels to train one HMM per class label (where 𝐿 

is the number of class labels). Subsequently, the 

trained models are used to calculate the forward 

probability of a motion sequence per model. The 

forward algorithm computes the forward 

probability,𝛼𝑘(𝑡), as the joint probability of observing 

the first t vectors 𝑚𝑡 , 𝑇 = 1, … , 𝑡  while in state k at 

time t. Given a list of forward probabilities, we are able 

to select a model with the maximum probability and 

assign its corresponding class label as the motion’s 

class label and estimate the next motion values by 

calculating the mean of the accelerations of the 

motions (the Accel function in line 10). Moreover, the 

generated motion is added to the training set to avoid 

over-fitting. This helps the model to learn from the 

data rather than memorizing the trend (line 14).  

Putting it all together, lines four to fourteen of 

Algorithm 1 create a set of motion sequences within 

two different intervals. Simple gestures are generated 

based on physics equations once the first time-interval 

happens; more complicated motions (e.g. gestures with 

variable accelerations) that may require a longer time 

period to be created by a human user are generated 

within the second time interval. An example of a 

simple motion is the one calculated by the SUVAT 

equations after the bouncing ball hitting the horizontal 

wall. While the complex one is a motion calculated by 

HMM classifiers for a ball slowly bouncing in the 

middle of the screen. 

 

ALGORITHM 1. TEST CASE GENERATION PROCEDURE FOR CASES WITH 

ACCELERATION INVOLVED 

Input: Initial position of the bouncing object (x,y), training data set 

(S), set of class labels (C); 𝑖 = 2;  
Output: Test case (TC) 

1. (ax,ay)⟵ initialAccel(HMM(S,C)) 

2. 𝑚1 ⟵CreateMotion(ax,ay,x,y) 
3. Update(ax,ay,x,y) 

4. While (!terminalCondition) 

5.    𝒊𝒇 (𝑐𝑢𝑟𝑇𝑖𝑚𝑒 –  𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒1)  ≥  𝜑) 

6.       𝑖 ← 𝑖 + 1 

7.        𝑚𝑖 ⟵CreateMotion(ax,ay,x,y) 
8.       Update(ax,ay,x,y) 

9.       𝑆 ← 𝑆 ∪ {𝑚𝑖} 

10.   𝒊𝒇 (𝑐𝑢𝑟𝑇𝑖𝑚𝑒 –  𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒2)  ≥  𝜃) 
11.        (ax,ay)⟵Accel(HMMClassifier(𝑚𝑖,S,C)) 

12.        𝑖 ← 𝑖 + 1 

13.         𝑚𝑖 ⟵ CreateMotion(ax,ay,x,y) 
14.        Update(ax,ay,x,y) 

15.        𝑆 ← 𝑆 ∪ {𝑚𝑖} 

16. End while 

17. Return 𝑇𝐶 ← {𝑚1, … , 𝑚𝑖} 

*lastUpdate1 indicates the last update that happened at interval 

𝜑 while lastUpdate2 indicates the last update that happened at 

interval 𝜃 

 

 

5. Running Example  

 
In order to clarify the proposed test case generation 

procedure, we consider a very small portion of the 

training data generated by a human user in the 

bouncing ball application. An example of a single 

motion is provided below: 
05-07 17:36:15.828: Vx(32065): -2.7148619 
05-07 17:36:15.828: Vy(32065): -2.7148619 
05-07 17:36:15.828: lBallX(32065): 549.0 
05-07 17:36:15.828: lBallY(32065): 20.0 
05-07 17:36:15.828: Ax(32065): 0.090979666 
05-07 17:36:15.828: Ay(32065): -0.1233013 

In this running example, we follow the test 

generation framework (Figure 1) step by step to 

generate test cases:  

1. Gathering training data: 30 motions in the 

format of 6-tuple (𝑙𝑥𝑘 , 𝑙𝑦𝑘 , 𝑣𝑥𝑘 , 𝑣𝑦𝑘 , 𝑎𝑥𝑘 , 𝑎𝑦𝑘) are 

gathered as the result of user interaction with the 

application. 
2. Clustering motions: the training data is 

clustered into 2 distinct clusters (classes) using the k-

means algorithm. Due the space limitations. a partial 

view of the clusters are provided in Table 1. 
3. Initial HMM training: the clustered data is 

then used to train the initial HMM using Baum Welch 

algorithm. In this case, the HMM model contains 30 
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observable states and 2 hidden states (since there are 

only two clusters). Then, the acceleration parameters of 

the first data motion are generated by calculating the 

mean of the acceleration pairs of the motions 

belonging to each hidden state of the initial HMM and 

subsequently selecting one pair randomly. After 

determining the initial acceleration parameter, the first 

motion is created: 
(1) initial acceleration parameter: 

(𝑎𝑥, 𝑎𝑦) = (0.59855044, −0.91578215) 
(2) the initial location of the ball in the screen: 

(𝑙𝑥0, 𝑙𝑦0) = (309,253) 
(3) knowing that the initial velocity is equal to zero 

(ball is not moving at the beginning): 
(𝑣𝑥0, 𝑣𝑦0) = (0,0) 

motion 
𝑚1(309.080798,252.876369,0.1755132, −0.2747346,0.059855044, −0.091578215) 

is generated using physics equations:    𝑣 = 𝑎𝑡 + 𝑣0  and 

𝑙 = 𝑙0 + 𝑣0𝑡 +
1

2
𝑎𝑡2 

Then within the time interval 𝜑 = 300𝑚𝑠 other 

motions are also generated through the same process 

with the difference that the acceleration of the current 

motion is used as the initial acceleration for the next 

motions. These motions will be added to the training 

set to avoid over-fitting. (Figure 3 depicts a schema of 

the trained initial HMM). 

 

4. Test data generation using HMM classifiers:  

Now, in order to generate more complex motions 

(within time interval 𝜃 = 500 𝑚𝑠), two  (number of 

classes) HMM classifiers are trained and the forward 

probability of the current motion is calculated to reveal 

the class of motions it belongs to. Then, the mean of 

the accelerations of the motions belonging to this class 

are calculated; and again, are used as input of the 

motion equations to calculate the velocity and location 

parameters. For example, if the occurrence likelihood 

(forward probability) of the current motion 
 𝑚𝑖(20, 492.07,2.1625056,2.1625056, −0.00778115, 0.24600422) 

in class 𝑐2 reaches the maximum amount compared to 

the other class (𝑐1), the mean of the acceleration of the 

motions in class 𝑐2 is calculated and will be used as the 

new current motion’s acceleration. In this case, the 

mean of the accelerations in 𝑐2in equal to 

(0.3471,1.1162). Therefore, using physics equations, the 

next motion would be: 
𝑚𝑖+1(21.1246403,493.2907778, 2.3360556,2.7206056,0.3471,1.1162), 

This motion also will be added to the training set. 

Once, the ball hits the vertical wall, the motions 

generated since the last hit, are saved in the form of a 

test case and will be executed to move the ball. 

 

 

6. Empirical Evaluation 

To study the proposed approach, we performed an 

experiment on three case studies; we attempt to answer 

the following research questions:  

 Can the test-generated motions mimic actual 

user behaviour?  

 Does the proposed method improve the code 

coverage of the SUT when compared to existing 

automated techniques (random testing)? 

 

The first case study is an Android application, a 
bouncing ball application, designed to record a data 
set of coordinates from shake and tilt gestures 
performed by human users (LOC=716). This 
application contains one flying object (round ball), 
which bounces on the screen; the ball moves by 
processing information it captures from a mobile 
devices accelerometer. The dynamics of a bouncing 
ball follows a set of physics laws and equations [30], 
which are used in this study. Since covering the 
details of such equations is beyond the scope of this 
research, we only discuss some of the case-specific 
motions and equations: 

 When the application starts, the ball is stable 

in a corner of the screen, waiting for a motivation. 

Depending on the power of the first motion, the ball 

starts moving toward the motion’s direction. In this 

study, the time interval 𝜑 is fixed at 300 milliseconds, 

following [9], [10] to capture the information regarding 

the current motion and position of the ball on the 

screen and to calculate its next position.  

 The second time interval 𝜃 is equal to 500 

milliseconds because the time windows between 

gestures created by users it varies from 500 

milliseconds to one second, we select the lower bound 

to create standard motions. 

 Each sequence is terminated whenever the 

ball hits the vertical edges of the screen.  

Table 2 (First two columns) indicates the simplest 

possible actions that can be performed in this 

application, along with their corresponding gestures. It 

is noteworthy that in designing this table, it is assumed 

that the ball has enough space to move toward each 

direction. Obviously, it cannot for example move to the 

left when it has already hit the right-side edge. Any 

combinations of these actions (e.g. curving), which 

may be produced by rotating, tilting the device. For 

 
Figure. 3. An overview of trained HMM in running example 
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example, when the user rotates or tilts the mobile 

phone toward the right, the ball can moves in a curve 

instead of moving in a straight line to the right.  

The second case study is another android 

application called Bubbles, which is able to draw 

circles around the touched points on the screen 

(LOC=423).  In order to generate circles (bubbles), the 

user touches or pushes the screen resulting in a circle 

being gradually grown from the touched point. The 

maximum length of the circle’s radius is predefined 

and fixed, so the circle keeps growing until its radius is 

equal to the maximum number or the user touches 

another point in the screen. Table 2 (Second two 

columns) shows the action (motion event) and its 

corresponding gesture. The sequences of motions are 

continuously generated until a border is touched. Then, 

the generated set is considered as a test case.  
In order to evaluate the performance of proposed 

test case generation approach in a more complex 

framework, we modified the Bouncing ball application 

by adding a second more flying object. The second ball 

behaves the same as the first one (Table 2 – First two 

columns), except for the difference that its initial 

location in the bottom right-hand corner (the original 

ball is located in the left side), thus depending to the 

amount of acceleration received from the sensors, they 

can move in diverse directions. The same test 

generation algorithm is used to produce test cases for 

the extended Bouncing ball application (LOC= 1054) 

and test motions are stored in two separate sets of test 

suites for each ball. 

6.1 Experimental Results 

To answer the research questions and evaluate the 

efficiency of the proposed test generation approach, 

volunteers interacted with the applications and 

produced motion sequences which are then used as 

training sets.  In the Bouncing ball application, a set of 

training data was obtained by recording the motion 

coordinates for three minutes from a total of 317 

gestures performed on two different Android devices. 

Applying the silhouette score, we grouped the motions 

into 95 clusters. For the extended version of this 

application, 600 motions and 105 clusters were 

considered. This data is recorded in 6 minutes. For the 

Bubble application, these numbers were 481 and 95 

respectively (motions are stored for 2 minutes). The 

amount of time allocated to each training process is 

estimated based upon the time a new user needs to 

become visually familiar with the application and to 

generate a set of motions. In this study, this time is 

estimated by calculating the mean of the time that new 

users require to generate a reasonable set of motions 

for the considered applications. 

To evaluate the quality of the generated test cases 

in all case studies, 20 sets of 200 motion sequences 

were generated using the proposed technique. In 

addition, for the Bouncing ball application, the same 

number of motion sequences (20 sets of 200 motions) 

was created by random test generator procedures: 

 Algorithm 3: takes a human-user motion to 

initialize the acceleration or position parameters then 

creates the further motions based on the current one by 

randomly selecting a physics equation.  

 Simple Random Algorithm: Creates test cases 

by simply generating random motion sequences within 

the data ranges supported by the hardware. In this 

study, a human user also generates the initial motion. 

Since, the HMM-based technique is using human-data 

to train the initial model and generate the first motion, 

the simple random test case generation process also get 

initialized by human-generated data.  

 Hybrid approach: In order to conduct a fair 

comparison, some experiments have been designed to 

execute combinations of human and randomly 

generated test cases (e.g. “Human + Simple random” 

and “Human + Algorithm 3”). This means that using 

human data is not limited to the initialization phase and 

user-generated data forms half of the test cases. 

Therefore, a hybrid test case consists of a combination 

of human generated motions and random motions. 

Since the acceleration parameter and its 

corresponding physics equations are not considered in 

the second case study, only the simple random 

algorithm is implemented to generate the random 

touched-points.  

To answer the first research question, we classified 

test cases by using the HMM classifier. Then the 

occurrence likelihood (LC) of each sequence of 

motions for each class label are calculated where 
{𝐿𝐶 = 𝑃(𝑀|Λ𝑖), 𝛬𝑖≤𝐿𝑎𝑛𝑑 𝑀 ∈ 𝑇𝐶}, where L is the 

number of classes. In this case, when max
𝐿

𝑃(𝑀|Λ𝑖) is 

a small quantity, it can be concluded that the test case 

TC is not behaving similar to the test cases that were 

used to create the classes. Additionally, since these 

classes are created using human-generated motions, it 

can be implied that the probability of the test case TC 

being generated by a human user is low. 

The results show that the motions generated using 

the HMM-related technique have a higher forward 

probability (occurrence likelihood) compared to other 

approaches. Accordingly, it can be concluded that the 

test cases generated using the proposed technique are 

more likely to be generated by a human user. The 

reason is that each class label describes a set of human-

generated motions; therefore once a motion has high 

occurrence likelihood in one of these classes, it can be 
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concluded that the probability of being generated by a 

human user for this motion is high. 

To address the second research question, the 

JaCoCo code coverage library was used. Using this 

toolkit, bytecode instrumentation is applied, and the 

branch coverage value is measured. Since we 

generated 20 sets of 200 test cases using each 

approach, the means of the coverage percentages on all 

sets, are calculated to achieve more accurate results (In 

total, 64000 motion sequences are generated during the 

experiments). Table 3 reports the means of the branch-

coverage percentages calculated by running each of the 

test case generation approaches. The result of applying 

the Wilcoxon signed rank test indicates the HMM-

based approach is significantly different from the other 

techniques in terms of code coverage. Table 3 also 

reports the p-values and delta estimates at the 95% 

confidence interval. The Cliff’s Delta measure 

provides more detailed information to this picture by 

showing that a “large” effect size exists (in favour of 

HMM-based approach) for all of the comparisons. The 

achieved results confirm that the HMM-based test case 

generation approach not only automates the test 

generation and execution procedure for motion-based 

events, but also (1) creates better test cases in terms of 

mimicking actual user gestures; and (2) improves the 

(branch) code coverage for the SUT (Table 4).  

 

Table 1. Simplest Supported Actions and Gestures in Both Types of Application 

Cluster 1 Cluster 2 

(211.36267, 502.0, 9.787367, 9.787367, -0.30645782, 7.948151) (20.0, 344.4505, 24.511274, 24.511274, -4.5637164, -3.260261) 

(220.37634,502.0, 9.259302, 9.259302, 0.55006784, 7.753622) 

(229.64267,502.0, 8.681731, 8.681731, -0.55006784, 7.753622) 

(245.16068,502.0,7.443665,7.443665, -0.8355764, 7.9068513) 

(252.28542,502.0, 6.5663095, 6.5663095,-0.8355764, 7.9068513) 

(270.06726,502.0, 2.6941133, 2.6941133, -1.039682, 7.953538) 

(272.01288,502.0, 1.5729084, 1.5729084, -1.067814, 7.89907) 

(271.1313, 502.0, -1.6668775, -1.6668775, -1.1701661, 7.817667) 

… 

(20.0,45.516983, 8.89769, 8.89769, -6.5458517, 6.4084578) 

(26.236174,20.0,3.8991215,3.8991215,11.504282,5.4646373) 

(20.0,182.77194, 23.407976, 23.407976,8.195976, -7.834369) 

(20.0,235.21193, 19.96578, 19.96578, -8.742604,0.1829845) 

(300.0,118.05718, -28.868063, -28.868063, -8.03005, -4.4044623) 

(300.0,367.61127, -36.233944, -36.233944, 8.330351, 1.1209484) 

(20.0,378.44443, 28.222904, 28.222904, -2.80235, -0.7510143) 

… 

 

 

Table 2. Simplest Supported Actions and Gestures in Both Types of Application 

Bouncing Ball / Extended Bouncing Ball Bubbles 

Action Gesture Action Gesture 

Tilt the device toward left. 
The ball bounces to the left 

side of the screen. 

Touch/Push the screen. 
The circle is drawn around 

the touched-point. 
Tilt the device toward right. 

The ball bounces to the right 

side of the screen. 

Tilt the device to the front. The ball bounces down.  

Tilt the device to the back. The ball bounces up.  

 

Table 3. Results of Calculating Effect Size Measure and the Mean of Code Coverage For Test Case Generation Methods in All 

Case Studies 

 Approach 
Mean of Code 

Coverage (%) 
Approach Delta Estimate p-value 

 

B
o
u
n

ci
n
g

 b
al

l 

HMM-based  79.26 HMM-based Vs. Algorithm 3 -0.965 4E-05  

Algorithm 3 55.95 HMM-based Vs. Simple Random -1 4E-05  

Simple Random 33.05 HMM-based Vs. Human + Algorithm 3 -0.7357 0.00019  

Human + Algorithm 3 63.63 HMM-based Vs. Human + Simple Random -0.6761 0.00034  

Human + Simple Random 62.73 HMM-based Vs. Human -0.7225 0.00017  

Human 60.2     

Page 7448



E
x

te
n

d
ed

 B
o

u
n

ci
n

g
 

b
al

l 

HMM-based  81.3 HMM-based Vs. Algorithm 3 -0.95 1.9E-06  

Algorithm 3 52.75 HMM-based Vs. Simple Random -0.95 1.9E-06  

Simple Random 31.77 HMM-based Vs. Human + Algorithm 3 -0.71 3.4E-05  

Human + Algorithm 3 62.78 HMM-based Vs. Human + Simple Random -0.575 0.0028  

Human + Simple Random 62.98 HMM-based Vs. Human -0.62 0.0002  

Human 62.05     

B
u
b
b

le
s 

HMM-based  92.06 HMM-based Vs. Human + Simple Random -0.9325 5E-05  

Simple Random 74.28 HMM-based Vs. Human -0.9325 4E-05  

Human + Simple Random 79.97 HMM-based Vs. Simple Random -1 4E-05  

Human 78.94     

 
Table 4. Results of Providing Same Resources as HMM-based to Random 

 Approach Code Coverage (%) 𝒕𝒈(min) 𝒕𝒆(min) 

Bouncing ball HMM-based (200 motions) 75% 0.5 3 

Random (33800 motions) 42% 0.17 23 

Extended Bouncing ball HMM-based (200 motions) 75% 0.5 3.2 

Random (33800 motions) 40% 0.17 24 

Bubbles HMM-based (200 motions) 92% 0.2 1.2 

Random (33800 motions) 78% 0.08 15.6 

 

 

7. Conclusions  

 
        Testing mobile applications that use motion-

based gestures to interact with users poses a new 

challenge. Test inputs should be realistic motion 

sequences, which are able to simulate the user’s 

behaviour in interacting with the application. This 

helps in revealing defects, which remain unknown in 

applications because they do not conform to expected 

human-generated motions.  Since, Markovian models 

have been successfully used in software testing studies 

to generate models representing common user 

behaviour in UI testing.  

In this paper, we have proposed a new HMM-based 

approach, which presents a solution for automating the 

testing process for applications supporting motion-

based events. Using this method, gestures can be 

formally specified as sequences of motions, which are 

easy to re-execute in the application. Therefore, an 

HMM classification approach is used to classify the 

current movement into a class of motions providing the 

best description of the gesture’s characteristics. Then, 

according to the results provided by the classification 

approach and using standard movement equations, a 

realistic proxy for the likely next movement 

coordinates can be estimated.  

We evaluated our approach by generating a set of 

test inputs for three Android applications with a 

gaming theme. The empirical results show that the 

generated test cases using HMM-based approach not 

only cover a higher number of branches in the source 

code compared to randomly generated test cases, but 

the occurrence likelihood of the corresponding motion 

sequences in model trained by user generated data is 

also higher in HMM-based approach. This indicates 

that the new approach outperformed the random 

method in generating test cases that mimic human-user 

behaviour.  
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