
A Model-Driven Cross-Platform App Development Process for
Heterogeneous Device Classes

Christoph Rieger
ERCIS, University of Münster

christoph.rieger@uni-muenster.de

Herbert Kuchen
ERCIS, University of Münster

kuchen@uni-muenster.de

Abstract

App development has gained importance since the
advent of smartphones to enable the ubiquitous access
to information. Until now, multi- or cross-platform
approaches are usually limited to different platforms
for smartphones and tablets. With the recent trend
towards app-enabled mobile devices, a plethora of
heterogeneous devices such as smartwatches and smart
TVs continues to emerge. For app developers, the
situation resembles the early days of smartphones but
worsened by the widely differing hardware, platform
capabilities, and usage patterns. In order to tackle the
identified challenges of app development beyond the
boundaries of individual device classes, a systematic
process built on the model-driven paradigm is presented.
In addition, we demonstrate its applicability using the
MAML framework to create interoperable business apps
for both smartphones and smartwatches from a common,
platform-independent model.

1. Introduction

With the rising importance of smartphones as
pervasive mobile devices, small and task-oriented pieces
of software called apps have emerged as new artifacts in
software development. A major challenge of mobile apps
lies in the diversity of devices and platforms, although ten
years after the introduction of the iPhone, a duopoly of
Android and iOS dominates the mobile operating system
(OS) market. Recently, the market for app-enabled
devices has become much more diverse as new device
classes such as smartwatches and smart TVs become
available to a broader audience. In the near future, further
device classes – including smart personal assistants,
smart glasses, and vehicles – are expected to reach the
mainstream market. Within each device class, a multitude
of devices exists with different hardware capabilities and
platforms for which third-party apps can be provided.

As app-enablement does not automatically entail
compatibility and portability, developing apps for these

devices poses various challenges. The current situation
resembles the early phase of exploration after the
introduction of smartphones. Different approaches set
out to bridge device-specific differences but development
for heterogeneous app-enabled devices is a far more
complex endeavor than creating apps for several
platforms of a common device class. In addition, the
term cross-platform as well as actual frameworks are
usually limited to smartphones and sometimes – yet
not always – technically similar tablets, ignoring the
differing requirements and capabilities within the variety
of other app-enabled devices. Therefore, an efficient
method for developing truly cross-platform apps across
the boundaries of individual device classes is required.

Focusing on the domain of business apps – i.e.,
form-based, data-driven apps interacting with back-end
systems [1] –, we aim to simplify app development
across multiple device classes by investigating three main
research questions:

1. Which existing cross-platform approaches have
the potential to be generalized in order to support
a broad range of app-enabled devices?

2. How can a model-driven approach be structured to
cater for peculiarities of multiple devices classes
using platform-independent input models?

3. Is the domain-specific Münster App Modeling
Language (MAML) applicable to different device
classes using the proposed process model?

The remainder of this article follows these contributions.
Section 2 highlights challenges arising from app
development across device classes and analyzes current
cross-platform approaches. Then, our proposal for
a process model is presented in Section 3 and
exemplified in Section 4 by extending the previously
smartphone-centered MAML framework to create
stand-alone apps for Wear OS smartwatches. Section 5
presents an evaluation of the presented model-driven
approach and Section 6 discusses the applicability with
regard to different scenarios. Finally, we revisit related
work on app development combining different device
classes in Section 7, before concluding in Section 8.

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60180
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7431



2. Cross-platform app development

To extend the boundaries of current cross-platform
development approaches, we broaden its scope to
app-enabled devices, i.e., a device extensible with
software that comes in small, interchangeable pieces
which are usually provided by third parties unrelated
to the hardware vendor or platform manufacturer and
increase the versatility of the device after its introduction
[2]. Although these devices are typically mobile or
wearable and therefore related to the term mobile
computing, there are further device classes with the
ability to run apps (e.g., smart TVs). Because of
the adaptation to heterogeneous device classes, new
challenges arise, to which most approaches are not suited.

2.1. Challenges

Challenges related to app development across device
classes can be grouped in four main categories [3].

Output heterogeneity Whereas most mobile apps
are designed for screen sizes between 4” and 10”, novel
device classes vary greatly in terms of screen size
(e.g., smartwatches ≤ 3” and smart TVs ≥ 20”) or
provide completely different means of output such as
audio or projection. Even for screen-based devices,
variability increases beyond “known” issues such as
device orientation and pixel density: novel devices
bring along completely different aspect ratios (e.g.,
ribbon-like fitness devices worn around the wrist) and
form factors (e.g., round smartwatches) [2]. Therefore,
the information output needs to be described on a high
level of abstraction beyond a particular screen layout.

User input heterogeneity Correspondingly, novel
app-enabled devices have different characteristics for
user inputs which span from pushing hardware buttons
to clicking on a graphical user interface (UI), tapping
on touch screens, using auxiliary devices (e.g., stylus
pens), and interacting via voice commands [2]. Moreover,
multiple input alternatives may be available on one device
and used depending on user preferences, usage context,
or established interactions patterns of the respective
platform. Again, this complexity calls for a higher level
of abstraction that focuses on intended user actions rather
than particular input events.

Device class capabilities Beyond user interfaces,
hardware and software variability between different
device classes are challenging. For example, the
miniaturization in modern devices such as Wearables
limits computational power and battery capacity.
Complex computations may therefore be performed
either on the device, offloaded to potential companion
devices, or provided through edge/cloud computing [4].

Also, sensing capabilities can vary widely. Suitable
replacements for unavailable sensors need to be provided,
e.g., using manual map selection instead of GPS sensors.

Multi-device interaction Whereas cross-platform
approaches often focus on providing the same
functionality across devices of different users, additional
complexity arises from multi-device interactions per
user. This might occur sequentially when a user
switches to a different device depending on the usage
context or user preferences, e.g., using an app with
smart glasses while walking and switching to the
in-vehicle app when boarding a car. Alternatively, a
concurrent usage of multiple devices for the same task
is possible, for instance in second screening scenarios
in which one device provides additional information or
input/output capabilities [5]. In both cases, fast and
reliable synchronization of content is essential.

2.2. Adequacy of existing approaches

A plethora of literature exists in the context of cross-
or multi-platform development1. Classifications such
as in [6] and [1] have identified five main approaches
to multi-platform app development which are varyingly
suited to the specific challenges of cross-platform
development spanning different device classes.

With regard to runtime-based approaches, mobile
Web apps – including recently proposed Progressive Web
Apps – are mobile-optimized Web pages that are accessed
using the device’s browser and relatively easy to develop
using Web technologies. However, most novel device
types, e.g., the major smartwatch platforms WatchOS by
Apple and Wear OS by Google (formerly Android Wear),
do not provide Web views or browser engines that allow
for HTML rendering and the execution of JavaScript
code. This approach therefore cannot currently be used
for targeting a broader range of devices.

Hybrid apps are developed similarly using Web
technologies but are encapsulated in a wrapper
component that allows accessing device hardware and
OS functionality through an Application Programming
Interface (API) and building app packages for installation
via app marketplaces. As they rely on the same
technology, hybrid apps can neither be used beyond
smartphones and tablets.

In contrast, apps using a self-contained runtime do
not depend on the device’s browser engine but use
platform-specific libraries to use native UI components.
Of the runtime environment approaches, this is the
only one that can be used for developing truly
cross-platform apps. Although usually based on custom

1We use these terms synonymously in this paper, although
“multi-platform” appears more often in papers combining Web and
mobile platforms.

Page 7432



Figure 1. Process model for cross device class app development

scripting languages, a runtime can also be used as
a replacement for inexistent platform functionality.
As an example, CocoonJS2 recreated a restricted
Webview engine and therefore supports the development
of JavaScript-based apps also for Android and iOS.
However, synergies with regard to user input/output
and available hardware/software functionality across
heterogeneous devices are limited by the runtime’s API.

Considering generative approaches to cross-platform
development, model-driven software development has
several advantages as it uses textual or graphical
models as main artifacts to develop apps and then
generates native source code from this platform-neutral
specification. Modeling custom domain-specific
concepts allows for a high level of abstraction, for
example circumventing issues such as input and output
heterogeneity using declarative notations. Arbitrary
platforms can be supported by developing respective
generators which implement a suitable mapping
from descriptive models to native platform-specific
implementations.

Finally, transpiling approaches use existing
application code and transform it to different
programming languages. Bridging device classes
using this approach is technically feasible as the result
is also native code. However, there is more to app
development than just the technical equivalence of code,
which also explains the low adoption of this approach by
current cross-platform frameworks. For instance, user
interfaces behave drastically differently across different
device classes, and substantial transformations would
be required. It is therefore unlikely that this approach

2https://docs.cocoon.io/article/canvas-engine/

is viable for bridging device classes beyond reusing
individual components such as business logic.

To sum up, only self-contained runtimes and
model-driven approaches are candidates for device
class spanning app development, of which the latter
additionally benefits from the transformation of domain
abstractions to platform-specific implementations.

3. A process model for app development
across device classes

Although not all types of apps make sense on all
types of devices, our focus lies on business apps whose
workflow-like concepts of subsequent data manipulation
activities can be transferred to the particular user
experiences on heterogeneous devices. However, the
complexity of developing apps across device classes
requires a structured approach in order to manage
the variability of hardware and software capabilities.
Based on the applicability of current cross-platform
development techniques, we propose an extended
model-driven approach to develop business apps as
depicted in Figure 1.

In order to structure the resulting application
and foster comprehensibility for all development
stakeholders, the domain-specific notation should be
designed with modularity in mind and allow to specify
different use cases, i.e., units of functionality comprising
a self-contained set of behaviors and interactions
performed by the app user [7]. In a workflow context,
a use case can also be interpreted from a user task
model perspective [8]. The semantically compliant
ConcurTaskTree notation for example consists of four
elements [9]:

Page 7433



• the abstract and descriptive task descriptions which
together form the use case’s functionality,

• operators defining the allowed sequences of
executed tasks, representing an abstract notion of
navigation actions within a use case

• the user roles that are allowed to interact with the
system (and might differ per task), and

• the data objects to interact with in each task.
From such a descriptive representation, mappings

need to be defined in order to reach platform-adapted
app output. To handle the transformation complexity,
we propose a step-wise refinement of input models.
First, system-wide transformations need to be applied to
consolidate multiple modular and independently modeled
use cases (M1, M4, M7). Second, the model is
preprocessed according to each targeted device class
(M2, M5). The extent of these transformations highly
depends on the degree of maturity of the respective
device class. For example, common layout patterns
such as tabs or vertical content scrolling may be
observed frequently and smartphone hardware converges
with regard to sensors and screen dimensions. Third,
platform-specific preprocessing is required, similar to
today’s model-driven cross-platform approaches (M3,
M6, M8). Only in this step, a final mapping of abstract
UI elements to concrete widgets based on a choice
of possible representations for the given task can be
specified. Finally, the code generation is executed
which outputs the platform-specific app artifacts (M9).
The Model-View-Controller (MVC) pattern or derived
patterns such as Model-View-ViewModel (MVVM) are
suited as high-level structure of the resulting applications
[10]. In addition, reference architectures applicable
to platforms of the same device class can be used to
maintain consistency in this final step, thus easing the
development of new generators and the addition of
features across existing platform generators [11].

Using the proposed model, the challenges of app
development spanning device classes can be tackled:

Resolving output heterogeneity Based on the
descriptive use case models with a high level of
abstraction, the main activity related to task consolidation
(M1) is the specification of views from the logical
task units of functionality. If required, generic model
preprocessing and simplification activities are also
performed, e.g., the resolution of shorthand definitions
and references within the models. Subsequently,
mapping the UI per device class (M2) is achieved by
applying two types of transformations that do not modify
the content but specify a target layout for the views
adapted to the device class: On the one hand, the
presentation of information can be layouted according to
the available screen sizes, for example by choosing an

appropriate appearance – one could think of tabular vs.
graphical representations – or leave out complementary
details, if necessary. On the other hand, the content can
be re-formatted by an adaptive UI according to usual
interaction patterns, e.g., to present large amounts of
information through scrolling, subdivided into multiple
subsequent steps, or as a hierarchical structure [12].

Finally, a platform-specific UI mapping (M3) defines
concrete UI elements and the actual user interactions
within a view. Activities within this mapping include the
selection of suitable widgets, their arrangement within
the previously specified layout container as well as
bidirectional data bindings and validation.

To exemplify the difference to the previous device
class preprocessing, an “item selection” task within a
use case might for instance be mapped to an abstract
list selection for all tablet platforms. The concrete
representation such as a horizontal card-based layout for
Windows or a vertical list view for iOS is then specified
in the platform-specific mapping stage.

Resolving input heterogeneity User inputs are not
only important for entering data but also to navigate
within the app. The large variety of device class specific
(e.g., remote controls for TVs), platform-specific (e.g.,
Android’s hardware buttons), and even device-specific
input events (e.g., Apple’s 3D touch gestures) is a
hurdle for efficient modeling. Instead, user inputs
should be described as intended actions for completing
a particular task. Based on the possible sequences
of tasks, navigation paths can be established (M5),
including the initial task selection when opening the
app, back-and-forth navigation between views, and
conditional process flows resulting from user decisions.

In the platform-specific mapping (M6), it is then
possible to perform a mapping of actions to actual
input mechanisms. This is similar to the decoupling
mechanism for user inputs in MVC architectures
described in [13] but on a higher level of abstraction.
For instance, a “back” action can be linked to a hardware
button, displayed in a navigation bar on screen, bound
to a right-swipe gesture in Wear OS, or recognized by
a spoken keyword. Some novel device classes such as
smart cars are in early experimental stage; mappings such
as specific gestures then represent preliminary design
decisions suitable for the range of possible apps and
in accordance with vendor guidelines. As noted above,
repetitive platform-specific transformations can of course
be shifted to a more generic layer in the future when
commonalities become apparent.

Managing device capabilities Whereas tasks,
operators, and roles have no interdependencies between
use cases, a global data layer needs to be established
from different data models (M7). Data model inference

Page 7434



can validate the compliance of different use cases
and also provide additional modeling support for the
editing tools of the domain-specific language (DSL) [14].
Subsequently, non-primitive data types (e.g., dates and
colors) need to be mapped to available platform concepts
for output to the user and back-end communication (M8).

In the context of business apps, there are usually no
complex computation tasks to be performed on the device
itself. Derived attribute values may be computed at
runtime but if necessary, computations may be offloaded
to remote computation providers. With regard to sensors,
a progression in functionality should be aimed for:
the same app would function on many devices while
providing the highest level of functionality achievable on
the given hardware. For instance, location information
is easily retrieved if a GPS sensor is available but
generic approaches need to cater for adequate fall-back
mechanisms such as manual selection of addresses on a
map or address lookup.

Enabling multi-device interaction In multi-user
scenarios, a recombination of tasks needs to be performed
to account for distinct user roles (M4). This mapping
modifies the sequence of tasks to cater for the interruption
of activities and the automatic transmission of application
state to the subsequent role. As a result of this
decomposition and bundling of use cases, either one app
is created that supports all user roles (depending on the
logged-in user) or different apps are generated per role.

In addition, synchronization is essential both for the
sequential and concurrent usage of apps on multiple
heterogeneous devices. In contrast to “traditional”
process-oriented apps, information not only needs to be
propagated between devices after a given task has been
completed but also intermediate states of data or even
a live synchronization capability including incomplete
user inputs (e.g., per character) is required. Also, the
workflow state itself must be captured in order to pass
the current process instance to other concurrently used
devices as well as to different users when role changes
occur. Consequently, the back-end component also needs
to manage the relationship of users and devices (either via
central device registration or tracking on which device
the user is currently logged in) and provide push-based
or pull-based update mechanisms.

4. Realizing cross device class apps

In this section, the open-source MAML framework3

is briefly introduced to demonstrate the applicability of
the proposed process. This domain-specific notation
was chosen because of its fit for business apps and its
high-level abstraction [14, 15].

3MAML code repository: https://github.com/wwu-pi/maml

4.1. The MAML framework

MAML is a graphical DSL for specifying business
apps and based on five main design goals [15]:

• Automatic cross-platform app creation by
transforming a graphical model to fully functional
source code for multiple platforms.

• Domain expert focus to allow non-technical
stakeholders to create, alter, or communicate about
an app using the actual models.

• Data-driven process modeling specifies the
application domain on a high level of abstraction
by interpreting data manipulation as a process.

• Modularization of activities in distinct use cases
helps for maintenance, e.g., for domain experts.

• Declarative description of the complete app,
including necessary specifications of data model,
business logic, user interactions, and UI views.

We illustrate the notation and applicability of MAML
for cross device class app development using the common
scenario of a to-do management app. The system
can be represented with two use cases depicted in
the screenshots of the implemented drag&drop editor
component depicted in Figure 2. In the first use case, one
or more tasks are created with corresponding attributes
such as due date and responsibility assignment. The
second use case lists all current to-dos and upon selection
of an item shows editable details and the possibility
to complete the task. The sequence of process steps
is modeled between a start event (labeled with (a)
in Figure 2) and end events (b). A data source (c)
specifies the main type of the manipulated entity which
is either stored locally or on a remote back-end system.
Subsequently, interaction process elements (d) are used
to create/show/update/delete an entity, but also to display
messages or access device sensors. Note that this strictly
declarative description does not make assumptions on
the appearance on a device. To perform steps without
user interaction, automated process elements (e) can
be used to transform data values or navigate between
objects, request information from web services, or
include existing use cases for model reuse. Process
connectors signify the order of process steps, represented
by a default “Continue” action unless specified differently
(f). Conditions branch out the process flow based on a
manual user action (using differently labeled connectors;
(g)), or automatically by evaluating expressions referring
to the considered object (not visualized in the example).

In addition, the use case models contain the data
linked to each process step. Attributes (h) are modeled
as combination of a name, the data type, and the
respective cardinality. Several data types such as
String, Integer, Float, PhoneNumber, Location etc. are

Page 7435



Figure 2. Sample MAML models for a to-do list use case

already provided but the modeler can define additional
custom types which are further described using nested
attributes (e.g., the “User” type in Figure 2 specifies
a “name” attribute). Moreover, the modeler can create
enumeration types (i) with lists of possible values.
A suitable UI representation is automatically chosen
based on the parameter connector: Dotted arrows (j)
signify a reading relationship whereas solid arrows (k)
represent a modifying relationship. This refers not only
to the manifest representation of attributes displayed
either as read-only text or editable input field. The
interpretation also applies in an abstract sense, e.g.,
regarding web services which read input parameters
and modify information through their response. Each
connector also specifies an order of appearance and a
human-readable caption.

Finally, annotating freely definable roles (l) to process
elements allows modeling processes with several persons
involved, e.g., in scenarios such as approval workflows.
When a role change occurs, the app automatically
informs eligible users about the open process instance.

4.2. Business apps for smartphone and
smartwatch with MAML

As proof of concept for this work, the MAML
framework (which supports app generation for Android

and iOS smartphones from the same input models
[15]), was extended by a smartwatch generator for
Wear OS and prepared for further app-enabled device
classes. Although the utilized DSL is designed to be
platform-independent, existing generators focused on
transformations towards smartphone apps. Therefore,
the process model described in the previous section was
applied to structure and separate the growing generation
capabilities – using the BXtend framework and Xtend
language for implementing the model transformations
[16]. Because of space constraints, the respective
transformations are only sketched next.

Regarding system-wide preprocessing, separate
MAML input models are recombined into a single app
project. The task consolidation transformation (M1)
merges multiple use cases into a single app project
and prepares required app-internal components, e.g.,
web service calls. A role-based app recombination
mapping (M4) separates each use case into multiple
process sequences which are performed by the same role
in order to generate distinct apps. Because no explicit
data modeling is required in MAML, a common data
model (M7) needs to be inferred both within use cases
and for the overall app project (cf. [14]). The output
and all further preprocessing is performed based on a
second, textual, DSL called MD2 [1] with more detailed
specifications, especially with regard to the view layer.

Page 7436



Figure 3. Screenshots of the resulting Wear OS

smartwatch app

Subsequently, device class specific preprocessing is
performed by repartitioning views to fit the amount of
fields to the available screen sizes (M2). For example,
to-do elements can be created within a single view on a
smartphone, but the smartwatch implementation splits
this in two subsequent steps to avoid scrolling. Also,
suitable layouts (e.g., tab or scroll-based) are selected
based on the modeled task type – still using abstract UI
elements. Regarding the navigation mapping (M5), an
additional start-up view is included for all smartphone
apps to let the user choose a startable use case when
entering the app.

Finally, concrete widgets are introduced in the
platform-specific preprocessing of UI elements (M3),
for instance exploiting the round design of a smartwatch
by a curved list widget. Default actions are transformed
to prominently displayed buttons in the navigation bar in
iOS, whereas Wear OS uses so-called ActionDrawers4,
e.g., to trigger the “Add todo” use case (“+” icon in
Figure 3) while reading through the list of to-dos. In the
user interaction mapping (M6), the navigation through
the process is mapped to buttons or specific patterns such
as the NavigationDrawer4 in Wear OS.

During the generation phase (M9) of MAML-based
apps, an MVC separation of concerns is established with
data bindings to view elements [11] which results in
structured apps that may be customized with individual
code. For the sample app model represented in Figure 2,
resulting app screenshots of the generated smartwatch
and smartphone apps are depicted in Figures 3 and 4.

4https://designguidelines.withgoogle.com/wearos/components/

5. Evaluation

To evaluate MAML as common notation to develop
both smartphone and smartwatch apps, a study was
performed with 23 Master students attending a course
on model-driven software development. Their previous
experience with app development was limited, with an
average response value of 3.26 regarding Web apps (on
a 5-level Likert scale from expert to little experience)
as well as hybrid and native apps with 4.35 and 4.3,
respectively. After presenting the to-do app scenario
depicted in Figure 2 together with a short introduction
to MAML, the participants were asked to sketch a
suitable smartwatch application. 83% of them imagined
a scrollable list to display to-dos (65% vertically, 17%
horizontally), and 30% added an action button to create
new to-dos from there. Of those participants who
visualized view transitions, accessing task details was
mostly considered by tapping on the list element on
screen (42%), other participants opted for dedicated
buttons (33%), hardware buttons (8%), swipe gestures
(8%), and speech interfaces (84%).

Regarding the representation of task details/creation
forms, participants modeled different view designs such
as a single, scrollable view (35%), individual steps
for each attribute (30%), a separation into multiple
views according to available space (9%), or voice input
(30%). Again, navigating back and forth in the dialog
was envisaged either using on-screen/physical buttons
(35% / 8%) or swipe gestures (22%). This diversity
of interfaces reflects the variety of interaction modes
exhibited by today’s smartwatches.

Subsequently, the generated apps (Figures 3 and 4)
were presented to the participants to compare the
implementation with their expectations. The participants
agreed that the generated interface suitably represents
the modeled process (2.04) and that the app is
functional (2.39). The moderated visual appeal (3.30)
is a drawback resulting from the generic nature
of business apps our generator has to cater for.
However, the participants agreed that using model-driven
transformations on a single input model drastically
accelerates the development speed (2.48), estimating an
average drop from 27 hours of manually programming
a mobile application to 41 minutes for creating the
equivalent MAML models. Overall, the participants
of this preliminary study did not perceive particular
complexities resulting from the implicit specification of
multiple apps with MAML (3.35) and rated the approach
suitable for creating apps across device classes (2.55).

Furthermore, a 10-question System Usability Scale
(SUS) questionnaire was filled out to calculate a usability
score (on a [0;100] interval) [17]. Compared to an earlier

Page 7437



Figure 4. Screenshots of the resulting Android smartphone app

evaluation of MAML for smartphone app generation
reaching a score of 66.83 [15], similar results could
now be obtained with regard to smartwatch with a
66.85 score (σ = 12.95). The perceived usability of
MAML therefore barely depends on the tested devices
which underlines the objective of a platform-agnostic
representation. Using the proposed process model, the
vision of model-driven app development for a broad
range of devices can be put into practice while avoiding
the time-intensive repetitive adaptation of high-level
models during generator implementation.

6. Discussion

The process model presented in Figure 1 does
not aim for an unchangeable, all-encompassing set
of transformation rules but describes the required
transformation steps broken down into individual
activities in a structured manner. Likewise, the approach
supports a wide range of technical implementations
regarding input and output of transformations which can
be realized using appropriate technologies. In this regard,
our approach differs from the Model-Driven Architecture
(MDA) by not enforcing a strict assignment of
platform-independent and platform-specific models to the
respective steps. A platform-specific intermediate model
might be omitted completely if the final preprocessing is
executed within the generator component. Moreover,
depending on the design of the chosen DSL, all
transformations might be performed according to a
single meta model or using multiple representations

with different granularity. In the example of MAML as
abstract representation, the subsequent transformations
are implemented using another DSL, e.g., providing
more detailed view specifications. The commonly cited
Cameleon Reference Framework (CRF) [18] similarly
describes a step-wise refinement from task-oriented
specification to abstract, concrete, and final UI elements.
However, it focuses solely on the interface aspect (i.e.,
the top row in Figure 1) as compared to the additional
perspectives on navigation, business logic, and data layer.

The main stakeholders of the approach include not
only software engineers and developers in the field of
mobile apps (working mainly on the transformations)
but also process modelers and non-technical users
(capturing requirements and providing the abstract
representation). Additional stakeholders are integrated
in specific transformations as needed, for example
requesting design expertise for the platform-adapted UI
mapping, and human-computer interaction experts for
navigating through the resulting apps. The responsibility
of maintaining the transformation chain can be assigned
to teams focused either on individual refinement steps of
the preprocessing (vertical subdivision) or according to a
functional domain (horizontal subdivision).

It is clear that a particular app does not need to make
sense on all possible target platforms but the additional
effort of generating apps for all devices at once using the
same input models is marginal. In return, the potential of
upcoming app-enabled devices is tapped and may provide
opportunities for enhancing productivity as illustrated
with three exemplary use cases in the following.

Page 7438



1) Dashboard apps: Many teams track key
performance indicators for monitoring progress,
motivating team members, and broadcasting daily
achievements. Besides entering this information via
personal devices, dashboards can be displayed on large
screens in the office. Heterogeneous team member
equipment is a known challenge in cross-platform
development, but now intensified because of new devices
for visualization (smart TV) or notifications (Wearables).

2) Logistics apps: Order picking in warehouses is
an activity that is mainly coordinated using information
systems. Operating hands-free using augmented reality
(AR) devices instead of traditional scanners significantly
improves the productivity of employees and first
commercial products for the logistics industry already
exist5. Similarly, technicians can benefit from up-to-date
information both before and during repair works.

3) Field service apps: Salespersons need flexible
access to their company’s information systems from
different contexts, e.g., while traveling or in sales talks
with customers. The freedom to choose from multiple
owned devices (e.g., smartphone, tablet, or smartwatch)
for communication, notifications, or information access
helps them to accomplish tasks more efficiently.

A limitation of the integrated approach from abstract
specification to source code lies in the tight coupling
of the app development process for various platforms,
unless work can be coordinated among different teams as
mentioned above. In addition, the allocation of specific
mapping activities to the presented phases of the process
model is final but a continuous process. Depending
on the heterogeneity or convergence within a device
class over time, common platform characteristics may
be shifted to earlier mappings in the process chain. As
the proposed process model is not limited to a specific
technology, further instantiations are desirable to validate
the approach. Regarding limitations of the the newly
created Wear OS generator, the implementation is still in
a prototypical state and we are working on improving the
UI/UX design of its output. However, it is integrated in
the MAML framework and already contributes functional
apps for the new platform target.

7. Related work

Whereas a plethora of literature exists in the context
of cross-/multi-platform development, previous work
on app development spanning multiple device classes
is much more scarce. Although an extensive literature
search was performed, not a single paper out of almost
300 initial results provided a comprehensive theory on
app development across device classes. This shows

5http://www.smartpick.be/

that app development beyond smartphones is not yet
approached systematically but on a case-by-case basis.

Cross-platform overview papers such as [19] typically
focus on a single category of devices and apply a very
narrow notion of mobile devices, e.g., when Humayoun
et al. [20] examine “the diversity in smart-devices
(i.e., smartphones and tablets)”. [2] provides the only
classification beyond those “classical” mobile devices.
To complicate matters, some papers mention that there
are novel devices as visionary outlook but do not detail
on actual app development challenges ([21, 22]). In
contrast to “liquid software” aiming for portability across
heterogeneous platforms [23], model-driven approaches
can integrate with arbitrary infrastructures.

Only few papers provide a technical perspective
on novel app-enabled devices: Singh and Buford [24]
describe a cross-device team communication use case
for desktop, smartphones, and Wearables, and Esakia
et al. [25] performed research on Pebble smartwatch
and smartphone interaction in computer science courses.
Some authors consider specific combinations of devices,
for example Neate et al. [5] who analyze second
screening apps that combine smart TVs with additional
content on smartphones or tablets, and Koren and
Klamma [26] who propose a middleware approach to
integrate data and UI of heterogeneous Web of Things
devices. Zhang et al. [27] present an architecture for
the future of “transparent computing” using virtual apps
on lightweight devices equipped with UEFI firmware
interface but do not focus on the apps themselves. Finally,
a few papers on mobile (cloud) computing might be
applicable to app development across device classes but
do not explicitly mention this potential.

With regard to commercial cross-platform products,
Xamarin6 and CocoonJS2 are two runtime-based
approaches that provide Wear OS support to some extent.
Whereas several other frameworks claim to support
Wearables, this usually only refers to data access or
the display of notifications by the main smartphone
application on coupled devices. Only the domain of
gaming apps exhibits more diversity. Unity3D7, an
engine for 2D/3D games, supports 29 platforms including
smartphones, smart TVs, consoles, and AR devices.

While related to research fields such as self-adaptive
UI or model-driven UI development [28], our work
concentrates on the automated generation of all app
perspectives for a specific platform without need for
dynamic UI adaptation at runtime. Context-awareness
and adaptation (e.g., to screen sizes) are therefore
complementary considerations when designing mappings
for a device class or specific platform.

6https://developer.xamarin.com
7https://unity3d.com

Page 7439



8. Conclusion and outlook

The field of modern mobile computing does not
show signs of less rapid progress and novel app-enabled
devices are constantly emerging. New challenges
resulting from the heterogeneity of input and output
mechanisms, device class capabilities, and multi-device
interaction require consideration by app developers. In
this article, we have analyzed existing cross-platform
development approaches for efficiently creating apps for
heterogeneous devices. We propose a systematic process
model based on the model-driven paradigm which
supports the inclusion of novel app-enabled devices. The
applicability of this process is demonstrated using the
MAML framework that utilizes a graphical DSL for
generating business apps for smartphones and now also
smartwatches. Because of its high level of abstraction,
the challenges of app development across device classes
can be tackled through a multi-step preprocessing of
input models towards platform-specific code generation.

Although the smartwatch generator for MAML
demonstrates the required concepts, real-world adoption
is pending. Future work concentrates on generating
apps for other platforms to validate the generalizability
of the proposed model, especially for devices without
touchscreen such as smart personal assistants.

References

[1] T. A. Majchrzak, J. Ernsting, and H. Kuchen, “Achieving
business practicability of model-driven cross-platform
apps,” OJIS, vol. 2, no. 2, pp. 3–14, 2015.

[2] C. Rieger and T. A. Majchrzak, “Conquering the mobile
device jungle: Towards a taxonomy for app-enabled
devices,” in WEBIST, pp. 332–339, 2017.

[3] C. Rieger and H. Kuchen, “Towards model-driven
business apps for wearables,” in Mobile Web and
Intelligent Information Systems (M. Younas, I. Awan,
G. Ghinea, and M. Catalan Cid, eds.), pp. 3–17, Springer,
2018.

[4] A. Reiter and T. Zefferer, “Power: A cloud-based mobile
augmentation approach for web- and cross-platform
applications,” in CloudNet, pp. 226–231, IEEE, 2015.

[5] T. Neate, M. Jones, and M. Evans, “Cross-device media:
A review of second screening and multi-device television,”
Personal and Ubiquitous Computing, vol. 21, no. 2,
pp. 391–405, 2017.

[6] W. S. El-Kassas, B. A. Abdullah, A. H. Yousef, and A. M.
Wahba, “Taxonomy of cross-platform mobile applications
development approaches,” Ain Shams Engineering
Journal, 2015.

[7] Object Management Group, “Unified modeling language
2.5,” 2015.

[8] D. Sinnig, P. Chalin, and F. Khendek, “Common
semantics for use cases and task models,” in Integrated
Formal Methods (J. Davies and J. Gibbons, eds.),
vol. 4591 of LNCS, pp. 579–598, Springer, 2007.

[9] F. Paternò, Model-Based Design and Evaluation of
Interactive Applications. Springer, 2000.

[10] A. Syromiatnikov and D. Weyns, “A journey through
the land of model-view-design patterns,” in WICSA,
pp. 21–30, 2014.

[11] J. Ernsting, C. Rieger, F. Wrede, and T. A. Majchrzak,
“Refining a reference architecture for model-driven
business apps,” WEBIST, pp. 307–316, 2016.

[12] J. Eisenstein, J. Vanderdonckt, and A. Puerta, “Applying
model-based techniques to the development of Uls for
mobile computers,” IUI, 2001.

[13] A. Carcangiu, G. Fenu, and L. D. Spano, “A design pattern
for multimodal and multidevice user interfaces,” in EICS,
pp. 177–182, ACM, 2016.

[14] C. Rieger and H. Kuchen, “A process-oriented modeling
approach for graphical development of mobile business
apps,” COMLAN, vol. 53, pp. 43–58, 2018.

[15] C. Rieger, “Evaluating a graphical model-driven approach
to codeless business app development,” in HICSS,
pp. 5725–5734, 2018.

[16] T. Buchmann, “Bxtend - a framework for (bidirectional)
incremental model transformations,” in MODELSWARD,
2018.

[17] J. Brooke, “Sus-a quick and dirty usability scale,” in
Usability evaluation in industry, pp. 189–194, 1996.

[18] G. Calvary, J. Coutaz, L. Bouillon, M. Florins,
Q. Limbourg, L. Marucci, F. Paterno, C. Santoro,
N. Souchon, D. Thevenin, et al., “The CAMELEON
reference framework,” D1.1, 2002.

[19] C. Jesdabodi and W. Maalej, “Understanding usage states
on mobile devices,” in Int. Joint Conf. on Pervasive and
Ubiquitous Computing, pp. 1221–1225, ACM, 2015.

[20] S. R. Humayoun, S. Ehrhart, and A. Ebert, “Developing
mobile apps using cross-platform frameworks: A case
study,” in HCI International, pp. 371–380, 2013.

[21] E. Umuhoza, “Domain-specific modeling and code
generation for cross-platform multi-device mobile apps,”
CEUR Proceedings, vol. 1499, 2015.

[22] J. C. Dageförde, T. Reischmann, T. A. Majchrzak,
and J. Ernsting, “Generating app product lines in a
model-driven cross-platform development approach,” in
HICSS, pp. 5803–5812, 2016.

[23] A. Gallidabino, C. Pautasso, V. Ilvonen, T. Mikkonen,
K. Systä, J. P. Voutilainen, and A. Taivalsaari, “On the
architecture of liquid software: Technology alternatives
and design space,” in WICSA, pp. 122–127, April 2016.

[24] K. Singh and J. Buford, “Developing WebRTC-based
team apps with a cross-platform mobile framework,”
IEEE CCNC, 2016.

[25] A. Esakia, S. Niu, and D. S. McCrickard, “Augmenting
undergraduate computer science education with
programmable smartwatches,” in SIGCSE, pp. 66–71,
2015.

[26] I. Koren and R. Klamma, “The direwolf inside you:
End user development for heterogeneous web of things
appliances,” ICWE, pp. 484–491, 2016.

[27] Y. Zhang, K. Guo, J. Ren, Y. Zhou, J. Wang, and J. Chen,
“Transparent computing: A promising network computing
paradigm,” CISE, vol. 19, no. 1, pp. 7–20, 2017.

[28] P. A. Akiki, A. K. Bandara, and Y. Yu, “Engineering
adaptive model-driven user interfaces,” IEEE
Transactions on Software Engineering, vol. 42,
pp. 1118–1147, Dec 2016.

Page 7440


