
 Offloading for Mobile Device Performance Improvement

Dagnachew Temesgene
CTTC

dagnachew.temesgene@cttc.cat

Jari Porras
Lappeenranta Univ. Of Tech.

 jari.porras@lut.fi

Janne Parkkila
3BIT

 janne@3bit.fi

ABSTRACT

Mobile devices are increasingly becoming part of
everyday life. These include smart phones, tablets,
wearable devices etc. Due to their mobility aspect, they are
always constrained in their size and weight, which limits
their resource capacity, e.g. processing power, and battery
life. One possible solution for augmentation of such
resource-constrained devices is through efficient usage of
their surrounding resources, i.e. using some offloading
technique. This paper studies how offloading of tasks to the
surrounding resources affects on both the performance of
task execution as well as the battery life of the mobile
device. Two mobile phones and two tablets (from two
different manufacturers) are studied in the experiments to
find out the impact of the device characteristics. Two
computationally demanding tasks, namely image
processing and encryption/decryption, are used in these
experiments. These results are compared to our earlier
results on mobile devices of previous generations. We
assumed that the increased computing power of new
devices would make offloading obsolete. Our results show
gains both in energy saving and in computational
performance with these mobile devices. The comparison to
our earlier results show that the performance increase of
newer mobile device generations has not diminished the
benefits of offloading. These results are in line with results
presented in literature and they show that the offloading
could offer a viable approach for resource augmentation of
mobile devices towards edge/fog resources emphasized by
the new 5G technology.

1 Introduction

Mobile devices are increasingly becoming part of

everyday life. These include smart phones, tablets,
wearable devices and sensors. However due to their
mobility aspect, they are always constrained in their size
and weight which limits their physical capabilities,
especially the battery life. One possible solution for
augmentation of such resource-constrained devices is
through efficient use of other computing resources. The
environment in which these devices exist has a lot of
unused computing resources. Resource-constrained in this
case means the limitation due to battery capacity and also
other computing resources such as processor speed and
memory. Though mobile devices are becoming more
powerful, there still exists a gap between a performance of
mobile devices and other computing machines such as
desktop computers, laptops or even cloud-based computing

centers (i.e. mobile devices will remain resource-
contrained). Therefore, efficient utilization of these external
computing resources could provide a viable solution to
extend the capabilities of the mobile devices.

One approach to offloading computations is cyber
foraging, meaning the opportunistic use of nearby
computing resources to enhance the performance of mobile
device [1]. It is originally construed as “living off the land,”
with an idea to dynamically augment the computing
resources of mobile devices by exploiting the
computational resources of wired hardware infrastructure
[1]. According to this original definition, the distinct
feature of cyber foraging over other offloading or remote
execution mechanisms is being an opportunistic offloading
method. The recently appeared techniques, like edge and
fog computing as well as a popular method cloudlets, are
more structured and multi-tier approaches than cyber
foraging that aims at direct connection between the mobile
device and external resource.

 It is important to note that in parallel with the
increasing computing capacity of mobile devices, the
complexity of computing tasks that the mobile devices need
to support is also growing. The users expect their mobile
devices to perform an increasing amount of computations.
More resource demanding applications such as augmented
reality applications are expected to appear in mobile
devices. These more resource demanding applications will
then challenge the limits of mobile devices. Although the
performance of mobile devices is increasing the question
lies if our needs for various applications are increasing
faster and as such the performance gap would widen. In
this paper we wanted to study how the use of offloading
computationally intensive tasks would affect the
performance of a mobile device. We did similar study in
2010-2011 and were now interested if the improved
capabilities of new mobile device generations would have
diminished the benefits of offloading. Our assumption was
that the improved computational performance of new
mobile devices has made offloading almost obsolete. Due
to the earlier study [14] we used the same Scavenger cyber
foraging system although there are newer tools available.
Scavenger allows efficient offloading from one device to
another as long as there is connection between these places
and this simple operation if enough for this offloading
research. We use cyber foraging system scavenger to
evaluate the aggregate energy saving, performance

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60179
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 7421

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/326834804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

improvement and battery saving advantages of scenarios in
various operation modes (like opportunistic and
controlled).

The rest of the paper is organized as follows. Section 2
describes the past research works that are related with this
paper. A more detailed view of cyber foraging system used
in this study is given in Section 3. Section 4 explains the
research process used in the research. The results are given
in section 5 and we draw our conclusions in section 6.

2 Related work

Various techniques of offloading computation to a more

resource rich devices are being used today. One of these
techniques is cloud computing which is a paradigm for
hosting and delivering computing services over the
Internet. The primary goal of cloud computing is to
maximize the usage of various computing resources in
order to overcome the need of resources for high
performance computation and to achieve a higher
throughput [3][4]. Its main features include elasticity,
resource pooling, on-demand self-service and broad
network access [5]. Various deployment models are being
used which includes public clouds, private clouds and
hybrid clouds. Cloud computing is a major paradigm shift
in computing technology with its approach of providing
computational resources as per usage similar to utilities
such as electricity. This is possible due to the increasing
availability of high-speed wired and wireless networks.
Another related technique to consider is mobile cloud
computing. It is a paradigm at the forefront of mobile and
cloud computing and is defined as a technique for
integration of Cloud Computing technology in mobile
environment and provides all the necessary resources to
overcome the obstacles of the mobile devices [6][7].
Several definitions exist for mobile cloud computing. For
instance, mobile cloud computing is defined as running
mobile intended applications such as email and social
networking apps on remote resource rich server [8]. The
same author also considers mobile devices as resource
providers in making of mobile cloud through peer-to-peer
network. Another concept proposed by [9] is an approach
of using small-scale servers called cloudlets at the edge of
Internet. These small-scale servers can be deployed in
public places such as coffee shops and supermarkets where
the mobile client can make use of their storage and
processing resources. They are connected to a cloud data
center by high speed wired connections. The obvious
advantage of these approaches is a reduction of latency in
applications since mobile device requests need not go far to
a remote data center but rather served by the close cloudlet
[9]. A number of use cases and opportunities are possible
by mobile cloud computing. In [10] and [8], the use cases
are categorized into image and natural language processing,
sharing GPS and Internet access, applications using sensor
data, querying, crowd computing and multimedia search. A
similar concept called mobile edge computing is also

having more attention recently. It is a trend, which aims to
solve the problem due to large volumes of data traffic from
mobile users and associated latency as well as resource and
energy limitations of mobile devices. It is defined as a
cloud server running at the edge of a mobile network and
performing specific tasks on behalf of mobile clients that
could not be achieved with traditional network
infrastructure [11]. The concept of edge computing is
similar to mobile clouds with the aim of augmenting
mobile devices by resource rich servers deployed at the
edge of a mobile radio network. Such edge servers can be
owned by mobile network providers and the subscribed
mobile devices can use them by offloading part of their
computation (this helps to minimize latency). On the other
hand, even though the original definition of cyber foraging
implies opportunistic offloading, some extend this
definition to include offloading to a cloud as well [12].

This original definition of cyber foraging is extended
in most cases to include the offloading of computation to a
more resource rich dedicated server in mobile environment.
Hence systems and approaches in mobile cloud computing
and mobile edge computing can also be regarded as cyber
foraging systems.

Our previous work on analyzing the battery gains (i.e.
battery power savings) of offloading [13] shows that cyber
foraging is advantageous for saving the battery life and
improving runtime of intensive tasks. However, our work
work also shows that offloading is disadvantageous both in
battery life and performance for some tasks involving a
large data transfer to and from a surrogate computer. These
outcomes of our previous study set our initial assumption
that the increased processing power of new mobile devices
would in the end make the offloading obsolete as
computing will be (or will become in near future) more
efficient than communication. Another interesting fact in
the previous study was that the compared devices (Nokia
vs. Samsung) varied a lot in computing capabilities. We
assumed that these differences would eventually diminish
with new generations of mobile devices.

3 Cyber foraging

For a mobile device to take advantage of offloading

(cyber foraging) the following six sub-processes should be
considered [14]. 1) surrogate discovery: Mobile client
applications need to discover the availability of surrogates
that are capable of providing the necessary resources. This
discovery is based on the use of available communication
technologies. However, being discoverable does not mean
that the surrogate is willing to share its resource. 2)
Application partitioning: At this level the task or the
application needs to be partitioned into locally executable
and remotely executable parts: the task that requires more
computing resources such as storage, processing, and
communication speed is a good candidate for remote
execution. 3) Cost assessment: The process of cost
assessment defines where the application has to be

Page 7422

executed. 4) Trust and security establishment: When a
client’s task is remotely executed on a surrogate, the task
code needs to be protected from a malicious surrogate and
the surrogate needs to be protected from a malicious
client’s tasks. 5) Actual task execution: The tasks that are
suitable for remote execution are executed remotely using a
surrogate computer. 6) Environment monitoring: This is
necessary since the environment is dynamic and mobile
hence the device needs to monitor the computing
environment for any changes in the surrogates and in cases
where a better option is available.

One cyber foraging system that is used for offloading
is Scavenger. It was developed by Aarhus University,
Denmark. The Scavenger system is based on Python and
enables cross-platform support, mobility and low
application development times [15]. This system focuses on
computational offloading and consists of two software
components. The first one is a Daemon, which runs on the
surrogate computer and enables them to receive requests
from clients and execute tasks. The second component is a
client library for enabling client applications. Client
application must use this library to enable scavenger
applications. This library offers two ways of working with
cyber foraging: a manual mode, where the application may
itself ask for a list of available surrogates, install code onto
these surrogates, and invoke this code; and a fully
automated mode, where the above routines in manual mode
operation are taken care of by scavenger scheduling [15].
Although Scavenger is not the newest offloading tool it
provides the necessary functionality of running tasks
locally and remotely and measuring the performance. In
this study we used Scavenger to run our tests and
emphasized the actual task processing and evaluation of it.

Although the other sub-processes can make a big difference
in actual performance of the task execution, we wanted to
focus on the device dependent part and see if the evolution
of mobile devices has changed the benefits.

4 Research process

This research is based on a set of measurements on a

set of predefined set of use cases and experiments with
predefined devices. Our assumptions for this research work
are as follows.
• The growth in the power of mobile devices is balanced

by the growth in the resources of potential surrogate
devices and the increasing complexity of mobile
computing tasks. This, together with the improvements
in speed and latency of wireless networks, enables
tasks that are processing intensive (but relatively small
size of transferred data) to be offloaded. If compared to
the previous measurements we expect that the benefits
have been decreased due to smaller improvements in
networking technologies and smaller increase in the
complexity of computational tasks. However, we are
eager to see how the new generations of mobile
devices have managed to balance the computations and
communications.

• To the best of our knowledge, there are no available
works that are done to analyze the holistic energy
savings of cyber foraging. The works that are done so
far, analyze the gains of cyber foraging only from the
resource constrained or battery powered benefit side.
This research will try to test the aggregate
sustainability advantage of cyber foraging.

Table 1 Mobile devices used and specifications. * devices from the previous study [13].

Device model Battery Processor Memory Screen size

Nokia N900* Li-Ion 1320 mAh ARM Cortex A8 600
MHz 256MB 3.5 inches

Samsung Galaxy Tab
7* Li-Po 4000 mAh ARM Cortex A8 1GHz 512MB 7 inches

Samsung Galaxy J5 Removable Li-Ion
2600 mAh

Quad-core 1.2 GHz
Cortex-A53 1.5GB 5.0 inches

Samsung Galaxy Tab
A 9.7

Non-removable Li-
Ion 6200 mAh Quad-core 1.2 GHz 1.5 GB 9.7 inches

Huawei MediaPad M2 Non-removable Li-
Po 4800 mAh

Quad-core 2.0 GHz
Cortex A53 + quad-core
1.5 GHz Cortex-A53

2GB 8 inches

Huawei Honor 6
Non-removable Li-
Po 3100 mAh
(11.8 Wh)

Quad-core 1.7 GHz
Cortex-A15 & quad-
core 1.3 GHz Cortex-A7

3GB 5 inches

Page 7423

The experiments are applied on chosen android mobile
devices. These android devices and their specifications are
given in Table 1. Note the two first devices are from our
earlier experiments and we only compare the base results of
these devices to the new set of devices. The surrogate
characteristics for this new study are given in Table 2. The
experimental configurations that are common for all of the
tests are given in Table 3. In order to understand the
behavior of various devices a set of baseline tests were run
before actual offloading experiments.

Table 2 Characteristics

Table 3 Experimental configurations

Property Value

Screen brightness 100%

Network configuration IEEE 802.11g, all connected to
the same network

Surrogate cores used 1

Battery charge level prior to each
test

100% (fully charged)

4.1 Baseline tests

The aim of these series of tests is to understand the

battery characteristics of mobile devices that are used.
Hence tests involving measurement of battery consumption
in five modes namely i) idle mode, ii) idle mode with Wi-Fi
on (pinging the network), iii) cpu loaded by computation
intensive tasks, iv) cpu loaded and Wi-Fi on, and v)
continuous download. These five test modes are all applied
on each android device and corresponding measurements
are recorded for one hour. As it is pointed in the
experimental configuration, all of the devices are fully
charged prior to applying each test case.

4.2 Offloading tests

In this set of tests, various tests with the aim of

evaluating opportunistic offloading technique and
competitive offloading scenarios are done. Two separate
tasks with different resource requirements are executed i)

locally, ii) locally with Wi-Fi on (worst case scenario) and
iii) remotely with offloading. The tasks are simple
encryption/decryption of text file and image edge detection.
A more detailed explanation of the nature of these tasks and
the motivations for selecting them is given in sub-section 2
of section 5.

The local execution is optimized so that no offloading
overheads exist. Also in the case of local execution the Wi-
Fi interface is kept off. In the case of local execution with
Wi-Fi, the application is set to search for available potential
surrogate resources in its vicinity but in the end the
application ends up executing the task by itself due to the
unavailability of remote resource. It is a worst case that can
be faced by a mobile device (putting effort to find surrogate
but in the end executing the task by itself). The third case is
to execute the task remotely on a nearby surrogate device,
which is willing to provide its resource to be used by a
mobile device client. Measurement of battery consumption
is done by using scripts that log an instantaneous battery
level of android device. Offloading tests will consider two
scenarios, namely:
• Opportunistic offloading: The aim of this scenario is

to evaluate the results when a single mobile device
tries to use the resources of a surrogate.

• Competitive offloading: In this scenario, offloading
happens from multiple different devices
simultaneously. Four devices are trying to access the
resources of a single surrogate at the same time. This
represents a mobile edge computing. Mobile devices
use a close by dedicated server to improve their
performance and to reduce battery energy
consumption. In each scenario and task, the results are
analyzed to evaluate the battery saving, performance
improvement and aggregate energy saving advantages
of offloading.

5 RESULTS

The results are presented first for the baseline tests and

then for the offloading tests. Baseline tests of the four
newer devices are compared with the baseline tests of our
earlier study.

5.1 Baseline test results

Baseline tests are done for the five given variations and

the tests were run for one hour each. The results of the
baseline tests are shown in Appendix 1 in Fig 1 and Fig 2.
The Y-axis of each device is different due to different
battery capacities (some devices have larger batteries than
others). However, each figure shows in a similar manner
how the battery power is drained in each baseline test. In
each device the idle mode (i) uses the least amount of
energy as expected. Other modes show some differences.

 The new set of modern devices show rather consistent
behavior with idle mode with pinging (ii) being the second

Parameter Specification

Processor Intel Core i3-3217U CPU @ 1.80GHz
× 4

Memory 5.7 GiB

OS Ubuntu 14.04 LTS

Battery 4Cells 2600 mAh 37 Whrs

Page 7424

best energy-wise followed by networking (iii), computation
(iv) and finally computation with pinging (v). CPU
intensive tasks tend to drain more battery power than other
tasks. This has changed when compared to our earlier
results as in those results the early Samsung Galaxy tab
device had more efficient downloading than pinging
function and in Nokia N900 networking was much more
inefficient. In the new set of devices it can be observed
that tablets drain about 10% of battery charge while
smartphones drain about 4.5% relative to their maximum
capacity in idle cases for the duration of an hour. In
addition, Huawei devices used in these tests drain more
energy for CPU intensive tasks (a battery drain of 16% –
20% compared to 9 – 13% battery drain by their Samsung
counterparts).

These results are taken as a basis for the analysis of
offloading performance. The evaluation that CPU intensive
tasks drain more energy can be an initial point to make an
assumption that CPU intensive tasks are good candidates
for offloading.

5.2 Offloading test results

Results of task 1, scenario 1: Encryption and decryption
of a file in opportunistic offloading

This task involves a simple encryption and decryption

of a text file of about 163Kb size. This section shows its
execution in opportunistic offloading mode. This task is
very good for offloading as both task code and data can be
easily (low communication versus computation needs)
migrated to a surrogate. These results are shown in Table 4.
The results are divided into battery saving, performance

improvement and total energy saving. The results show that
opportunistic offloading provides a significant advantage
for battery saving, performance improvement and
aggregate energy saving. The amount of battery power
consumed for the task via scavenger is only 3.3% to 12.69
% of the battery consumption of doing the task locally. The
runtimes by offloading are only 9.47% to 18.74% of the
runtime of doing the task locally and a significant energy
saving is obtained in aggregate energy consumption of task
execution. Though it also depends on the particular
surrogate used, for this case, from 56% to 80% total energy
savings are measured relative to the energy consumed by
doing a task by the mobile device itself. Not only is
opportunistic offloading advantageous in saving battery life
but also it is efficient in terms of discharging rate as it is
shown in mAh/sec result column. The mAh/sec result from
offloading is lower than that of doing the task locally.

The overhead due to offloading when a desired
surrogate is not available is very low compared to the
advantage obtained by scavenging and offloading. The
overheads range from 1.49% to 15.38% of the battery
consumption of doing a task locally without searching for
potential surrogate. The overhead of scavenging for
available surrogate and doing the task locally has no effect
in the runtime with only less than a percent increment
relative to local task execution without searching for
surrogate. The only exception is Huawei Honor 6 where
19% runtime increment is observed as overhead of
searching for available surrogate. An interesting point to
observe is that, though the devices have different
performance in executing a task by themselves, their
performance is enhanced to the same level by offloading.

Table 4. Opportunistic offloading results of encrypt/decrypt task (in comparison % negative numbers mean that the option is

worse than the one it is compared to, positive numbers indicate better performance)

Device Test type
Battery

consumption
in mAh

Discharge
rate mAh/sec

mAh saving
in % relative

to local

Average
runtime in

seconds

runtime
improvement

in % Total Energy (Wh) Energy saving %

Huawei
Mediapad

Local 67 0.2179 307.4 0.266

Local+wifi 68 0.2197 -1.49 309.43 -0.66 0.26955

Scavenge 8.5 0.1475 87.31 57.61 81.26 0.105766 60.24%

Huawei Honor
6

Local 91 0.159 572.33 0.3463

Local+wifi 105 0.154 -15.38 681.86 -19.14 0.3996

Scavenge 3 0.05556 96.70 54.4 90.49 0.083492 75.89%

Samsung
Galaxy Tab A

Local 150.2 0.2534 592.6 0.5849

Local+wifi 155 0.2631 -3.19 589 0.61 0.6036

Scavenge 10.5 0.187 93.01 56.14 90.53 0.11295 80.69%

Samsung
Galaxy J5

Local 47.8 0.0826 578.65 0.1816

Local+wifi 51 0.08738 -6.70 583.66 -0.86 0.1938

Scavenge 2 0.03485 95.82 57.39 90.08 0.079672 56.12%

Page 7425

Table 5. Competitive offloading results of encrypt/decrypt task

Device Test type
Battery

consumed
(mAh)

Discharge rate
mAh/sec

mAh saving
% Average

runtime (secs)
runtime

improvement
in %

Total Energy by
local execution

Total Energy by
scavenging [Mobile
side + Surrogate side]

(wh)

Energy
saving %

Huawei
Mediapad

Local 67 0.2179 307.4

1.3788 0.568 58.84%

Local+wifi 68 0.2197 -1.49 309.43 -0.66
Scavenge 28 0.1475 58.21 134.27 56.32

Huawei
Honor 6

Local 91 0.159 572.33

Local+wifi 105 0.154 -15.38 681.86 -19.14
Scavenge 12.5 0.05556 86.27 145.81 74.53

Samsung
Galaxy Tab
A

Local 150.2 0.2534 592.6

Local+wifi 155 0.2631 -3.19 589 0.61
Scavenge 26.25 0.187 82.52 143.56 75.78

Samsung
Galaxy J5

Local 47.8 0.0826 578.65

Local+wifi 51 0.08738 -6.7 583.66 -0.86
Scavenge 4.5 0.03485 90.59 144.93 74.96

Results of task 1, scenario 2: Encryption and decryption
of a file in competitive offloading

In this part, results and evaluation of offloading
computation for encryption and decryption (task 1) in the
competitive offloading scenario i.e. when the four devices
request the surrogate at the same time, are done. This
scenario is for cases when multiple devices try to use the
same available resources at the same time. These results are
shown in table 5. The results show that competitive
offloading scenario provides a significant advantage for
battery saving and performance improvement as compared
to doing the task locally. The amount of battery charge
consumed for task via scavenger is only 9 - 42 % of the
battery consumption of doing the task locally and the
runtime are only 24% to 44% of the runtime of doing the
task locally. However, these results are considerably lower
than the savings obtained when the surrogate resource is
used by a client alone. An aggregate energy saving of 58%
is also obtained via competitive offloading scenario. The
offloading results also show that it is efficient in terms of
discharging rate as it is shown in mAh/sec result column. In
addition, competitive offloading enhances the performance
of end devices to the same level.

Results of task 2, scenario 1: Edge Detection of images
in opportunistic offloading

In this task, 50 edge detection operations are

performed on a 13 Mpix image and the test is repeated 5
times. This is done to approach offloading with a task that
involves a significant data/file transfer to and from a
surrogate. The 50 edge detection operations performed
involve traffic of almost 300Mb to and from a surrogate.

Similar to the task 1, scenario 1 involves an

opportunistic offloading towards a surrogate computer.
These results are shown in Table 6. In this computing task,
as it is the case for task 1, offloading provides a significant
advantage. The battery charge consumed for task via
scavenger is only 12% - 20 % of the battery consumption
of doing the task locally and the runtime by offloading are
only 15% to 25% of the runtime of doing the task locally.
Not only is offloading advantageous in saving battery life
but also it is efficient in terms of discharging rate as it is
shown in mAh/sec result column.

The overhead due to offloading when a desired
surrogate is not available is very low compared with the
advantage obtained by offloading. The overheads range
from 0.1% to 3.3% of the battery consumption of doing a
task locally without searching for potential surrogate and
only less than a percent increment in runtime relative to
local task execution without searching for surrogate. The
only exception is Huawei Honor 6 where 6.3% runtime
increment is observed as overhead of searching for
available surrogate. Also an energy saving of 23% - 70% is
obtained by doing the task via offloading. Even though
these savings are lower than the savings for task 1, it also
shows the potential of offloading to save energy even for
network intensive tasks. An interesting remark to note is
that even though offloading results in a significant battery
saving and performance improvement, these saving are
lower than the case for task 1. This is attributed to the
network consumption in sending and receiving images
from surrogates. In addition, it is observed that, as in the
case for task 1, all of the devices have almost similar
performance by scavenger as it is shown in almost equal
runtime by scavenging.

Page 7426

Table 6. Opportunistic offloading results of edge detection task.

Device Test type

Average
Battery

consumption
in mAh

Discharge
rate in

mAh/sec
mAh saving in
% relative to

local
Average

runtime in
seconds

runtime
improvement in %

Total Energy (wh) Energy saving %

Huawei
Mediapad

Local 255 0.2114 1206 1.011

Local+wifi 258.4 0.214 -1.33 1207.52 -0.12 1.0243

Scavenge 50.6 0.1652 80.16 306.27 74.64 0.573 43.32%

Huawei
Honor 6

Local 257.4 0.1961 1312.65 0.98

Local+wifi 249.4 0.1787 3.10 1395.4 -6.30 0.948

Scavenge 35.8 0.113 86.10 317 75.85 0.5082 48.14%

Samsung
Galaxy Tab
A

Local 542 0.254 2134 2.11

Local+wifi 543 0.2561 -0.18 2120 0.66 2.114

Scavenge 67.2 0.21 87.60 320 85.01 0.634 69.95%

Samsung
Galaxy J5

Local 157.6 0.0743 2121.14 0.599

Local+wifi 162.8 0.07668 -3.30 2123.2 -0.09 0.619

Scavenge 22.2 0.06967 85.92 318.66 84.98 0.457 23.71%

Table 7. Competitive offloading results of edge detection task.

Device Test type

Average
Battery

consumption
in mAh

Discharge
rate in

mAh/sec
mAh Saving

%
Average

runtime in
seconds

runtime
improvement

in %

Total Energy
by Local

Execution
(Wh)

Total Energy by
scavenging [Mobile
side + Surrogate side]

(Wh)

Total Energy
Saving %

Huawei
Mediapad

Local 255 0.2114

1206

4.7 3.3327 29.10

Local+wifi 258.4 0.214 -1.33 1207.52 -0.12
Scavenge 103 0.1652 59.61 613.7 49.12

Huawei
Honor 6

Local 257.4 0.1961

1312.65

Local+wifi 249.4 0.1787 3.1 1395.4 -6.30
Scavenge 64 0.113 75.14 619.45 52.81

Samsung
Galaxy
Tab A

Local 542 0.254

2134

Local+wifi 543 0.2561 -0.18 2120 0.66
Scavenge 93.6 0.21 82.73 461.51 78.37

Samsung
Galaxy J5

Local 157.6 0.0743

2121.14

Local+wifi 162.8 0.07668 -3.30 2123.2 -0.09
Scavenge 31.6 0.06967 79.95 582.5 72.54

Results of task 2, scenario 2: Edge Detection of images
in competitive offloading

In this competitive offloading scenario, results and

evaluation of scavenging for edge detection (task 2) when
all the four devices are requesting for the surrogate at the
same time is done. The corresponding results are shown in
Table 7. These results show that, offloading from multiple
clients simultaneously provides a significant advantage for
battery saving and performance improvement of mobile
devices. The amount of battery charge consumed for task
via offloading is only 17% - 40 % of the battery
consumption of doing the task locally and the runtime are
only 21% to 51% of the runtime of doing the task locally.

Not only is offloading advantageous in saving battery life
but also it is efficient in terms of discharging rate as it is
shown in mAh/sec result column. In addition, an aggregate
29% energy savings are obtained in this case.

An interesting point to observe is that, all of the
devices have almost similar performance by offloading as it
is shown in almost equal runtime by scavenging. The only
exception is Samsung tab A which has a better performance
improvement by scavenging. Even though the devices have
different performance in executing a task by themselves as
it is observed from corresponding runtime result, their
performance is enhanced to the same level by offloading.
The percentage gains in this scenario are lower than the
case for task 2 when the devices are accessing the surrogate

Page 7427

alone (scenario 1). This is attributed to the network delay
and scheduler queue in sending and receiving processed
images to many clients from surrogate.

Results comparison with previous researches

Opportunistic offloading tests using Scavenger were

carried out in [13] on 7 inch Samsung Galaxy Tab and
Nokia N900 smart phone. The characteristics of these
devices are shown in the Table 1 with all other devices.
This shows that the devices used in this new experiment are
very powerful compared to the devices used in [13]. Even
the less powerful device in our experiment (Galaxy j5) is
more than twice as powerful compared to the galaxy tab
used in [13]. We can also infer that the trend of battery
capacity enhancement has been very slow. For instance, the
8 inch Huawei Media pad used in our experiment has
4800mAh capacity and the 7-inch tablet used in previous
tests [13] had 4000mAh battery capacity.

A similar task of encryption and decryption a file
under local, local execution with wifi (worst case scenario)
and remote execution cases are tested on the devices. The
surrogate machine used as Intel Core 2 Duo 2.26GHz
processor with 2.9 Gb of random access memory. For this
task, 89% of battery saving and 83% of runtime savings
were recorded for the galaxy tab. For the case of N900,
95% and 96% battery and runtime savings were obtained
respectively. In our tests, 87 – 97 % battery savings and 81
– 90% runtime improvements are observed. Another task
that were applied for the test in [13] is edge detection of
images. However, this task provides a very low advantage
in both battery and runtime savings. Only 20% runtime
savings and 7% battery saving were measured from the
galaxy tab as compared to 80 – 88% battery gains and 75 –
85 % runtime gains measured now. Some of the reasons for
better gains in our results are the better surrogate machine
used and the improved stability of android platform support
for python.

Offloading provides similar and even better benefits
with current state of art devices (thus contradicting to our
preliminary assumption based on the previous study). The
possible reasons that we have identified for this trend are:
• The current trends of having mobile devices equipped

with powerful processors and other resources is balanced
by increasing powerfulness of potential surrogate
machines. For example, the surrogate used in our case is
more powerful that surrogate used in [13]. It is twice
powerful in memory and is equipped with relatively
newer generation of processors.

• The current trends of having mobile devices equipped
with powerful processors and other resources is balanced
by increasing complexity of the tasks to be processed.
For example, complex (high Mpix) images to deal with.

• The improved stability of android platform support for
python might also be added to the reasons of why better

benefits obtained as compared with results of [13]
especially for image edge detection tasks

These battery and runtime benefits are also come with
saving of total energy consumed per task in our tests.
Through dynamic usage of computation resources, energy
efficiency can be improved per computational task. Not
only is offloading beneficial when a single device
scavenges for resources of surrogates as confirmed by [13]
and our results, but also it is beneficial when multiple
devices scavenge for resources of surrogates at the same
time as it is described in the results of competitive
offloading tests.

Threats to validity

This study aims to redo our earlier study, compare

results and find implications how new mobile devices have
affected the benefits of offloading. This setting aims to
ensure the internal validity of the study (design and
analysis of results). By using the same cases and tools (only
changing the devices) we aimed at consistent and
comparable studies. The measurements of the second study
were supervised by the person who did the first set of
measurements. All this was supervised by the professor.
The generalizability of the results (external validity) is still
rather limited. This study compares only two different
generations of devices from total of 3 manufacturers and as
such much more (baseline) measurements are needed for
fully generalizable results. Nevertheless we assume that the
reliability of the results is valid as the measurements have
been done by several persons.

6 Conclusion

The various tests and their corresponding results show

that both opportunistic offloading of computation and
competitive offloading provide a significant benefit for the
mobile side by prolonging battery life and improving their
performance. By scavenging for computing resources, the
performance of mobile devices can be enhanced as it is
observed in our results of series of tests. In addition, it is
noticed that energy can also be saved by offloading a
computation to a resource rich server. Hence energy
consumed per computing task can be minimized by
offloading both in opportunistic and competitive scenarios.
The current powerful state of art mobile devices can be
beneficial by cyber foraging since their increasing
computational powerfulness is balanced by the increasing
computational power of potential surrogate devices and the
increasing complexity (resource demands) of potential
mobile applications.

These results also show the potential implication for
guiding computing in a sustainable way. The traditional
cloud infrastructures are characterized by a very resource
rich servers located in relatively few number of datacenters,
which are far from potential mobile devices. The possibility
of saving energy, battery and runtime by competitive

Page 7428

offloading (offloading to servers located close to end
devices at the edge of a network) gives us a new possibility
to go for a more flexible and dynamic cloud infrastructure
which resides close to end devices. More over mobile
network providers can also provide such edge infrastructure
servers for subscribed customers. The sustainability
advantage is not only in saving energy per computation but
also the possibility of using mobile devices for a longer
duration without the need for new ones. This will reduce
the manufacturing life cycle emissions from end devices.
However, these also require many number of edge servers
to be deployed but as compared to enormous number of end
devices, their number is still low and a more optimized
hardware and software design can be applied on these
specialized edge servers. In addition, the close by servers
will enhance the user experience by minimizing latencies.
Latencies between clients and a closest public cloud range
from 20 – 40 ms and 100 – 150 ms over wired and LTE
mobile networks respectively. While this can be acceptable
for simple applications such as web browsing, it makes
impossible or very difficult to create highly interactive
applications. For instance, creating interactive feeling in
augmented reality applications require that end-to-end
latencies (both processing and networking) remain below
20 ms. Therefore, the availability of these close “mobile
clouds” that can execute resource intensive and latency
sensitive tasks on behalf of mobile devices enable such
applications through minimizing latencies. The rise of
Internet of Things devices also increase resource demands
from mobile devices. Such devices, e.g. wearable
computers are even resource constrained than smartphones
and tablets. Therefore, enabling opportunistic offloading
will augment such devices resources and enable number of
potential applications.

However, to enable the above applications, a more
energy and compute resource aware offloading technology
or even a protocol level implementation is required. Such
implementation has to make the task of deciding and
offloading much easier to minimize the overhead due to
decision and cost benefit analysis. The Scavenger
offloading technology on the other hand requires running
the daemon software all the time on the surrogates whether
a request from clients is coming or not. Such approach
which involves idle daemon running will eventually
outweigh or counter balance the energy saving benefits
obtained by offloading.

7 Acknowledgments

The research is fully supported by European Union

PERCCOM Erasmus Mundus program [16]. The authors
would like to acknowledge all the partner institutions,
sponsors and researchers of the program.

8 References

[1] M. Satyanarayanan, “Pervasive computing: Vision and
challenges,” IEEE Pers. Commun., vol. 8, no. 4, pp. 10–17,
2001.

[2] J. M. Harris, “Sustainability and Sustainable Development,”,
International Society for Ecological Economics, 2003.

[3] W. Zhao, Y. Peng, F. Xie, and Z. Dai, “Modeling and
simulation of cloud computing: A review,” Proc. - 2012
IEEE Asia Pacific Cloud Comput. Congr. APCloudCC 2012,
pp. 20–24, 2012

[4] B. Abbasov, “Cloud computing: State of the art reseach
issues,” 8th IEEE Int. Conf. Appl. Inf. Commun. Technol.
AICT 2014 - Conf. Proc., 2015.

[5] M. Sharma, H. Bansal, and A. K. Sharma, “Cloud
Computing: Different Approach & Security Challenge,” Int.
J. Soft Comput. Eng., vol. 2, no. 1, pp. 421–424, 2012.

[6] A. S. Al-Ahmad, S. A. Aljunid, and A. S. A. Sani, “Mobile
cloud computing testing review,” Proc. - 2013 Int. Conf.
Adv. Comput. Sci. Appl. Technol. ACSAT 2013, pp. 176–
180, 2014.

[7] S. Kitanov and T. Janevski, “State of the Art: Mobile Cloud
Computing,” 2014 Sixth Int. Conf. Comput. Intell. Commun.
Syst. Networks, pp. 153–158, 2014.

[8] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud
computing: A survey,” Futur. Gener. Comput. Syst., vol. 29,
no. 1, pp. 84–106, 2013.

[9] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies,
“The Case for VM-Base Cloudlets in Mobile Computing,”
Pervasive Comput., vol. 8, no. 4, pp. 14–23, 2009.

[10] S. Hakak, S.A. Latif, G. Amin, “A Review on Mobile Cloud
Computing and Issues in it,” Int. J. Computer Applications,
vol. 75, no. 11, 2013.

[11] M. Patel, Y. Hu, P. Hédé, “Mobile-Edge Computing,”, white
paper, ETSI, no. 1, 2014, available from:
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-
edge_computing_-
_introductory_technical_white_paper_v1%2018-09-14.pdf

[12] G. A. Lewis, P. Lago, and G. Procaccianti, “Architecture
strategies for cyber-foraging: Preliminary results from a
systematic literature review,” in Proceedings of the 8th
European Conference on Software Architecture (ECSA
2014), 2014, pp. 154–169

[13] J. Parkkila and J. Porras, “Improving battery life and
performance of mobile devices with cyber foraging,” in
IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications, PIMRC, 2011.

[14] J. Porras, O. Riva, and M. Kristensen, “Dynamic resource
management and cyber foraging,” Middleware for Network
Eccentric and Mobile Applications, vol. 1, p. 349, 2009.

[15] M. D. Kristensen, “Scavenger: Transparent development of
efficient cyber foraging applications,” in Proc. Percom’10,
Mannheim, Germany, 2010, pp. 217–226.

[16] Porras J., Seffah A., Andersson K., Rondeau E., Klimova A.:
PERCCOM: A Master Program in Pervasive Computing and
COMmunications for sustainable development, Conference
on Software Engineering Education and Training
(CSEE&T), 2016.

Page 7429

APPENDIX 1: Baseline test results

Fig. 1. Baseline test results for the new study

Fig. 2. Baseline test results of the previous study [13]

 3700

 3800

 3900

 4000

 4100

 4200

 0 500 1000 1500 2000 2500 3000 3500

B
a

tt
e

ry
 c

h
a

rg
e

 (
m

A
h

)

Time (seconds)

Energy Usage Baselines with Samsung Galaxy Tab

Tab Idle
Tab Idle Ping

Tab CPU
Tab CPU Ping

Tab Networking

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 0 500 1000 1500 2000 2500 3000 3500

B
a

tt
e

ry
 c

h
a

rg
e

 (
m

A
h

)

Time (seconds)

Energy Usage Baselines with N900 phone

N900 Idle
N900 Idle Ping

N900 CPU
N900 CPU Ping

N900 Network

Fig. 1. The basic energy consumptions of Samsung Galaxy Tab and Nokia N900

laptop is running Ubuntu 10.04 as its operating system. The
WLAN traffic is passed through a D-Link DIR-615 wireless
router that supports standard IEEE 802.11 b/g/n connections.
During the tests only the device and the surrogate computer
were connected to the router and no other traffic was passing
through it.

The first two tests for measuring the Scavenger’s perfor-
mance battery-wise are based on the previous work of Kris-
tensen and Bouvin [5]. Both of these tests were implemented
using Python Imaging Library3. However, due to to the current
restrictions of installing C-language based python libraries
on Android, we were not able to repeat the tests using the
Samsung Galaxy Tab. Thus we have only results from the
Nokia N900 which can be compared to the previous research.
These two tests try to portray a real-life scenario, where a user
of a mobile device edits images. The first experiment simulates
the user browsing his images, selecting an image for editing,
previewing three different image operations on a small (0.3
MP) preview image and then finally commiting the changes
by applying them on the original 5 Megapixel image. The
same operation is done for 15 images in each test run and all
of the experiments have been performed six times. The values
displayed are the averages of these runs. The results of the
first test are shown in table I.

It is quite clear from the first moment, that the running time
does drop down to 65% of the local execution time as well as
the energy consumption. Keeping up the wireless connection
seems to bring only a small amount of increase to running time
and energy consumption as the Scavenger looks for available
resources from the wireless local area network. However, look-
ing at the consumption/time column shows something different
from the previous results by Kristensen and Bouvin [5]. Their

3PIL: http://www.pythonware.com/products/pil/

TABLE I
EDITING IMAGES - N900

Runtime mAh mAh/s
Local 1035.50 63.14 0.0607

Local - Wifi 1041.17 68.71 0.0661
Scavenge 675.66 41.86 0.0616

Change 65.25% 66.29% 101.38%

TABLE II
EDITING PREVIEW IMAGES- N900

Runtime mAh mAh/s
Local 1154.30 58.17 0.0505

Local - Wifi 1153.73 61.67 0.0535
Scavenge 1119.32 68.50 0.0612

Change 96.97% 117.77% 121.12%

study pointed out that energy consumption per time unit would
also decrease with the use of cyber foraging. However, There
is no noticiable change in the energy consumption per time
unit here. This is probably due to the fact, that the energy
efficiency is better on the N900 than its predecessor the Nokia
N810.

As the first test was quite resource intensive, the next one
approaches scavenging from a different perspective. In this
test the user performs the operations only on smaller preview
images. The complexity of these is quite small thus making
it feasible to perform the operations locally. The test can be
considered to simulate user browsing images, selecting an
image, previewing three image operations and then queuing
the tasks for later execution. This is done for 75 images in
each test run and again these are tested six times. The results
shown in the table II are the averages of these test runs.

93

Page 7430

