Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

Examining User-Developer Feedback Loops in the iOS App Store

Kendall Bailey
Oregon State University
kbaileyky@gmail.com

Meiyappan Nagappan
University of Waterloo
mei.nagappan@uwaterloo.ca

Danny Dig
Oregon State University
digdQ@eecs.oregonstate.edu

Abstract

Application Stores, such as the iTunes App
Store, give developers access to their users’
complaints and requests in the form of app reviews.
However, little is known about how developers are
responding to app reviews. Without such knowledge
developers, wusers, App Stores, and researchers
could build upon wrong foundations. To address
this knowledge gap, in this study we focus on
feedback loops, which occur when developers
address a user concern. To conduct this study we
use both supervised and unsupervised methods to
automatically analyze a corpus of 1752 different
apps from the iTunes App Store consisting of 30,875
release notes and 806,209 app reviews. We found
that 18.7% of the apps in our corpus contain
instances of feedback loops. In these feedback loops
we observed interesting behaviors. For example,
(i) feedback loops with feature requests and login
issues were twice as likely as general bugs to be
fized by developers, (ii) users who reviewed with an
even tone were most likely to have their concerns
addressed, and (iii) the star rating of the app
reviews did not influence the developers likelihood
of completing a feedback loop.

1. Introduction

Software distribution platforms (such as App
Stores) have become a default means of acquiring
mobile software and can host apps developed
by a wide variety of companies. In addition
to the software, App Stores provide channels
of communication between users and developers.
Acting as a third-party, App Stores moderate
both the apps and app reviews, to ensure ethical
treatment of both developers and wusers [1-3].
Users re-purpose App Store reviews to provide
developers valuable information about bugs and
future requirements [4-6] in the free text portion
of their reviews.

Current research

[4, 7-10] aims to help

URI: https://hdl.handle.net/10125/60178
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

HYCSS

developers identify actionable information from
app reviews, but we know little about how
developers are currently responding to the reviews
from users. Ignoring this could lead to research
and the development of tools that are ill-suited
to developers’ needs. In this study we focus
on feedback loops, which are instances of app
reviews where developers respond to a user concern.

We determine feedback loops using release notes
and user reviews provided on the iTunes App Store
[11]. We identify feedback loops by searching
for instances where users gave their feedback in
the form of users reviews addressed in the release
notes of an application’s subsequent release. We
automatically identify feedback loops using SVM
classifiers and a semantic relatedness algorithm
based upon release notes and user provided reviews.
To conduct this study we analyzed a corpus of 1752
apps from the iTunes App Store consisting of 30,875
release notes and 806,209 user reviews. Using our
corpus and the automated data analysis, we answer
the following research questions:

RQ1: Are developers responding to feedback
provided in user reviews? We found feedback loops
present in 331 apps which represents 18.7% of the
eligible applications in our corpus.

RQ2: What are the characteristics of these
feedback loops? Among the feedback loops, Log-in
Issues, Feature Requests, and Crashing information
provided in app reviews were resolved by developers
more often than general reports of bugs. When
analyzing the categories of the feedback loops,
we discovered developers of music and social
networking apps responded to the most user
feedback. Developers address the largest amount
of feedback within 90 days of being reported.

RQ3: What do users do that enables a feedback
loop? Through analysis of user ratings, we
found Crashes and Log-in Issues elicited developer
response in lower star ratings while Feature
Requests comprised most of the developer response

Page 7411

We've also

fixed a few

crashes and
bugs

1- we fixed a
crash under i0S

Search
Scope:

A =B =C

Initial Release Time

There's a lot of
crashing errors
also +(

It's crashes
whenever | try to
make a gif.

Figure 1: Examples of feedback loops. Ovals above
the time line are statements from release notes.
Rounded squares below the time line are statement
from reviews. Same color marks a completed
feedback loop. Examples are from GifBoom app.

in highly rated reviews. We analyzed sentiments

and found the majority of the feedback addressed

by developers is expressed using a neutral tone.
This paper makes the following contributions:

1. Case Study. We designed and answered
three novel research questions to understand
the extent to which developers respond to
feedback in App Stores.

2. Implications. Our study has implications
for researchers, developers, users, and App
Stores. We present these in Section 7.

2. Feedback Loops

We define a feedback loop as an instance where
a user review describes a short-coming or a request
and at a later date the evidence of the change
is found in the release notes of the corresponding
mobile app. Our definition allows for feedback loops
to be completed across multiple releases. Figure 1
shows examples of 4 feedback loops. In each case,
the user submits a description of a bug that they
encountered and gave the app a rating below 5 stars.
Later, the developer is able to fix the bug mentioned
in the app reviews.

After completed feedback loops, the users enjoy
a better experience with their app. The developer
should no longer receive low rated app reviews for
the fixed issues. The iTunes App Store can generate
more profit from more downloads of the now higher
quality software. Therefore, completing feedback
loops creates a win-win-win situation. However,
there has been little work on feedback loops as we
show in Section 6. Therefore, in this paper we
examine the characteristics of such feedback loops.
To identify feedback loops, we use a classification

tool developed by the first author, thoroughly
described in her 2015 MS dissertation [12].

3. Corpus of Data and Metholodogy

We collected our corpus from the iTunes App
Store by scraping the information available on each
app’s iTunes page and using a modified version of
Kent Bye’s script ! to collect reviews. Our corpus
expanded from an original list of 50 apps using lists
of top apps, other apps by the same developer, and
apps that other customers bought also provided on
the iTunes pages. While we could have chosen
an equal number of apps from all categories, we
chose otherwise, since we wanted our dataset to be
representative of the number of apps per category in
the App Store. Our mining approach ensures that
we have a proportional number of apps. We seeded
our mining algorithm [12] with the top 50 iOS apps
as determined by Distimo 2 on December 30, 2014.
Subsequently we have collected 1752 different apps
from the iTunes App Store consisting of 30,875
release notes and 806,209 app reviews.

We divided our corpus into three main parts,
app metadata, release data, and review data.
App metadata includes an app’s id number,
price, category, and overall star rating. Release
data includes a release’s publication date, version
number, and release notes. Review data includes
a review’s rating in stars, submission date,
submitter’s user name, sentences in the freeform
text portion. The submission dates of release notes
range from July 7, 2008 to Feb 2, 2015 and the app
reviews range from July 10, 2008 to Jan 28, 2015.

In this paper we chose to use apps from the
iTunes App Store because despite its popularity,
researchers study it much less than the Google
Play Store. At the time of conducting this study,
iTunes App Store saved the release notes for
up to the previous 25 releases while the Google
Play Store only displayed the most up-to-date
release. To automatically analyze the large corpus
we use a suite of ML and NLP tools: Support
Vector Machines (i.e., LIBLINEAR library [13]),
semantic relatedness tools to determine relatedness
between words and short phrases (based on
Wikipedia Miner [14]), and sentiment analysis (i.e.,
SentiStrength [15]). Our companion report [12]
presents the best practices we used to ensure the
highest quality of results, evaluating the accuracy
of the tools with 3 independent human reviewers.

Thttps://gist.github.com/kentbye /3740357
2http://www.distimo.com (now part of App Annie)

Page 7412

Category Total Apps Feedback
Apps with Loops
Feedback
Loop

Games 41.3% 29.4% 27.7%

Photo & Video 12.8% 14.2% 13.7%

Social Networking 9.9% 14.1% 13.7%

Music 7.7% 13.4% 10.0%
Entertainment 6.6% 7.0% 8.2%
Navigation 10.6% 7.3% 6.7%
Business 1.2% 1.7% 3.4%
Utilities 2.1% 2.9% 3.3%
Education 4.5% 2.9% 3.0%
Productivity 2.3% 2.0% 2.5%
Lifestyle 2.7% 3.5% 1.9%
Travel 1.3% 1.7% 1.4%
News 0.4% 0.6% 0.8%
Reference 0.7% 0.9% 0.5%
Finance 0.1% 0.3% 0.0%
Books 0.2% 0.0% 0.0%
Health & Fitness 0.5% 0.0% 0.0%
Medical 0.1% 0.0% 0.0%
Sports 0.2% 0.0% 0.0%
Weather 0.1% 0.0% 0.0%
Total 1768 331 1220

Table 1: The distribution of feedback loops by
category of application. The actual numbers in each
column (and not percentages) and distribution plots
for this table and other following tables are in [12].

4. Results

4.1. RQ1: Are developers responding to
feedback provided in user reviews?

First, we wanted to determine if developers were
responding to feedback submitted in app reviews.
To reduce the false positives, we set the threshold
for sentence semantic relatedness intentionally high.
Therefore the number of feedback loops we detect
is a lower bound to the feedback loops that
exist. Additionally, we remove all reviews with
a non-actionable label (“Not Specific”, “Content
Related”, and “Use Limit”). This removes close to
75% of the app reviews from analysis, but is similar
to findings by Chen et al. [4], who report that
a majority of app reviews are not informative for
developers. After these filters, we found feedback
loops present in 331 apps, which represents 18.7%
of the eligible applications in our corpus.

4.2. RQ2: What are the characteristics
of these feedback loops?

Now that we established the presence of feedback
loops, we begin our analysis of the characteristics
of feedback loops on the app level. This research
question is divided into several sections based on
focus: category of the application, label of the app
reviews, and length of time for developer to respond.

4.2.1. Feedback Loops by Category We
looked at the distribution of feedback loops by
category of the application, summarized in Table
1. We discuss interesting results below. Table
1 shows “Games”, “Photo & Video”, and “Social
Networking” to have the highest absolute number
of feedback loops.

However, in comparison to the category

composition of the entire corpus, the number
of game applications with feedback loops
are underrepresented. The “Education” and
“Navigation” category also had a smaller ratio
of apps with feedback loops compared to others.
Table 1 shows the “Music”, “Business”, and “Social
Networking” apps to contain a higher proportion
of apps with feedback loops.
Discussion: “Games” may be underrepresented
because of less information provided in app reviews.
The average length of a app review for an app in
the “Games” category is 1.84 sentences, while the
average is 2.23 sentences for apps in a non-game
category. The “Education” category may be
underrepresented due to the target audience. We
looked over the top 10 paid apps in the category
and found 9/10 of the apps were targeted at children
under the age of 12. Though children are the users,
their parents will write the reviews of the apps. Our
results suggest that since the primary users are not
writing the review, the app reviews provide a less
informative information.

“Navigation” apps may have fewer feedback
loops because “Navigation” apps often rely on
information or functionality outside of the software
and tend to use GPS as part of the services
provided. For example, an app that shows public
transportation routes will rely on information from
the public transportation company for scheduling or
location, something the developer may not be able
to control. “Navigation” apps not only encounter
external complications, but also contend hardware
limitations. “Navigation” app reviews contain
15.72% of Resource Heavy complaints, second only

Page 7413

to the “Games” category. Many of the “Navigation”
apps in our corpus make use of GPS, such as
an app that gives real time directions. While
developers can take steps to mitigate the battery
consumption due to GPS, “Navigation” apps will
consume resources at a faster rate than apps that
do not use GPS.

One reason for the prominence of feedback loops
in “Music”, “Business”, and “Social Networking”
apps may be the dominance of certain apps in
these categories, such as Facebook, Twitter, and
iTunes. Familiarity with well-known apps may
provide users with expectations for apps with
similar functionality.

The “Business” Category not only contains a
larger percentage of apps that have feedback loops,
but also has the largest ratio of feedback loops
to app at 7.2 : 1. The apps responsible for
this high ratio are Citrix Receiver, Genius Scan,
and SignEasy with feedback loops numbering 15,
12, and 9 respectively. Further analysis of the
feedback loops in Citrix Receiver found that 11 of
the feedback loops were tied to a single release. The
users had encountered a bug that caused the Citrix
Receiver app to show a black screen shortly after
starting the application. This bug was both critical,
as it prevented users from using the application, and
easy to describe which is likely the reason that so
many feedback loops are connected to this bug.

The high number of feedback loops in Genius
Scan demonstrate a limitation in our current
implementation for finding feedback loops. Genius
Scan is an app centered around scanning,
organizing, and sending documents from smart
phones. Genius Scan saw a spike of 7 feedback loops
in one of its releases, unfortunately this was caused
by a number of false positives in our algorithm.
EasySign suffered from the same language problem.

EasySign and Genius Scan are both apps with
specific functionality that focuses the language used
by developers and users. The problems caused by
language usage in niche purpose apps could be fixed
in future work by restricting the tf-idf used in the
semantic relatedness algorithm to each app. This
would limit the impact of words like “scan” and
“document” would have on the relatedness score in
an app whose main service is scanning documents.

Observation 1: “Games”, “Education”,
and “Navigation” apps have relatively fewer
feedback loops while “Music” and “Social
Networking” apps display relatively more
feedback loops.

Label % % Loops
Reviewyg Feedback| per
Loops 10K
revs
Bug Fix (BF) 40.24% | 41.39% | 42
Feature Request | 19.13% | 25.25% | 53
(FR)
Crashing (C) 17.20% | 26.48% | 62
Compatibility 8.15% | 0.41% 2
Problems (CP)
User Interface | 5.97% | 0.25% 2
(u)
Response Time | 3.66% | 1.15% 13
(RT)
Network Problem | 3.46% | 1.80% 21
(NP)
Resource Heavy | 1.31% | 0.25% 8
(RH)
Log-in Issue (LI) | 0.89% | 3.03% 137
Total 302115 | 1220

Table 2: The distribution of feedback loops by the
type of feedback the user provided. The 2"¢ column
shows the number of times feedback with a label
appeared in the app reviews in the corpus. The
374 column shows the number of feedback loops
completed of a label. The 4** column shows the
number of feedback loops completed relative to
10,000 statements of feedback with that label.

4.2.2. Feedback Loops by Label of app
reviews Next we looked at the trends in feedback
loops by the labels assigned by the app review SVM
classifier [12]. Table 2 shows bug fixes are the most
frequent type request and type of feedback loop,
followed by Feature Requests and Crashing. All
other types of feedback loops comprised a small
portion of the total number of feedback loops (less
than 25%).

Discussion: We suspect the reason most of the
labels are so infrequently completed is due to users’
familiarity with the type of problem. Bugs and
crashing have crept into the vernacular such that
most people can understand how to describe the
error. Far fewer users will be able to attribute their
short battery life or slow response time to a specific
application, and may just assume their phone or
battery is old. However, the expansion of bugs
and crashing terms into general English could cause
over-reporting of general bugs and crashes when
other problems to be under-reported. For example,

Page 7414

an app takes several minutes to download something
from the Internet and the developer provides no
indicator that the app is currently working (such
as a progress bar), the user then thinks that the
app has frozen and crashed because nothing is
happening. The user could report this as a crash,
when in reality the problem was Network Issue.

User Interface feedback loops are also sparse.
The low number of completed loops could be
attributed to the classification of User Interface
statements, which included both positive and
negative mentions. An app review stating,“Crisp,
clean interface, easy to use, and so much fun.”; are
not actionable for developers.

Next we determined the number of feedback
loops completed compared to the total number
of feedback with the same label provided in app
reviews (shown on the far right of Table 2) We found
that both Log-in Issues and Feature Requests were
almost twice as likely as bug fixes to be addressed by
developers. Log-in Issues may have a high response
rate because they are both high on the triage list
and can be quickly localized to the bug. Users
being unable to login would preclude their use of
app which could raise the importance to developers.
Crashing problems are also more likely than Bug
Fixes to be addressed by developers. One reason for
this may be severity, small bugs may be tolerable to
users whereas crashing would greatly inhibit users’
ability to use the app.

Finally, developers may not want to admit how
many bugs they have introduced and simply add
a blanket statement along the lines of “fixed some
bugs”. Being vague allows the developer to both
please the customer, who will find that the bug
they experienced is gone when using the app, and
save face. These vague Bug Fixes are ignored
by our semantic relatedness algorithm and thus
under-report the number of Bug Fix feedback loops.

bservation 2: Bug Fixes, Feature Requests;
and Crashing compose most of the completed
feedback loops. However, more Log-in Issues
complete feedback loops relative to number
reported. The spareness of other feedback loops
could point to communication issues between
users and developers.

4.2.3. Feedback Loops by Time to
Completion The length of time in days that
developers took to complete a feedback loop is
the final feature of application-feedback loop
characteristics we analyze. Table 3 shows the

number of feedback loops completed within a
certain period of time (e.g. “within 1 week”, or
“within a month”). We found that the number
of feedback loops completed remained fairly
static over the time periods. We also observed
developers had the highest number of most
feedback loops completed within the 30-90 day
period. Surprisingly, a large number of feedback
loops were completed within a 7 day time period,
even more than within 90-180 day time period.

To gain a better understanding of what type of
feedback loops are completed over time we broke
each of the time periods up by type. Table 3
shows that although still composing a significant
portion of the feedback loops, in general Bug Fix
feedback loops decrease over time. Unlike Bug
Fixes, Crashing feedback loops comprise roughly
the same percentage of feedback loops in all time
periods except for those over 1 year in length. As
the time from submission grows, Feature Request
feedback loops comprise a larger portion of the
feedback loops as the time between app review
submission and developer completion grows.

Discussion: The decrease in Bug Fixes over time
could be because developers eradicate found bugs
over time so there are less to fix later. The exception
for this trend is feedback loops completed in more
than 1 years time. The reason for this behavior
could be that as new releases are pushed, newer,
more visible bugs take priority over old bugs.

One of the reasons crashes may be so prevalent
across all time periods can be attributed to the
description provided by the user. For example,
in the app “Slow Down Music Trainer”, one
user submitted “It crashed once in a while,
but functioned perfectly” The developer now
knows that their app crashes, but is not provided
information on when or where the crash occurs.
This could make it difficult to locate the crash
until another user provides more information on
where the crash is occurring. Crashes can also
be the result of Compatibility Issues or problems
interacting with other apps running on the same
phone. One user of the “NYC Subway Map” app
states “This app, if kept running in the background,
may crash the iPhone4 running iOS 4.1” In this
case, there could be several sources of the crash;
the app could have compatibility problems with i0S
4.1, the app could have compatibility problems with
other apps concurrently running on the phone, or
the app could be crashing due to any problem in its
programming. Finally, though crashes are a critical
problem, they may only occur when the user takes

Page 7415

Label <7 days 7-30 days 30-90 days 90-180 days 180-365 days 365+ days
Bugfix 60.67% 39.78% 39.45% 34.30% 26.13% 49.78%
Feature Request 8.99% 19.89% 26.56% 30.23% 34.17% 30.04%
Network Problem 1.61% 1.56% 2.33% 2.51% 2.69%
Response Time 1.12% 1.61% 0.39% 0.50% 3.14%
Compatibility Issues 0.54% 0.58% 1.01% 0.45%
Resource Heavy 0.50% 0.90%
Crashing 29.21% 33.33% 27.34% 30.81% 28.64% 13.00%
User Interface 0.54% 0.58% 0.50%
Log-In Issue 2.69% 4.69% 1.16% 6.03%
Total Absolute Numbers 178 186 256 172 199 223

Table 3: Kinds of feedback loops completed by time period. The percentage are relative to other loops
inside the same time period column (i.e., the numbers in each column add up to 100%). Empty positions
denote 0%. Reading the table horizontally, over a period of 1-year, bug fixes decrease while feature requests
increase. Crashes maintain a fairly significant portion of feedback loops over all but the longest time periods.

certain actions. If those actions are not central to
the functionality of the application, they may be
placed on lower level of triage than other reported
problems. For example, in the app reviews of the
app “Muzy”, one user commented “Only crashes
when I pick a photo.” and another user submitted
“It crashes when I click on my camera roll..” If
choosing a photo from the camera roll is not the
only way to import pictures to the application,
the developers at Muzy may give this crash bug a
lower priority than other bugs. The feedback loop
mentioned by the two users was completed in just
over 180 days.

The increase in Feature Request feedback loops
can be attributed to this: features can be complex
and take longer to implement and may have lower
priority than fixing bugs. Additional features may
also be planned according to development calendar.
For example, a team plans to release new content
for their app every quarter, but release every few
weeks for maintenance on existing features.

Observation 3: There was no correlation
between completion of feedback loops and time.
Feedback loops completed within a week are
likely to be bug fixes.

4.3. RQ3: What do users do that

enables a feedback loop?

Our third research question looks for what users
can do to encourage developers to respond to their
feedback. We divide this research question into
three parts: feedback loops by star rating, bartering
with the developer, and feedback loop by sentiment.

Label l-star 2-star 3-star 4-star 5-star
BF 44.9% 39.7% 44.1% 35.2% 39.9%
FR 7.6% 16.6% 16.1% 39.2% 47.4%
NP 1.3% 33% 06% 1.7% 24%
RT 23% 07% 06% 06% 0.6%
CP 0.8% 1.1%

RH 02% 0.7% 0.3%
C 37.1% 35.1% 351% 21.6% 8.2%
Ul 0.9%
LI 58% 4.0% 36% 06% 0.3%
Loops 32.3% 12.4% 13.8% 14.4% 27.1%
AppRating28.9% 11% 12.6% 15.2% 32.3%

Table 4: Distribution of type of feedback loop
by star rating (total in each column is 100%).
Empty positions denote 0%. Refer to Table 2 for
acronyms in the first column. Crashes (C) and
Login Issues (LI) decrease as the star rating increase
while Bugfixes (BF) remain fairly constant.

4.3.1. Feedback Loops by Star Rating First
we analyzed distribution of star ratings given by
users across the corpus and throughout feedback
loops. Table 4 last row shows that across the corpus
the majority of the app ratings are 5-star ratings.
The number of 5-star ratings may seem high, but
our corpus formed by collecting information from
the top ranking apps from the iTunes App Store, so
the ratings are slanted towards the higher end.
Across the feedback loops (second to last row),
the user ratings are more negative in comparison
to app rating. We observed the number of 1-star
reviews to be the most frequent user rating in
feedback loops. When considered with distribution
of type of feedback loop we found, this is not

Page 7416

surprising as Bug Fixes and Crashing comprised
a majority of feedback loops observed. More
surprising was the number of 5-star ratings. In
theory, the 5-star rating should be used for perfect
apps, not apps that are in some way lacking. To
further explore the user ratings discrepancy, we
looked at the distribution of feedback loop type
within star ratings, shown in Table 4. We noticed
that as the star rating increases the percentage
of Feature Requests feedback loops completed also
increases.

Conversely as the star rating decreases the
number of Crashing feedback loops also increases.
Log-in Issue feedback loops follow the same trend
as Crashing feedback loops.

Discussion: Crashing and Log-in Issue feedback
loops may follow a strong trend because they
are issues that will prevent the user from using
the app. We further examined the Crashing
feedback loops with 5-star ratings. Of the 27 app
review statements, 6 mentioned the app “never
crashing”, 2 thanked the developers for fixing
crashes in previous releases, and the remaining
reviews discussed crashes experienced by users. One
user states, “Luv it, BUT. It crashes a lot and
has too many ads.” but gives “Breakfast Maker” a
5-star rating. Surprisingly, Bug Fixes remain a
noticeable percentage of the feedback loops across
all star ratings where we expected them to follow the
same trends as Crashing and Log-in Issue feedback
loops. However, Khalid et al. [5] found that while
users complain about bugs in different star ratings,
other issues eclipse the presence of bugs. In addition
to Khalid et al’s findings, our study suggests that if
users are provided the functionality they want, they
will be able to overlook smaller problems.
Bartering with Developers: Among the
reviews, we noticed instances where the users
would use star ratings as bartering chip with
the developers. When trying to barter with the
developer, the user will claim that if the developer
adds or fixes some feature of the app then the user
will return and replace the low rated review with a
higher one.

We wanted to see if the user made good on
their promises, so we searched the reviews found in
feedback loops for bartering offers and compared the
request in the review with the rating. For example,
the following app review has a user rating of 3 stars,
"GIVE ME A BIG SELECTION OF DOGS THEN

answers, "New puppies have been added.”
It is possible that the user did not feel that the

developer added enough to the app to warrant a
rating change, but of the 15 bartering offers reviews
we found in the feedback loops, none of the users
returned to change their ratings. In addition to the
developer not doing enough for the user, it is also
possible that the user forgot or did not care enough
to return to update their review.

Not returning to change ratings could indicate
that developers have no reason to acquiesce to users’
demands as none of the users updated their reviews.

Observation 4: Bugfix feedback loops were
present at all star levels. Log-in issues and
Crashing feedback loops decreased with rating
while Feature Requests increased with rating.
Users did not return to adjust ratings when
trying to barter with developers.

4.3.2. Feedback Loops by Sentiment The
final user dimension we examined is sentiment
expressed in the app reviews. Sentiment analysis,
also called opinion mining, quantifies the emotion
conveyed by the author in texts. For our research
we elected to use SentiStrength [15], a lexicon based
tool that calculates the sentiment expressed in
short texts. When given a sentence, SentiStrength
returns both a positive and a negative value on a
scale of 1 to 5 where 1 is weakly expressed and 5
is strongly expressed emotion. We simplify these
values to a single score by subtracting the score for
negative emotion from positive emotion to get the
net sentiment of the sentence as a value -4 to 4.

SentiStrength already considers emoticons when
calculating sentiment [15], however it does not
account for emoji. Originally from Japan, emoji are
pictures used to convey emotions available for use
in electronic messages, like less abstract emoticons.
Technology providers such as Microsoft, Apple, and
Google added emoji as default characters sets to
their mobile devices as their popularity grew and
eventually standardized the Unicode codes for a
set of common emoji in 2010 [16]. We created a
mapping of popular emoji to emoticons to adapt
SentiStrength for more mobile based responses.

Research in sentiment analysis [17] shows that
increased levels of sentiment relates to repeated
letters. We created a spellchecker based on
PyEnchant United States English Dictionary that
would both correct misspelled words and preserve
repeated letters.

Table 5 shows the distribution of app review
statements by net sentiment. Similar to the star
ratings, app review statements in the overall corpus

Page 7417

Label -4 -3 -2 -1 0 1 2 3 4
privacy/ethical issues 0.16% 0.34% 0.40% 0.14% 0.10% 0.15% 0.21% 0.33%

bugfix 42.92% 42.14% 44.42% 46.26% 37.05% 41.53% 41.54% 32.16% 33.58%
feature request 16.04% 16.42% 15.08% 14.02% 17.42% 21.22% 21.68% 26.20% 28.23%
network problem 2.52% 3.14% 3.60% 5.61% 3.58% 2.85% 2.74% 2.72% 1.29%
response time 1.89% 3.50% 2.72% 2.76% 4.35% 3.27% 2.64% 2.60% 3.32%
compatibility issues 6.13% 5.33% 6.27% 5.91% 8.83% 7.46% 8.12% 8.64% 6.64%
resource heavy 0.63% 0.92% 1.47% 2.10% 1.41% 1.12% 0.81% 0.90% 0.55%
crashing 24.06% 21.33% 18.40% 15.56% 19.87% 14.02% 12.62% 14.81% 16.79%
user interface 4.56% 5.65% 6.22% 5.96% 4.99% 6.06% 7.70% 9.49% 7.38%
use limit 0.79% 0.52% 0.64% 0.67% 1.25% 1.68% 1.56% 1.57% 1.11%
log-in issue 0.31% 0.71% 0.78% 0.99% 1.17% 0.65% 0.38% 0.57% 1.11%
Across feedback loops 0.21% 1.25% 3.25% 7.88% 46.34% 24.20% 13.77% 2.92% 0.18%
Overall Corpus 0.37% 1.76% 3.99% 712% 33.40% 24.30% 20.43% 7.97% 0.66%

Table 5: Distribution of net sentiment across Feedback Loops by label (each column adds up to 100%).
Empty positions denote 0%. The distribution of net sentiment across all reviews and the net sentiment
across feedback loops. The net sentiment expressed over all reviews has positive sentiment, while feedback

loops are mostly neutral in tone.

express more positive than neutral or negative
sentiment; i.e. if you summed the number review
statements with a sentiment score greater than
one, it contain the majority of sentiment expressed.
However, neutral sentiment describes the largest
portion app reviews in the corpus. The sentiment
expressed in feedback loops followed similar trends
to total corpus; most of the app reviews statements
in feedback loops were neutral with a larger number
of positive reviews than negative ones. However,
while the total corpus could be described as overall
positive in sentiment, feedback loops are neutral.
To further our understanding, we divide each level
of sentiment into the label of the feedback loop
(Table 5).

Discussion The neutrality of statements in
feedback loops can be attributed to wusers
communicating enough information for developers
to act on. When divided by label Feature
Requests follow the same trend as in star rating,
increasing in proportion as the sentiment becomes
positive. Log-in issues also follow the trend
established in star rating, increasing in proportion
as sentiment becomes negative. Bug Fixes follow a
more downward trend as sentiment becomes more
positive, which is different from the star ratings
which remained more static across ratings. This
shows that while users may be willing to overlook
bugs in their rating, they won’t be happy about it.

Crashing feedback loops increase with the
positivity. However, crashing feedback loops
illustrate a limitation of SentiStrength, which was

developed using comments from a social networking
site. The sentiment scores given by SentiStrength is
not calibrated for mobile applications. For example,
the word “crash” has a sentiment score of 0.

Observation 5: The app reviews in a majority
of feedback loops use a neutral tone.

5. Threats to External Validity

We conducted our research on a sample of iOS
mobile apps and the iTunes App Store. We cannot
guarantee that the results will generalize to Android
apps and the Google Play Store because it adds
a dimension to the developer-user interaction by
allowing developers to directly respond to user
reviews. The ability to respond to app reviews
could allow developers to extract extra information
from users to better address their needs. Hence,
by limiting our study to just iOS apps, we are
able to study feedback loops between reviews and
descriptions. We also do not know if our results
will generalize to other iOS apps developed by other
developers. However, we took a broad sample of
apps and the iTunes App Store is one of the largest
App Stores on the market so the results could be
generalizable for a large portion of mobile apps.

6. Related Work

Studies on App Stores: Most prior work focuses
on identifying and managing actionable feedback in
app reviews, while our research focuses on how that
feedback is used. Pagano and Maalej [18] performed
an empirical study on user feedback found in App

Page 7418

Stores and found that more than 50% of app reviews
contain a mixture of topics in text, supporting our
choice to use sentence level granularity. Sarro et
al. [19] use release notes to track feature migration
through apps and found that features tend to spread
within similar categories. Panichella et al. [7]
develop an algorithm to classify the content of
app reviews in App Store using a combination
of text analysis, natural language processing, and
sentiment analysis to derive a class.

Both Panichella et al. [7] and Pagano and Maalej
[18] focus on the content of app reviews while our
study focus on what developers respond to from app
reviews. Sarro et al. [19] track software evolution
through App Stores, but work at the App Store
level while our study focuses on individual apps.
Tools to Manage App reviews: Several tools
[4,6,8,20] have been introduced to help developers
source their user reviews for features. Chen et al. [4]
focus on extracting informative app reviews from
App Stores. While highly accurate, the A.R. Miner
only divides the app reviews into non-informative
(equivalent to our “Not Specific” and “Content
Related” label) and informative reviews. WisCom
[20] is a tool that traces user sentiment on three
levels and helps identify sources of user complaints.

Vu et al. [8] propose MARK, a tool designed
to help analysts sift through a large volume of
reviews. Our research examines feedback loops
classified with an SVM, but as shown by Panichella
et al. [7] could be improved by keywords.

Tacob and Harrison [9] developed the tool
MARA, which identifies feature requests in app
reviews. MARA uses a set of 237 linguistic
rules to classify reviews where our research uses
a text analysis approach, comparing text content
to classify. Most of the tools focus on helping
developers find actionable items within user reviews
while our research focuses on what feedback the
developers act on.

Studies on User Feedback: Paloma et
al. [6] introduce an approach called CRYSTAL
which traces software changes suggested by app
reviews to the actual changes implemented by
the developers using both issue trackers and the
apps (predominantly written in Java) in the Google
Play store. However, in the case of the iOS
App Store, the apps are written predominantly
in Objective C, for which there are not any
decompilers like the Java programming language.
Therefore, since our research considered only apps
from the iOS App Store, we did not have access
to the source code, and thus we were unable to

use CRYSTAL. That was also the reason for us to
find feedback loops using reviews and release notes,
which are available for all apps in all App Stores.
Several studies explore untrained users’ ability
to document software requirements both in situ
and through social networking sites [21,22]. Both
Seyff’s and our research explore user’s competence
in communicating with developers, though our
research looks at a more ad hoc method of
communication. Their research found that given
opportunity, the users were able to provide
understandable requirements to software engineers.

7. Implications and Conclusions

For Developers: Communication with users
does matter; users want to know that they count.
Developers need to create an infrastructure for
managing the feedback in user reviews to handle
the sheer volume of app reviews some apps
receive. The presence of bugs at all star ratings
in feedback loops suggests that developers should
handle exceptions as users are more tolerant of
application’s unexpected behavior than of an app
that crashes.

For End Users: We found evidence that
developers are indeed responding to user requests,
thus users should continue to provide information.
Addressing the developers in a neutral and
professional tone is more likely to elicit a response
than ranting and raving. Users who chose a 1-
or 5-star rating had the highest likelihood of the
developers addressing their concerns. Users should
not be on the fence with their reviews when trying
to make their voice heard.

For Application Stores: Since users have
hijacked the application reviews as channels to
report bugs and request features, we call for
a dedicated channels to enable feedback and
communication between users and developers. This
would allow users to highlight what they want
and concentrate the information for developers such
that they can process volume of feedback received.
App Stores could also create more accountability
for developers by visibly showing users how likely
a developer is to address their feedback. If App
Stores can detect when a user is reporting an
issue as they are typing a app review, it could be
beneficial to prompt the user for more information.
Finally, the App Stores may be able to trace
power users who provide developers informative,
actionable feedback.

For Researchers: There is room for HCI research
on alternative models for structuring casual users

Page 7419

to submit feedback to developers. Additionally,
there is another dimension to feedback loops not
addressed in this paper, how other users respond to
the presence of feedback loops.

In this paper, our most surprising findings
include (i) log-in Issue, feature requests, and
crashes had the highest Ilikelihood of being
addressed by developers, (ii) apps in the “Games”
category comprise 61% of the feedback loops
completed within a week of receiving feedback,
(iii) users attempt to barter with developers
using star ratings, but do not return to fulfill
the promised rating change. We hope that this
initial study of developer response to user feedback
can provide information to facilitate the growth
of developer-user interaction in App Stores. We
would like to finally note that more examples,
data, analysis, and discussions with respect to this
topic (which we could not include in this paper due
to space constraints) can be found in the Master’s
thesis of the first author [12].

Acknowledgements: We thank the anonymous
reviewers for their insightful feedback. This
research was partially supported through NSF
CCF-1553741 and CCF-1439957 grants and the
NSERC Discovery grant.

References

[1] “App store review guidelines.”

https://goo.gl/MiToja.

[2] S. Perez, “Apple is taking action against fake
ratings on the app store.” https://goo.gl/cguETh.

[3] C. Arthur, “Apple is taking action against fake
ratings on the app store.” https://goo.gl/RvxySX.

[4] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and
B. Zhang, “AR-Miner: mining informative reviews
for developers from mobile app marketplace,”
in 36th International Conference on Software
Engineering, pp. 767-778, 2014.

[5] H. Khalid, E. Shihab, M. Nagappan, and A. E.
Hassan, “What do mobile app users complain
about?,” IEEFE Software, vol. 32, no. 3, pp. 70-77,
2015.

[6] F. Palomba, M. Linares-Vasquez, G. Bavota,
R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “User reviews matter! tracking
crowdsourced reviews to support evolution
of successful apps,” in IEEE International
Conference on Software Maintenance and
FEvolution, pp. 291-300, IEEE, 2015.

[7] S. Panichella, A. D. Sorbo, E. Guzman, C. A.
Visaggio, G. Canfora, and H. C. Gall, “How
can i improve my app? classifying user reviews
for software maintenance and evolution,” in
2015 IEEE International Conference on Software
Maintenance and FEvolution, pp. 281-290, 2015.

(8]

(9]

(10]

(11]
(12]

(13]

(14]

(15]

(16]

(17]

18]

(19]

20]

(21]

(22]

P. M. Vu, T. T. Nguyen, H. V. Pham, and
T. T. Nguyen, “Mining user opinions in mobile
app reviews: A keyword-based approach,” CoRR,
vol. abs/1505.04657, 2015.

C. Jacob and R. Harrison, “Retrieving and
analyzing mobile apps feature requests from online
reviews,” in 10th Working Conference on Mining
Software Repositories, pp. 41-44, 2013.

F. Palomba, M. L. Vasquez, G. Bavota, R. Oliveto,
M. D. Penta, D. Poshyvanyk, and A. D. Lucia,
“User reviews matter! tracking crowdsourced
reviews to support evolution of successful apps,” in
2015 IEEE International Conference on Software
Maintenance and Evolution, pp. 291-300, 2015.

“i{Tunes store.” https://itunes.apple.com/us/store.

K. Bailey, “Out of the mouths of users : Examining
user-developer feedback loops facilitated by app
stores,” Master’s thesis, Oregon State University,
2015.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin, “Liblinear: A library for large linear
classification,” The Journal of Machine Learning
Research, vol. 9, pp. 1871-1874, 2008.

D. N. Milne and I. H. Witten, “An open-source
toolkit for mining wikipedia,” Artif. Intell.,
vol. 194, pp. 222-239, 2013.

M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and
A. Kappas, “Sentiment strength detection in short
informal text,” Journal of the American Society
for Information Science and Technology, vol. 61,
no. 12, pp. 2544-2558, 2010.

U. Consortium et al., “The unicode standard,
version 6.0. 0, defined by:,” the unicode standard,
version 6.0. 0”,(Mountain View, CA: The unicode
consortium, 2011. isbn 978-1-936213-01-6).”

M. Thelwall, “Myspace comments,” Online
Information Review, vol. 33, no. 1, pp. 58-76, 2009.

D. Pagano and W. Maalej, “User feedback
in the appstore: An empirical study,” in
21st IEEFE International Requirements Engineering
Conference, pp. 125-134, 2013.

F. Sarro, A. A. Al-Subaihin, M. Harman, Y. Jia,
W. Martin, and Y. Zhang, “Feature lifecycles as
they spread, migrate, remain, and die in app
stores,” in 23rd IEEE International Requirements
Engineering Conference, pp. 76-85, 2015.

B. Fu, J. Lin, L. Li, C. Faloutsos, J. I. Hong, and
N. M. Sadeh, “Why people hate your app: making
sense of user feedback in a mobile app store,” in
The 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD
2013, Chicago, IL, USA, August 11-14, 20183,
pp. 1276-1284, 2013.

N. Seyff, F. Graf, and N. Maiden, “Using mobile
RE tools to give end-users their own voice,” in
18th IEEE International Requirements Engineering
Conference (RE), pp. 37-46, IEEE, 2010.

N. Seyff, I. Todoran, K. Caluser, L. Singer, and
M. Glinz, “Using popular social network sites
to support requirements elicitation, prioritization
and negotiation,” Journal of Internet Services and
Applications, vol. 6, no. 1, pp. 1-16, 2015.

Page 7420

